

S I E B E L S Y S T E M S , I N C .

Siebel Application
Response Monitoring

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 2 of 36

Summary ... 3

Overview of Siebel Application Response Monitoring... 4
Architecture of Siebel Application Response Monitoring 7.5.3.. 5

Overview... 5
SARM areas of instrumentation ... 5
Request execution path – Example ... 6

Enabling SARM ... 9
Enabling SARM on the Web Server .. 9
Enabling SARM on the Siebel Server .. 11

SARM Analyzer Tool ... 13
SARM Analyzer Syntax.. 13
Performance Area Aggregation Analysis ... 15

Example output .. 18
Call Map Generation .. 24

Example output .. 25
User Session trace... 26

Example output .. 28
SARM Binary File to CSV Conversion ... 32

Best Practices ... 35

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 3 of 36

Summary
This Technical Note discusses the architecture and usage of Siebel Application Response
Measurement (SARM) a service that has been introduced as part of Siebel 7.5.3. SARM is
modeled after ARM, the industry standard for application response time measurement.

SARM can be used in both pre- and post production systems to identify or troubleshoot response
time problems.

This Technical Note provides basic examples of SARM usage and describes the currently
supported methods of utilizing SARM.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 4 of 36

Overview of Siebel Application Response Monitoring
Siebel Application Response Management (SARM) 7.5.3 is a framework for identifying
performance problems in the Siebel 7.5.3 solution. SARM allows administrators to collect critical
performance and timing data, thereby making it possible to profile the execution of requests
throughout the Siebel Server and its various components.

The SARM Analyzer is a post-processing tool that assists Administrators in understanding the
performance data captured by SARM. The tool converts the SARM files from a binary
representation to a human readable format. SARM Analyzer performs various levels of
computation and analysis. Depending on the user options, the tool then generates an XML or
CSV output of the call stack and analysis results.

 Figure 1. SARM Architecture and areas of instrumentation

Siebel Server

Client

SSiieebbeell AApppp
DDaattaabbaassee

Web Server

Instrumented
Areas

webserver/lo
Web Server SARM Output

siebelserver/lo
Siebel Server SARM Output

SWSE

Name Server Resonate

Server Thread
SWE

Workflow SarmAnalyzer.exe Scripting Engine
Database

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 5 of 36

Architecture of Siebel Application Response Monitoring 7.5.3

Overview

Prior to being able to leverage SARM, it is important to understand the areas and sub-areas of
the Siebel architecture that have been instrumented to collect response time information.
Understanding the type of data and the area of the product where timing information is captured
is an essential first step in being able to use SARM and analyze its output.

SARM areas of instrumentation

Table 1 shows the areas and sub-areas of performance monitoring for SARM within the Siebel
Architecture:

Area Name Area Sub-Area Number
 Number 1 2 3 4

SarmIO

1

SWSE 2 Login SWE Request Session
Manager

Server Thread
(SMI)

3 Request
Handling

DB Connector 4 Execute
Query

Write Record Fetch Next
Record

Prepare
Statement

Scripting Engine 5 VB Script
Execute

VB Script
Compilation

eScript
Execution

eScript
Compilation

Workflow

7 Invoke Method Process Init Process
Resume

Step
Execution

SWE 8 Process SWE
Command

Build View

 Table 1

Area: SarmIO
SarmIO measures the time it takes to write the SARM data from memory to disk.

Area: Siebel Web Server Extension (SWSE)
SWSE measures the time duration between entry to the SWSE and messages being sent to the
Siebel server. Time spent in the SWSE includes the Siebel Gateway and Resonate time.
 Sub-area: Login
 Time spent to request a user login
 Sub-area: SWE Request
 Time for SWSE to handle a request
 Sub-area: Session Manager
 Time for the Session Manager to handle a request.

Area: Server Thread (SMI)
Server thread is the area in the Siebel architecture that handles all Siebel server requests. This is
the entry point of a request from the web server to the Siebel server. The time indicates the
duration it takes the Siebel server to handle a request.
 Sub-area: Request Handling
 Time to handle a request on the Siebel server side

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 6 of 36

Area: Database Connector
Database Connector measures the total time it takes a given request when calling the Database
Connector layer.
 Sub-area: Execute Query
 Time to execute a “select” statement
 Sub-area: Write Record
 Time to execute a “delete”, “update” or “insert” statement
 Sub-area: Fetch Next Record
 Time to fetch a record from a query
 Sub-area: Prepare Statement
 Time to prepare a SQL statement

Area: Scripting Engine
Total time it takes to execute a script.
 Sub-area: VB Script Execute
 Time to execute a VB script
 Sub-area: VB Script Compilation
 Time to compile a VB script
 Sub-area: eScript Execution
 Time to execute an eScript script
 Sub-area: eScript Compilation
 Time to compile an eScript script

Area: Workflow
Total time it takes to execute a Workflow process.
 Sub-area: Invoke Method
 Time it takes to invoke a method
 Sub-area: Process Init
 Time it takes to initialize a process (workflow)
 Sub-area: Process Resume
 Time it takes to resume a process (workflow)
 Sub-area: Step Execution
 Time it takes to execute a step within a process (workflow)

Area: SWE
The Siebel Web Engine (SWE) executes within the context of the Siebel Object Manager.
Therefore any time spent in the SWE is a subset of time of the total Siebel Object Manager time.
 Sub-area: Process SWE Command
 Time it takes to process a request submitted to SWE
 Sub-area: Build View

The SWE assembles the Siebel View (web page). The Object Manager then
sends it to the Siebel Web Server Extension running on the Web Server so it can
pass the web page onto the client. This metric reflects the time it takes to
assemble/build the view.

Request execution path – Example

Below is an example of the execution flow of a request when a user navigates to the Accounts
view.

1. User clicks on the Accounts view.
2. A request is submitted from the browser to the Web Server.
3. The Siebel Web Server Extension (SWSE) submits the request to the Siebel Server.
4. Within the Siebel Server, the Siebel Web Engine (SWE) invokes the Siebel Object

Manger (OM) to create a Business Object (BO).

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 7 of 36

5. The BO creates a Business Component (BC).
6. The BC may invoke a script.
7. The BC may invoke a pre-query function
8. The pre-query function may invoke a workflow.
9. The pre-query function invokes a query function.
10. The query function invokes the Siebel Database.
11. The Siebel database retrieves the account information and sends the data back to SWE.
12. SWE builds the account view and sends the information to SWSE.
13. SWSE sends the account view information to be rendered in the client’s browser.

 Figure 2 – Requests Process Flow

The path of the SARM instrumentation as a result of the request to display the Account’s view
will be the following:

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 8 of 36

 Figure 3 – SARM instrumentation for an Account’s view request

1. The first response time instrumentation point once the request is submitted from the

browser to the web server is SWSE.
2. SWSE submits the request to SWE. SWE will be the second instrumentation point for

the request.
3. The request invokes a script, a workflow process and it accesses the Siebel database to

retrieve the account information. Based on the path of the request, SARM captures
response time information for the Scripting Engine, DB connector and Workflow process.

4. The total response time for the Siebel Server to handle the request is being captured by
the Server Thread.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 9 of 36

Enabling SARM

SARM is controlled through Siebel server parameters and environment variables. To enable
SARM, three parameters need to be enabled for both the web server via environment variables
and the Siebel Server via the Server Manager. When a component starts up in the Siebel
Enterprise, it will check for the status of the SARM parameters.

There are 3 parameters that control the behavior of SARM:

• SARMEnabled: indicates whether SARM is enabled or disabled for a Siebel Server
Component. It is a boolean value (true | false). The default value is ‘false’. This
parameter can be set at the Siebel Server or Siebel Server Component level.

• SARMMaxMemory: SARM 7.5.3 uses a shared memory segment to store the data

collected from the Siebel Server Components. Once the in-memory data size reaches a
threshold defined by the parameter SARMMaxMemory, SARM will write the data to a file
on the local disk subsystem. The default value is ‘500000’, about 5 MB and is specified in
bytes.

• SARMMaxFileSize: Specifies how large a file gets before SARM will start a new file.

SARM will continue to append file segments to the current file until the specified size is
reached. When the file limit is reached, SARM will start a new file. The default value is
‘20000000’ (about 20 MB) and is specified in bytes.

SARM is disabled by default. To enable SARM, set the SARMEnabled parameter to true. This
can be done on the Web Server, the Siebel Server, or both. When enabling SARM it is important
to also consider the appropriate settings for the SARMMaxMemory and SARMMaxFileSize
parameters since these will determine how soon SARM flushes its data to disk, and how large the
SARM files will be. Recommendations for setting these parameters are discussed later in this
section.

Enabling SARM on the Web Server

Enabling SARM on the Web Server is done by setting environment variables.

An example on Windows is:

1. From the Desktop, right click on My Computer icon and select Properties.
2. Go to the “Advanced” tab.
3. Select “Environment Variables.” Add the system environment variables.

SIEBEL_SARMEnabled = true
SIEBEL_SARMMaxMemory = 20000
SIEBEL_SARMMaxFileSize = 400000

4. Note that the equal signs indicate the values that the system variables should be set to.

The optimal values vary by specific deployment and may be different than depicted here.
On Windows, the machine needs to be restarted so that the settings can take effect.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 10 of 36

Figure 4 – Setting environment variables for SARM

Note: Figure 4 shows a sample value for SARM environment variables. The default values for
SIEBEL_SARMMaxFileSize and SIEBEL_SARMMaxMemory are 30000000 (about 30 MB) and
5000 (about 5 KB), respectively.

UNIX Example:

1. Enter the corresponding shell commands to enable the environment variables. For example if
using C-shell, use the following command:

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 11 of 36

 setenv SIEBEL_SARMEnabled true
 setenv SIEBEL_SARMMaxMemory 20000
 setenv SIEBEL_SARMMaxFileSize 400000

Once the values have been modified the web server needs to be re-started for the changes to
take effect. To disable SARM once it has been enabled on the web server, simply set the
SIEBEL_SARMEnabled variable to false and restart the web server process/service.

Note: If the web server and the Siebel Server are running on the same machine, the maximum
memory and files size on the web server will override the value of the Siebel Server. However, in
most testing and production environments, the web server and Siebel Servers are running on
different machines, so the likelihood of this scenario occurring is minimal.

Enabling SARM on the Siebel Server

Enabling SARM on the Application Server is done by setting Siebel Server parameters via the
Server Manager, either through the user interface or the command line interface.

To enable SARM on the Siebel Server using the Siebel Server Manager Graphical User Interface:
1. Go to Site Map Server Administration Servers Server Parameters
2. In the Server Parameters List Applet, query for “SARM*”.
3. Update the values of SARM Data File Size Limit, SARM Enabled, SARM Memory Size

Limit accordingly
4. Stop and re-start the Siebel server for the new values to take effect.

 Figure 5 – Setting SARM parameters through Server Manager UI

To enable SARM on the Siebel Server using the command line:

1. Start server manager command-line interface.

2. To enable SARM at the Server level, enter:

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 12 of 36

 change parameter SARMEnabled = true for server Siebel_server_name
 change parameter SARMMaxMemory = 20000 for server Siebel_server_name
 change parameter SARMMaxFileSize = 400000 for server Siebel_server_name

3. To enable SARM at the server component level, enter:

 change parameter SARMEnabled = true for component component_alias_name

 change parameter SARMMaxMemory = 20000 for component component_alias_name
 change parameter SARMMaxFileSize = 400000 for component component_alias_name

Once the values have been modified the Siebel Server should to be re-started for the changes to
take effect. To disable SARM on the Siebel Server once it has been enabled simply set the
SARMEnabled parameter to false and restart the Siebel Server process/service.

SARMMaxFileSize will determine the maximum size of the SARM file but SARM may create a
new file when 80% of the file size is reached.

The settings for size of the maximum memory and file size can be adjusted depending on how
much SARM data the administrator wants to keep in a file before they are overwritten. This
makes it possible to arrange the configuration such that n amount of data is maintained in the
files once the maximum number of files is created.

In internal Siebel Engineering testing of a Call Center with a 1000 users accessing the application
and executing normal operations, the default values of 5MB and 20MB stored between one to two
hours of SARM data. For additional data, the sizes should be changed accordingly. The actual
amount of data captured and space taken are deployment specific as some deployments may
have higher transaction throughput than others.

Once SARM has been enabled, the system will start collecting performance data for each
request. Performance data is temporarily stored in memory up to the value of
SARMMaxMemory and periodically flushed to disk. The data written to disk is in binary format.
After running the SARM Analyzer, the data captured will be in a different precision format
depending on the platform used: in a Microsoft Windows environment the data will be captured in
microseconds (One millionth (10-6) of a second); in a Unix environment the data will be in
nanoseconds (One billionth (10-9) of a second).

SARM maintains at most four (4) SARM files in disk per component process. In Siebel 7.5.3, this
behavior is not configurable. Once the maximum file size is reached (SARMMaxFileSize), the
oldest file is removed. If the administrator needs to keep those SARM files for future reference, it
is recommended that the files are archived before they are removed.

The SARM file is created when the application encounters the first instrumentation point in one of
the instrumented areas (SWSE, Server Thread, Database Connector, Scripting Engine,
Workflow, SWE or SarmIO) and SARM has been enabled. Notice that some SARM files have a
size of zero. This is because data is written to file when the buffer (SARMMaxMemory) is full
and in this case, no data has been written for that process yet.

Note: If no data is written to the disk it means that SARM is enabled but the SARMMaxMemory
level has not been reached. In 7.5.3, the file is only written to when the buffer is full so in the
event that the buffer is never filled before the process is stopped, no data will be collected and the
file size will remain 0. If this results in no data ever being written to disk, then the
SARMMaxMemory value can be set to a lower value so the buffer is filled and flushed more often.

Examples of the SARM data files are shown below:

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 13 of 36

The SARM files have the following naming conventions:

 S01_P<pid>_N<filenumber>.sarm

 S01 – constant number

 <pid> - Siebel server process id

 <filenumber> - file number. This starts at 0000 and it increments until it reaches
9999, at which point it wraps around to 0000 again. The Most recent 4 files (per process)
are retained. An example of this is S01_P14260_N0000.sarm.

SARM Analyzer Tool

SARM Analyzer, the SARM post-processing tool, converts the binary SARM output files to XML
or CSV format. The resulting files include aggregated times for further analysis by the Siebel
Administrator. The tool SARMAnalyzer.exe is located in the %SIEBEL_HOME%\BIN directory.

SARM Analyzer Syntax

The SARM Analyzer performs various types of processing of the SARM binary files. The output
syntax will vary according to the processing desired. Please refer to the following sections for
detailed descriptions of the functionality and related syntax:

1. Performance Area Aggregation analysis
2. Call Map Generation
3. User-Session Trace
4. SARM Binary File to CSV Conversion

Independent of the mode in which the SARM Analyzer is used, to get help type:

On a Windows environment, enter:
 SARMAnalyzer –help

On a Unix environment, enter

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 14 of 36

 sarmanalyzer -help

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 15 of 36

Performance Area Aggregation Analysis
Aggregation analysis is performed by executing the SARMAnalyzer executable using the –f
switch. The following sections detail the different usage possibilities as well as details on the
output content and format.

Usage 1
Executing the SARM Analyzer executable aggregates the contents of a SARM binary file by area
of instrumentation. The output file will always be sarm.xml and it will be placed in the location
from where the command is executed.

Command Syntax:
On Windows: SARMAnalyzer –f <sarm file>
On Unix: sarmalyzer –f <sarm file>
Output File Name: sarm.xml
Example on Windows: SARMAnalyzer –f S01_P20862_N0002.sarm

Usage 2
Executing the SARM Analyzer executable aggregates the contents of a SARM 7.5.3 binary file by
area of instrumentation, but in this case by piping the output to a file, the output file will have the
name specified and will be stored in the location specified in the command.

Command Syntax:
On Windows: SARMAnalyzer –f <sarm file> > <some_file_name.xml>
On Unix: sarmanalyzer –f <sarm file> > <some_file_name.xml>
Output File Name: some_file_name.xml
Example: SARMAnalyzer –f S01_P20862_N0002.sarm > %HOME%/
P20862_N0002_area_agr.xml

Description:

SARM Analyzer provides the capabilities to perform grouping against the performance data
captured in SARM files. A single XML file sarm.xml is generated upon the successful execution
of the SARM Analyzer. The sarm.xml output file is stored in the current working directory. When
running the SARM Analyzer, the full path of the SARM binary files has to be specified if the file is
not in the same directory as the SARM Analyzer executable

SARM files are grouped based on the areas of instrumentation that is webserver (SWSE), Server
thread, Siebel Web Engine, Workflow, Scripting Engine and Database Connector.

Example output schema:

<Group> *

 <Name>

 <ResponseTime>

 <Total>

 <Average>

 <NonRecursiveCalls>

 <RecursiveCalls>

 <Max>

 <Min>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 16 of 36

 <ExecutionTime>

 <Total>

 <Average>

 <Max>

 <Min>

 <Parents>

 <ParentGroup> *

 <Name>

 <TotalContributingTime>

 <Calls>

 <Average>

 <ContributingTimePercent>

 <ContributingCallPercent>

 <Children>

 <ChildGroup> *

 <Name>

 <TotalContributedTime>

 <Calls>

 <Average>

 <PercentageTime>

 <PercentageCalls>

Below is an explanation of each of the tags in the output schema:

• Group: refers to each area that is instrumented by SARM. Performance data is captured
for the webserver (SWSE), Server threads, Database Connector, Scripting Engine,
Workflow and Siebel Web Engine.

• Response Time: also called “inclusive time” in most commercial profiling tools. It is the
time spent for a request between entering and exiting an instrumentation area.

a. Total: Total time spent on a request between entering and exiting an
instrumentation area.

b. Average: average response time for a request. This is calculated by dividing
total time (Total) by number of requests (NonRecursiveCalls).

c. NonRecursiveCalls: Number of times an instrumentation area is called. This
tag helps identify the time it takes an instrumentation layer to respond to a
request.

d. RecursiveCalls: One of the key features of the tool is the capability to handle
recursion. For example, if a workflow step calls an Object Manager function,
which also invokes another workflow step, then there is a recursion in workflow.
Considering the number of times the workflow layer is being called, there are two
relevant metrics: RecursiveCalls and NonRecursiveCalls. In this case,
RecursiveCalls is 1 and NonRecursiveCalls is also 1. When calculating the
response time, only the root-level call is being accounted for. When calculating
execution time, both calls are being accounted.

e. Max: maximum time for a request between entering and exiting an
instrumentation area.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 17 of 36

f. Min: minimum time for a request between entering and exiting an instrumentation
area.

• Execution Time: It is often called “exclusive time” in most commercial profiling tools. It
is the total time spent in a particular instrumentation area only, not including the time
spent in the descendant layers.

a. Total: Total time spent on a request between entering and exiting an
instrumentation area.

b. Average: average time spent on a request between entering and exiting an
instrumentation area.

c. Max: maximum time for a request between entering and exiting an
instrumentation area.

d. Min: minimum time for a request between entering and exiting an instrumentation
area.

• Parent: parent of the group. This information helps identify the caller of a group and the
total time and number of calls the group contributed to its parent’s response time.

a. Name: name of the parent group. A group is an area of instrumentation.

b. Total Contributing Time: total time a group contributed to the parent’s total
time. For example, if SWSE calls the Object Manager (OM) and OM spends a
total of 10 seconds, then the Total Contributing Time is 10. If Scripting Engine
also calls OM, and OM spends 40 seconds when called by the Scripting Engine,
then the Contributing Time Percentage of SWSE to OM is 20%. This is
calculated as (Total Contributing Time / Total OM Time)*100% or ((10/50) *100%
= 20%). The Contributing Time of Scripting to OM in this case would be 80% or
((40/50) *100% = 80%).

c. Calls: Number of times a parent group is called.

d. Average: average time spent in the parent.

e. ContributingTimePercent: time in percentage that this group contributed to the
parent’s total time. For example WF contributed 25% to SWE (parent).

f. ContributingCallPercent: percentage of calls made from the parent to this
group as a percentage of the total calls to all groups in a request. For example,
WF is called 3 times in a request, SWE was called 30 times in the same request,
and hence the contributing call percent of WF to SWE is 10%.

• Children: Children refer to the areas called by a parent group. A user can drill into a
groups’ children information to determine response time break down within each of the
child. By drilling down into the children’s information, the user can find potential
performance bottlenecks.

a. Name: Name of the child group

b. TotalContributedTime: total time a child group contributed to the parent’s total
response time. The sum of all children contribution’s time (response time) added
to the area’s execution time should be the total response time for the area.

c. Calls: Number of calls made to a child group.

d. Average: average time spent on a child group.

e. PercentageTime: Percent of time spent on a child group divided by the time
spent on all children’s groups.

f. PercentageCalls: Amount of calls in percentage that is spent on a child group.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 18 of 36

Example output
The data is displayed in nanoseconds as the sample was taken from a Unix machine.

- <xml>
 - <Group>
 <Name>SMI</Name>
 - <ResponseTime>

 <Total>325577844947</Total>
 <Average>1839422852</Average>
 <NonRecursiveCalls>177</NonRecursiveCalls>
 <RecursiveCalls>0</RecursiveCalls>
 <Max>133062957179</Max>
 <Min>3293465</Min>

 </ResponseTime>
 + <ExecutionTime>

 <Parents />
+ <Children>

 </Group>
 - <Group>
 <Name>Database</Name>
 - <ResponseTime>

 <Total>28846037763</Total>
 <Average>2804943</Average>
 <NonRecursiveCalls>10284</NonRecursiveCalls>
 <RecursiveCalls>106</RecursiveCalls>
 <Max>3623108101</Max>
 <Min>47397</Min>

 </ResponseTime>
+ <ExecutionTime>

+ <Parents>
+ <Children>

 </Group>
 - <Group>
 <Name>SarmIO</Name>

 - <ResponseTime>
<Total>756465475</Total>
<Average>6200536</Average>
<NonRecursiveCalls>122</NonRecursiveCalls>
<RecursiveCalls>0</RecursiveCalls>
<Max>181488478</Max>
<Min>730255</Min>

 </ResponseTime>
 + <ExecutionTime>

+ <Parents>
 <Children />

 </Group>
 - <Group>
 <Name>SWE</Name>
 - <ResponseTime>

 <Total>167202095979</Total>
 <Average>966486103</Average>
 <NonRecursiveCalls>173</NonRecursiveCalls>
 <RecursiveCalls>16</RecursiveCalls>
 <Max>51087996109</Max>
 <Min>141423</Min>

 </ResponseTime>
 + <ExecutionTime>

+ <Parents>
+ <Children>

 </Group>
 - <Group>
 <Name>Scripting Engine</Name>
 - <ResponseTime>

 <Total>42078467851</Total>
 <Average>825067997</Average>
 <NonRecursiveCalls>51</NonRecursiveCalls>
 <RecursiveCalls>0</RecursiveCalls>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 19 of 36

 <Max>40459460508</Max>
 <Min>852767</Min>

 </ResponseTime>
+ <ExecutionTime>
+ <Parents>
+ <Children>

 </Group>
 - <Group>
 <Name>Workflow Engine</Name>
 - <ResponseTime>

 <Total>41809855132</Total>
 <Average>10452463783</Average>
 <NonRecursiveCalls>4</NonRecursiveCalls>
 <RecursiveCalls>14</RecursiveCalls>
 <Max>40450981149</Max>
 <Min>635413</Min>

 </ResponseTime>
+ <ExecutionTime>
+ <Parents>
+ <Children>

 </Group>
 </xml>

Figure 1

1. First, view all the groups and find out which one has the highest ResponseTime. By
looking at figure 1 (XML file), note that Server Thread is the entry point to the Siebel
server (doesn’t have parent group) and it took 325 seconds.

a. Server Thread = 326 seconds (325,577,844,947 nanoseconds)

b. Database = 29 seconds (28,846,037,763)

c. SarmIO = .76 seconds (756,465,475)

d. SWE = 17 seconds (167,202,095,979)

e. Scripting Engine = 43 seconds (42,078,467,851)

f. Workflow Engine = 42 seconds (41,809,855,132)

2. When compared to the rest of the groups, the request spent most of its time on the
Server Thread area; therefore the Server Thread information require further analysis.
Also note the following information:

a. At an average, it took 1.8 seconds for Server Thread request to be processed.

b. The maximum time it took to process a Server Thread request was 133 seconds.

c. The minimum time it took to process a Server Thread request was .003 seconds.

It is suspicious that a given Server Thread request took much longer than the
average (133 vs. 1.8 seconds).

3. Next, look at the children group of the Server Thread and find out which child took the
longest to processed (TotalContributedTime):

- <xml>
 - <Group>
 <Name>SMI</Name>
 + <ResponseTime>
 + <ExecutionTime>
 <Parents />
 - <Children>
 - <ChildGroup>
 <Name>Database</Name>
 <TotalContributedTime>10052385093</TotalContributedTime>
 <Calls>7378</Calls>
 <Average>1362481</Average>
 <PercentageTime>5.65</PercentageTime>
 <PercentageCalls>96.62</PercentageCalls>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 20 of 36

 </ChildGroup>
 - <ChildGroup>
 <Name>SarmIO</Name>
 <TotalContributedTime>695242267</TotalContributedTime>
 <Calls>85</Calls>
 <Average>8179320</Average>
 <PercentageTime>0.39</PercentageTime>
 <PercentageCalls>1.11</PercentageCalls>

 </ChildGroup>
 - <ChildGroup>
 <Name>SWE</Name>
 <TotalContributedTime>167202095979</TotalContributedTime>
 <Calls>173</Calls>
 <Average>966486103</Average>
 <PercentageTime>93.96</PercentageTime>
 <PercentageCalls>2.27</PercentageCalls>

 </ChildGroup>
 </Children>
 </Group>

+ <Group>
+ <Group>
+ <Group>
+ <Group>
+ <Group>

</xml>
Figure 6

a. Form Figure 6, SWE’s contribution time was the highest with 167 seconds vs. 10
seconds for Database and .6 seconds for SarmIO.

b. Note that of the total number of calls spent on the children groups, only 2.27% of
the calls were made to SWE (SWE Calls /(Database Calls + SarmIO Calls +
SWE Calls)) *100% or (173 / (7378+85+173))*100%.

However, even though only 2.27% of the calls were made to SWE, those calls
accounted for 93.96% of the response time within the children’s group.

 (SWE TotalContributedTime / (Database TotalContributedTime + SarmIO
TotalContributedTime + SWE TotalContributedTime)) *100%

or (167202095979 / (10052385093 + 695242267+ 167202095979)) *100%

These findings further indicate that there are very few calls within the SWE child
group (173), but the percent of time spent on those SWE calls were very high
(93.96%). Therefore additional analysis should be done on the SWE group to
isolate the performance problem.

4. Look at the SWE group in more detail and specifically expand the children’s groups.
- <xml>
+ <Group>
+ <Group>
+ <Group>
- <Group>
 <Name>SWE</Name>
- <ResponseTime>
 <Total>167202095979</Total>
 <Average>966486103</Average>
 <NonRecursiveCalls>173</NonRecursiveCalls>
 <RecursiveCalls>16</RecursiveCalls>
 <Max>51087996109</Max>
 <Min>141423</Min>

 </ResponseTime>
- <ExecutionTime>
 <Total>173968409607</Total>
 <Calls>189</Calls>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 21 of 36

 <Average>920467775</Average>
 <Max>51025097250</Max>
 <Min>141423</Min>

 </ExecutionTime>
- <Parents>
- <ParentGroup>
 <Name>SMI</Name> <TotalContributingTime>167202095979</TotalContributingTime>
 <Calls>173</Calls>
 <Average>966486103</Average> <ContributingTimePercent>82.94</ContributingTimePercent>

<ContributingCallPercent>91.53</ContributingCallPercent>
 </ParentGroup>

- <ParentGroup>
 <Name>SWE</Name> <TotalContributingTime>34393218236</TotalContributingTime>
 <Calls>16</Calls>
 <Average>2149576139</Average> <ContributingTimePercent>17.06</ContributingTimePercent>

<ContributingCallPercent>8.47</ContributingCallPercent>
 </ParentGroup>
 </Parents>

- <Children>
- <ChildGroup>
 <Name>Database</Name> <TotalContributedTime>18540207197</TotalContributedTime>
 <Calls>2716</Calls>
 <Average>6826291</Average>
 <PercentageTime>19.43</PercentageTime>
 <PercentageCalls>96.41</PercentageCalls>

 </ChildGroup>
- <ChildGroup>
 <Name>SarmIO</Name> <TotalContributedTime>55622335</TotalContributedTime>
 <Calls>32</Calls>
 <Average>1738197</Average>
 <PercentageTime>0.06</PercentageTime>
 <PercentageCalls>1.14</PercentageCalls>

 </ChildGroup>
- <ChildGroup>
 <Name>SWE</Name> <TotalContributedTime>34393218236</TotalContributedTime>
 <Calls>16</Calls>
 <Average>2149576139</Average>
 <PercentageTime>36.04</PercentageTime>
 <PercentageCalls>0.57</PercentageCalls>

 </ChildGroup>
- <ChildGroup>
 <Name>Scripting Engine</Name> <TotalContributedTime>42078467851</TotalContributedTime>
 <Calls>51</Calls>
 <Average>825067997</Average>
 <PercentageTime>44.09</PercentageTime>
 <PercentageCalls>1.81</PercentageCalls>

 </ChildGroup>
- <ChildGroup>
 <Name>Workflow Engine</Name> <TotalContributedTime>375294777</TotalContributedTime>
 <Calls>2</Calls>
 <Average>187647388</Average>
 <PercentageTime>0.39</PercentageTime>
 <PercentageCalls>0.07</PercentageCalls>

 </ChildGroup>
 </Children>
 </Group>

+ <Group>
+ <Group>

 </xml>
 Figure 7

a. Total response time is calculated by adding the parent’s own execution time to
the sum of the children’s contribution time. In this case, SWE’s execution time is:

 SWE’s ExecutionTime = SWE ResponseTime - (Database ContributedTime +
SarmIO ContributedTime + SWE ContributedTime + Scripting Engine
ContributedTime + Workflow ContributedTime)

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 22 of 36

 (167,202,095,979 - (18,540,207,197 + 55,622,335 + 34,393,218,236 + 42,078,467,851 +
 375,294,777)) = 71,759,285,583

Note: In the example above (Figure 7) and in the current 7.5.3 version of SARM, the
parent’s execution time is not displayed correctly. In order to calculate the parent’s
execution time, subtract the children’s total contribution time from the parent’s total
response time.

b. Identifying the percentage of time a child group contributed to the parent’s total
response time helps to illustrate which child contributed the most to the parent’s
total response time. This information helps in identifying if additional investigation
needs to be done on a particular child.

Child Area Total contributed
Time

% of SWE’s Response Time spent on child area

Database 18,540,207,197 11.00%

((DB TotalContributedTime/SWE Total Response Time) *100%)
((18,540,207,197/167,202,095,979) *100%) = 11.00%

SarmIO 55,622,335 0.03%

((SarmIO TotalContributedTime/SWE Total Response Time)
*100%)
((55,622,335/167,202,095,979) *100%) = 0.03%

SWE 34,393,218,236 20.50%

((SWE TotalContributedTime/SWE Total Response Time) *100%)
((34,393,218,236/167,202,095,979) *100%) = 20.50%

Scripting
Engine

42,078,467,851 25.10%

((Scripting Engine TotalContributedTime/SWE Total Response
Time) *100%)
((42,078,467,851/167,202,095,979) *100%) = 25.10%

Workflow 375,294,777 0.23%

((Workflow TotalContributedTime/SWE Total Response Time)
*100%)
((375,294,777/167,202,095,979) *100%) = 0.23%

% of SWE
Response
Time spent
on its
children

95,442,810,396

56.86%

(11.00% + 0.03% + 20.50% + 25.10% + 0.23%) = 56.86%

SWE’s
Execution
Time

71,759,285,583 43.14%

 Table 2

a. From Figure 7 and Table 2, the total contribution time for each of the children’s
areas within the SWE group are:

 Database = 19 seconds (18,540,207,197) see underlined numbers

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 23 of 36

 SarmIO = .06 seconds (55,622,335) see underlined numbers

 SWE = 34 seconds (34,393,218,236) see underlined numbers

 Scripting Engine = 42 seconds (42,078,467,851) see underlined
numbers

By looking at Table 2, most of the time used by SWE was consumed by the Scripting
Engine (42 seconds)

b. 25% of the SWE time was spent on the Scripting Engine (Scripting Engine
TotalContributedTime / SWE ResponseTime) *100%)) or

(42,078,467,851 / 167,202,095,979) *100%). This should be flagged as an area
that should be further investigated.

 SWE TotalContributedTime = 167,202,095,979

 Scripting Engine TotalContributedTime = 42,078,467,851

20.5% of the SWE time was spent on SWE itself, however, there is no additional
performance data provided for SWE; therefore additonal analysis on the Scripting
Engine area is needed to isolate the problem.

5. Next, look at the Scripting Engine group.
- <xml>

+ <Group>
+ <Group>
+ <Group>
+ <Group>
- <Group>
 <Name>Scripting Engine</Name>

- <ResponseTime>
 <Total>42078467851</Total>

 <Average>825067997</Average>
 <NonRecursiveCalls>51</NonRecursiveCalls>
 <RecursiveCalls>0</RecursiveCalls>
 <Max>40459460508</Max>
 <Min>852767</Min>

 </ResponseTime>
- <ExecutionTime>

 <Total>643907496</Total>
 <Calls>51</Calls>
 <Average>12625637</Average>
 <Max>564757316</Max>
 <Min>852767</Min>

 </ExecutionTime>
- <Parents>

- <ParentGroup>
 <Name>SWE</Name>
 <TotalContributingTime>42078467851</TotalContributingTime>
 <Calls>51</Calls>
 <Average>825067997</Average>
 <ContributingTimePercent>100.00</ContributingTimePercent>
 <ContributingCallPercent>100.00</ContributingCallPercent>

 </ParentGroup>
 </Parents>

- <Children>
- <ChildGroup>

 <Name>Workflow Engine</Name>
 <TotalContributedTime>41434560355</TotalContributedTime>
 <Calls>2</Calls>
 <Average>20717280177</Average>
 <PercentageTime>100.00</PercentageTime>
 <PercentageCalls>100.00</PercentageCalls>

 </ChildGroup>
 </Children>

 </Group>
+ <Group>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 24 of 36

</xml>
Figure 8

a. Notice that the maximum response time is around 40 seconds whereas the
minimum response time is 0.00085 seconds, and the average is 0.825 seconds.
The maximum and minimum response times are very far apart, and probably the
maximum response time value is making the average number look much higher.
If the maximum response time is subtracted from the total and the average
calculated, a more realistic average time is derived.

 (Total Response Time – Max)/NonRecursiveCalls = Average

 (42,078,467,851 – 40,459,460,508)/50 = 32,380,146 (0.032 seconds)

b. By calculating this new average, it is apparent that on an average, the execution
of the scripts was efficient. It should be noted that these numbers should be
compared to a base line and are always relative.

c. It is also noticeable that one of the scripts took a very long time. By looking at
the file, the name of the script is not known, but more investigation can occur by
looking at the CSV file (look for CSV conversion for additional explanation).

Call Map Generation

Using the –xml switch with the SARM Analyzer will produce a more detailed call map of the
transactions captured by SARM.

Command Syntax:
On Windows: SARMAnalyzer –xml <sarm file> <sarm file.xml>
On Unix: sarmanalyzer –xml <sarm file> <sarm file.xml>
Output File Name: <sarm file>.xml
Example on Windows:
SARMAnalyzer.exe –xml S01_P20862_N0002.sarm > S01_P20862_N0002.sarm.xml

Description:
For a given a SARM file, the SARM Analyzer constructs a map with all the call references. Each
node in the call map represents an instrumentation instance. Using this option generates an XML
file containing all the calls made by each component monitored.

Example output:
The following is the data for each node.
<Node>

 <SarmID>

 <ParentID>

 <RootID>

 <SenderSrvID>

 <SenderProcID>

 <Area>

 <SubArea>

 <StartTime>

 <Duration>

 <UserInt1>

 <UserInt2>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 25 of 36

 <UserString>

 <Node>*

Below is an explanation of each of the tags in the output schema:

• Node: Each instance of an instrumented area is a node. Each node can have zero to
many nodes as its descendants

• SarmID: A unique number representing a SARM instrumentation point.

• ParentID: A unique number representing the caller of an instrumentation point within the
same request. The caller is another instrumented area.

• RootID: A unique number assigned to a request submitted from the SWSE to the Siebel
Server. RootID is also known as Request ID.

• SenderSrvID: Reserved for future use.

• SenderProcID: Reserved for future use.

• Area: Instrumentation element within the Siebel architecture. The seven elements that
have been instrumented to collect response time information are: SarmIO, SWSE, Server
Thread, SWE, Workflow, Scripting Engine and Database Connector.

• SubArea: Detailed instrumentation within an area of the Siebel architecture. For
example, SARM will capture response timing for invoking a method (Invoke Method) or
executing a step (Step Execution) within a Workflow execution.

• StartTime: Internal representation of the SARM record timestamp.

• Duration: Total time to execute the instrumented area.

• UserInt1: Context information captured at the point of instrumentation. The value
depends on the instrumented area.

• UserInt2: Context information captured at the point of instrumentation. The value
depends on the instrumented area.

• UserString: Context information captured at the point of instrumentation. The value
depends on the instrumented area.

Example output
The data is displayed in nanoseconds as the sample was taken from a Unix machine.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 26 of 36

 Figure 9

a. Figure 9 shows a sample section of the SARM call graph information. Notice that
the SarmID and RootID share the same value of 3562. When the SarmID and
the RootID are the same, then this node is the root of the request.

b. Area 4 represents the Database Connector area, and SubArea 3 indicated the
time to fetch a database record. In this scenario, the total time to fetch the next
record from the database was 149747 nanoseconds.

User Session trace

A user session trace can be created by using the SARM analyzer with the –w switch and by
providing SARM binary files from the web server and the application server. Additionally, the –
csv –prop switches can be used in combination to create another session trace file with more
detail information.

To execute a User Session Trace, run the SARM Analyzer in two different modes:

Command Syntax:
On Windows: SARMAnalyzer –w <websrvr sarm file> -s <siebsrvr sarm file> -u <user name>
On Unix: sarmanalyzer –w <websrvr sarm file> -s <siebsrvr sarm file> -u <user name>
Output File Name: <user name>.xml
Example on Windows:
SARMAnalyzer –w S01_P20862_N0002.sarm –s S01_P14268_N0000.sarm -u sadmin.xml

Command Syntax:
On Windows: SARMAnalyzer.exe –csv –prop <websrvr sarm file> > <some_file_name.csv>
On Unix: sarmnalyzer.exe –csv –prop <websrvr sarm file> > <some_file_name.csv>
Output File Name: <some_file_name.csv>
Example on Windows:
SARMAnalyzer.exe –csv –prop S01_P20862_N0002.sarm > S01_P20862_N0002_SWSE.csv

Description
SARM Analyzer expects one SARM binary file from the SWSE on the Web Server, and one
SARM binary file from the Siebel Server.

The XML output file contains detailed information on each of the SWSE requests that the user
has made. If the user has logged into the system multiple times, then the output will show that
there are multiple sessions. The SWSE requests are grouped into specific login sessions, and
sorted by the time the requests were made.

Example Output:
<Session>

 <SessionID>

 <LoginName>

 <SWERequests>

 <SWERequest>*

 <ReqID>

 <ClickID>

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 27 of 36

 <ReqTimeStamp>

 <RequestBody>

 <TotalServerTime>

 <WebServerTime>

 <InfraTime>

 <SiebSrvrTime>

 <DatabaseTime>

 <DatabaseCalls>

 <SiebsrvrDetail>

 <Group>*

 <Name>

 <ResponseTime>

 <Total>

 <Average>

 <NonRecursiveCalls>

 <RecursiveCalls>

 <Max>

 <Min>

 <ExecutionTime>

 <Total>

 <Average>

 <Max>

 <Min>

 <Parents>

 <ParentGroup> *

 <Name>

 <TotalContributingTime>

 <Calls>

 <Average>

 <ContributingTimePercent>

 <ContributingCallPercent>

 <Children>

 <ChildGroup> *

 <Name>

 <TotalContributedTime>

 <Calls>

 <Average>

 <PercentageTime>

 <PercentageCalls>

• Session: refers to a specific user session

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 28 of 36

• SessionID: Refers to a unique user session id made up of hexadecimal values. Some
session ids are blank because they represent anonymous user sessions. The first
component of the Session Id refers to the Server ID (currently a constant number
reserved for future use), the second refers to the Operating System Process ID and the
last section is the Siebel Task ID. To process id and task id needs to be converted from
hexadecimal to decimal.

 !1.2b40.182b

Server ID = !1
Process ID = 2b40 Represents the Operating System Process ID 11072
Task ID = 182b Represents the Siebel Task ID 6187

• LoginName: Login name of the user whose session is being investigated.

• ReqID: RequestID: Incremental numeric value to count the number of requests.

• ClickID: Used to associate multiple requests to a single user action, such as 'click on a
button'.

• RequestBody: Total time to handle a request from the web server to the Siebel server.
Detail timing is grouped by web server, infrastructure, Siebel server and database time.

• TotalServerTime: total time on the server (includes web server, Siebel server, and
network time).

• WebServerTime: total time spent on the web server for a given request.

• InfraTime: Infrastructure Time. Total time spent between the web server and the Siebel
server. This may also include some Siebel infrastructure time routing the request to the
handling Siebel server task

• ReqTimeStamp: Request Time Stamp. This is the time when the request was made.

• SiebSrvrTime: Total time spent on the Siebel server.

• DatabaseTime: Total database Time. Database time includes the time spent on the
network when communicating to the database.

• DatabaseCalls: Database Calls. Number of calls to the Siebel server database
connector layer.

• SiebsrvrDetail: Total time by instrumentation area within the Siebel server. The areas
of instrumentation within the Siebel server are: server thread, SWE, workflow, scripting
engine and database connector.

Example output
The data is displayed in nanoseconds as the Sample originates from a Unix machine.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 29 of 36

Figure 10

1. By looking at Figure 10, notice that there are multiple sessions for the same user.

2. To run session tracing, both the web server file and the Siebel Server file are used.
However, there may be multiple SARM files on the server (one set of SARM files per
process). To identify which SARM file to use to correlate SWE requests with server
requests to construct a user’s session trace, follow the instructions below:

a. Concatenate the web server SARM files.

In a Windows environment, use any utility to concatenate the files.

In a Unix environment, use the following command:

cat <list of files> >> <filename.sarm>

Example
cat S01_P11072_N0001.sarm >> sum.sarm
cat S01_P11072_N0003.sarm >> sum.sarm
cat S01_P11072_N0004.sarm >> sum.sarm

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 30 of 36

b. Run the following command SARMAnalyzer –csv –prop - <web server sarm file>
> web.csv to get a CSV formatted SARM SWSE File. Within the SWSE Property
File, look for the SARM ID of the username that requires analysis. The username will
be found in the PropVal column. If the user has logged in multiple times, look at the
timestamp, also found in the PropVal column.

Table 3

c. Look for all the records that have the property value of the username, in our case

“sadmin”. Right below the sadmin property name is the session of the user in
hexadecimal. This value needs to be converted to decimal.

 !1.2b40.182b

Server ID = !1
Process ID = 2b40
Task ID = 182b

d. Take the second piece of information such as !1.2b40.182b and covert it to decimal

(11072). The Process ID 11072 will correspond to the Siebel Server Process ID
(SARM file). Here it shows the OM Process ID for the user that is having problems.

e. Run the user session trace SARMAnalyzer –w <websrvr sarm file> -s <siebsrvr
sarm file> -u <username> to trace all the requests the user has made and identify
potential performance problems using the process id identified in the previous step.

f. Open the output file from the User Trace (sadmin.xml). Find out the time user was

logged in when the problem occurred the appropriate session Id to investigate can be
obtained. Usually the user will not have logged in too many times (as in the case of

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 31 of 36

sadmin) so the correct session is more quickly identified (the user may not remember
specific login times).

g. For that given session, identify which request took the longest time

(TotalServerTime). Drill into its details to identify which of the groups within that
request took the longest time. There are many requests in a given session, therefore
it is recommended to write additional tools to easily identify the highest response time
request. The user needs to keep in mind that the highest response time is always
relative to the base line.

 Figure 11

h. Use a similar process to the aggregation analysis to identify which area in the Siebel

architecture was high in performance. Additional analysis would be needed using the
CSV file to identify specific sub-areas are the problem areas.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 32 of 36

SARM Binary File to CSV Conversion

Command Syntax:
On Windows: SARMAnalyzer.exe –csv –sarm <sarm file name> > <some_file_name.csv>
On Unix: sarmanalyzer.exe –csv –sarm <sarm file name> > <some_file_name.csv>
Output File Name: <some_file_name>.csv
Example on Windows: SARMAnalyzer.exe –csv –sarm S01_P20862_N0002.sarm >
S01_P20862_N0002.csv

Description:

Use this command to covert the binary file into a CSV without any interpretation or aggregation.

UserInt1, UserInt2, UserStr: context information captured at the point of instrumentation. The
information will depend on the area of instrumentation. For example, UserStr can contain a
business component name, a workflow name, or a view name. The Area and SubArea values
will provide context to what the UserStr value means.

Example output

1. Start by deleting the comments generated during the creation of the CSV file (Exporting
data to CSV. Please wait….).

2. When using Excel, sort the CSV file by the ID column and use the auto filter feature to
filter the Top 10 requests by Duration. Each of the Areas and Sub-areas corresponds
to one of the instrumentation points in the architecture (Refer to Table 1). For example,
scripting engine is denoted by area 5.

 Table 4

a. From Table 4, the following information should be highlighted:

• SERVER THREAD (area =3) took 133 seconds. Note that the ID and RootID
have the same number of 1. A RootID of 1 represents the starting points of
all requests. The first SERVER THREAD operation having a high response
time does not appear too suspicious since it could be attributed to the system
warming and caching information for subsequent requests.

• Server Thread (SMI), SWE, Script Engine, SarmIO, SWE Plug-in took nearly
40 seconds. All of these areas have the same RootID of 10400, which

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 33 of 36

means that they are part of the same request. This request should be further
investigated.

3. Put a filter on the RootID column for 10400. This will yield all the instrumentation points
executed as a result of a single request.

4. It is acceptable to leave the “Top 10” filter on the Duration column. Although not
required it will help reduce the number of operations to be reviewed. The result will be
similar to that shown on Table 5.

 Table 5

a. From Table 5, notice that line 9857 has an ID and RootID of 10400, which
means that this is the starting point of the request. In this case, Server Thread
(area =3) was the first area of instrumentation for this request.

b. Notice the values of the ParentID and ID columns and walk through the call
hierarchy:

1. 10400 calls 10401

2. 10401 calls 10403

3. 10403 calls 10404

4. 10404 calls 10498

c. Now examine the values of the Area and SubArea to find out which Siebel
infrastructure areas were called:

1. 10400 calls 10401 Server Thread:Request Handling (Area 3, SubArea 1)
called

SWE:Process SWE Command (Area 8, SubArea 1)

2. 10401 calls 10403 SWE:Process SWE Command (Area 8, SubArea 1)
called

Scripting Engine:eScript Execution (Area 5, SubArea 3)

3. 10403 calls 10404 Scripting Engine:eScript Execution (Area 5, SubArea 3)
called

Workflow:Invoke Method (Area 7, SubArea 1)

4. 10404 calls 10498 Workflow:Invoke Method (Area 7, SubArea 1) called

Workflow:Process Init (Area 7, SubArea 2)

d. In addition, the objects that were called by looking at the UserString column (M)
are identified. For example ID 10403 calls the “BusComp_PreSetFieldValue”
eScript code and ID 10498 calls the “ABC SARM Test” workflow.

e. Notice that the Duration for each of the operations is over 40 seconds. This is
because the parent operation includes the time of its children. Therefore each

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 34 of 36

level up the hierarchy will be greater. Conversely when traversing down the
hierarchy each time value will be lower.

f. Because operation 10498 (line 9940) takes 40.136 seconds, it is evident that the
problem resides somewhere in the “ABC SARM Test” Workflow, which require
further analysis.

5. Now examine the operation ID 10498 in more detail.

a. Remove all the filters

b. Add a filter on the ParentID column for 10498

 Table 6

c. Table 6 shows each instrumentation point within Workflow.

d. By looking at line 9943, 9958, 9961 and 9964, it is evident that there were 10
seconds delays in each Wait step and the same step was called four times. This
is the root cause of the performance problem.

Note: Improperly placed wait times are a common cause of workflow performance
problems.

By using the data provided from the aggregation analysis in conjunction with data
from the CSV file, a user can view response time information for individual elements
within a request and immediately understand and isolate the location of the problem.

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 35 of 36

Best Practices

Below is a set of recommendation when using SARM.

When carrying out performance analysis, a baseline should be used. Siebel recommends that
administrators take a snapshot of their system at a given point in time. This snapshot will be
used to compare system behavior and identify performance problems. Administrators can also
write additional tools to filter, aggregate, and compute the data, to help diagnose any potential
problems.

The performance aggregation data is useful for diagnosing performance data at a given point in
time. The administrator can look at the data by group and diagnose the area that is resulting in
poor performance. After having a high level view of the performance data, more detailed
information can be extrapolated by running the ‘SARMAnalyzer –CSV’ option and looking at the
details of each area to identify the root of the problem. The performance aggregation data is also
useful for doing trend analysis over a period of time.

As discussed, at most there will be four SARM files per process. The correct SARM file will
depend on what the administrator is looking for. If the administrator wants to see the
performance aggregation data for a given point in time, then SARM Analyzer should be run
against a single SARM file (Note that if the maximum memory size (buffer size) is too small, the
time stamp of the SARM files may be very close in time). If on the other hand the administrator
wants to see the data for multiple requests for a given process, then it is recommended to
concatenate the SARM files into a single file and run SARMAnalyzer against that single file.

There may be situations where SARM shows that most of the time spent in a request takes place
within SWE. Although SARM does not provide further detail on SWE, the administrator should
check the complexity of the Siebel Views in the application. One way to identify complex or non-
performant Siebel Views is to perform the following steps:

1. Identify which views appear to be slow based on user feedback or performance and
scalability testing

2. Define a usage scenario that involved calling the slow view(s)

3. Enable SARM

4. Modify the configuration of the slow view(s)

5. Run SARM Analyzer to get the output described in this section

6. If the SWE time increases or decreases, how much time the configuration affects
performance can be seen directly.

7. If the feedback came from a user, run the Session Trace described on this paper for
more precise validation.

It is recommended to monitor performance activity during the testing and user acceptance stage
to detect incipient problems before they have an adverse effect. In some cases, when SARM is
used to monitor performance continuously, the user may detect a situation that requires additional
data collection or explicit recreation of the problem to collect additional analysis data. Further
analysis of the SARM data can be done by writing additional post-processing tools.

Summary
SARM provides performance metrics such as cumulative and average response times, enabling
the user to diagnose response time information in the Siebel architecture. SARM captures
response time information based on different areas in the Siebel architecture; showing the actual

Siebel Application Response Measurement 7.5.3
Technical Note

© 2003 Siebel Systems, Inc Page 36 of 36

server processes and flow of data to immediately get in-depth response time information to
quickly diagnose and analyze the Siebel solution.

For more information on SARM and the ARM standard, please refer to:

Siebel 7.5.3 Bookshelf: Performance and Tuning Guide

http://www.opengroup.org/management/arm.htm

http://regions.cmg.org/regions/cmgarmw/index.html

http://www.opengroup.org/management/arm.htm
http://regions.cmg.org/regions/cmgarmw/index.html

	Summary
	Overview of Siebel Application Response Monitoring
	Architecture of Siebel Application Response Monitoring 7.5.3
	Overview
	SARM areas of instrumentation
	Request execution path – Example

	Enabling SARM
	Enabling SARM on the Web Server
	Enabling SARM on the Siebel Server

	SARM Analyzer Tool
	SARM Analyzer Syntax
	Performance Area Aggregation Analysis
	Usage 1
	Usage 2
	Description:

	Example output

	Call Map Generation
	Example output

	User Session trace
	Example output

	SARM Binary File to CSV Conversion

	Best Practices
	Summary

