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1 Introduction

The cubic holds a double fascination since not only is it interesting in its own
right, but its solution is also the key to solving quartics 3. This article describes
five fundamental parameters of the cubic (𝛿, 𝜆, ℎ, 𝑥𝑁 and 𝑦𝑁), and shows how
they lead to a significant modification of the standard method of solving the
cubic, generally known as Cardan’s solution.

•

•

•

•

•
h

λ

δ

3δ

N
yN

xN

Y

XO

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
.........
..........
.............................................................................................................................................................................................................

.........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

Figure 1:

1This minor revision of the original article corrects typographic errors and incorporates some
explanatory footnotes and a minor improvement to Figure 2. The original published version is
available from http://www.jstor.org/stable/3619777.

2Department of Anaesthesia, Nottingham University Hospitals, City Hospital Campus,
Nottingham, UK. email: dick@nickalls.org

3Nickalls RWD (2009). The quartic equation: invariants and Euler’s solution revealed.
The Mathematical Gazette; 93 (March), 66-75. (http://www.nickalls.org/dick/papers/maths/
quartic2009.pdf)

http://www.jstor.org/stable/3619777
mailto:dick@nickalls.org
http://www.nickalls.org/dick/papers/maths/quartic2009.pdf
http://www.nickalls.org/dick/papers/maths/quartic2009.pdf


RWD Nickalls The Mathematical Gazette (1993); 77, pp. 354–359 2

It is necessary to start with a definition. Let 𝑁(𝑥𝑁 , 𝑦𝑁) be a point on a
polynomial curve 𝑓(𝑥) of degree 𝑛 such that moving the axes by putting 𝑥 = 𝑧 + 𝑥𝑁

makes the sum of the roots of the new polynomial 𝑓(𝑧) equal to zero. It is easy
to show that for the polynomial equation

𝑎𝑥𝑛 + 𝑏𝑥𝑛−1 + . . . + 𝑘 = 0

𝑥𝑁 = −𝑏/(𝑛𝑎). If 𝑓(𝑥) is a cubic polynomial then 𝑓(𝑧) is known as the reduced
cubic, and 𝑁 is the point of inflection.

Now consider the general cubic

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑.

Here 𝑥𝑁 is −𝑏/(3𝑎), and 𝑁 the point of symmetry of the cubic. Let the parameters
𝛿, 𝜆, ℎ, be defined as the distances shown in Figure 1. It can be shown, and
readers will easily do this, that 𝜆 and ℎ are simple functions of 𝛿 namely 4, 5

𝜆2 = 3𝛿2 and ℎ = 2𝑎𝛿3,

where
𝛿2 = 𝑏2 − 3𝑎𝑐

9𝑎2 .

This result is found easily by locating the turning points. Thus the shape of the
cubic is completely characterised by the parameter 𝛿. Either the maxima and
minima are distinct (𝛿2 > 0), or they coincide at 𝑁 (𝛿2 = 0), or there are no real
turning points (𝛿2 < 0). Furthermore, the quantity 𝑎𝛿𝜆2/ℎ is constant for any
cubic, as follows

𝑎𝛿𝜆2

ℎ
= 3

2.

The relationship 𝜆2 = 3𝛿2 is a particular case of the general observation that

If a polynomial curve passes through the origin, then the
product of the roots 𝑥1, 𝑥2, ··· , 𝑥𝑛−1 (excluding the solution
𝑥 = 0) is related to the product of the 𝑥-coordinates of the
turning points 𝑡1𝑡2 ··· 𝑡𝑛−1 by

𝑥1𝑥2 ··· 𝑥𝑛−1 = 𝑛𝑡1𝑡2 ··· 𝑡𝑛−1,

a result whose proof readers can profitably set to their classes, and which parallels
a related but more difficult result about the 𝑦-coordinates of the turning points
which we have discovered 6.

4Unfortunately in the original printed version ℎ was presented with a negative sign.
5Note that if 𝑚𝑁 denotes the slope at the point of inflection 𝑁 , then 𝑚𝑁 = −3𝑎𝛿2.

See also Thomas Müller’s interactive demonstration of how the parameters 𝑥𝑁 , 𝑦𝑁 , ℎ, 𝛿,
𝑚𝑁 influence the shape and location of the cubic at http://demonstrations.wolfram.com/
ParametersForPlottingACubicPolynomial/

6Nickalls RWD and Dye RH (1996). The geometry of the discriminant of a polynomial.
The Mathematical Gazette, 80 (July), 279–285 (jstor). (http://www.nickalls.org/dick/papers/
maths/discriminant1996.pdf)

http://demonstrations.wolfram.com/ParametersForPlottingACubicPolynomial/
http://demonstrations.wolfram.com/ParametersForPlottingACubicPolynomial/
http://www.nickalls.org/dick/papers/maths/discriminant1996.pdf
http://www.nickalls.org/dick/papers/maths/discriminant1996.pdf
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2 Solution of the cubic

In addition to their value in curve tracing, I have found that the parameters 𝛿, ℎ,
𝑥𝑁 and 𝑦𝑁 , greatly clarify the standard method for solving the cubic since, unlike
the Cardan approach (Burnside and Panton, 1886) 7, they reveal how the solution
is related to the geometry of the cubic.

For example the standard Cardan solution, using the classical terminology,
involves starting with an equation of the form

𝑎𝑥3 + 3𝑏1𝑥2 + 3𝑐1𝑥 + 𝑑 = 0,

and then substituting 𝑥 = 𝑧 − 𝑏1/𝑎 to generate a reduced equation of the form

𝑎𝑧3 + 3𝐻

𝑎
𝑧 + 𝐺

𝑎2 = 0,

where
𝐻 = 𝑎𝑐1 − 𝑏2

1 and 𝐺 = 𝑎2𝑑 − 3𝑎𝑏1𝑐1 + 2𝑏3
1.

Subsequent development yields a discriminant of the form 𝐺2 + 4𝐻3 where

𝐺2 + 4𝐻3 = 𝑎2(𝑎2𝑑2 − 6𝑎𝑏1𝑐1𝑑 + 4𝑎𝑐3
1 + 4𝑏3

1𝑑 − 3𝑏2
1𝑐2

1).

The problem is that it is not clear geometrically what the quantities 𝐺 and 𝐻
represent. However, by using the parameters described earlier, not only is the
solution just as simple but the geometry is revealed.

2.1 New approach

Start with the usual form of the cubic equation

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0,

having roots 𝛼, 𝛽, 𝛾, and obtain the reduced form by the substitution 𝑥 = 𝑧 + 𝑥𝑁

(see Figure 1). The equation will now have the form 8

𝑎𝑧3 − 3𝑎𝛿2𝑧 + 𝑦𝑁 = 0, (1)

and have roots 𝛼 − 𝑥𝑁 , 𝛽 − 𝑥𝑁 , 𝛾 − 𝑥𝑁 ; a form which allows the use of the usual
identity

(𝑝 + 𝑞)3 − 3𝑝𝑞(𝑝 + 𝑞) − (𝑝3 + 𝑞3) = 0.

Thus 𝑧 = 𝑝 + 𝑞 is a solution where

𝑝𝑞 = 𝛿2 and 𝑝3 + 𝑞3 = −𝑦𝑁/𝑎.
7§§ 56–57 (pages 106–109).
8𝑦𝑁 ≡ 𝑓(𝑥𝑁 ) ≡ 2𝑏3/(27𝑎2) − 𝑏𝑐/(3𝑎) + 𝑑
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Solving these equations as usual by cubing the first, substituting for 𝑞 in the
second, and solving the resulting quadratic in 𝑝3 gives

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
𝑦2

𝑁 − 4𝑎2𝛿6
}︂

,

and, since ℎ2 = 4𝑎2𝛿6, this becomes 9

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
𝑦2

𝑁 − ℎ2
}︂

. (2)

When this solution is viewed in the light of Figure 1, it is immediately clear that
Equation 2 is particularly useful when there is a single real root, that is when

𝑦2
𝑁 > ℎ2.

Contrast this with the standard Cardan approach which gives

𝑝3 = 1
2𝑎3

{︁
−𝐺 ±

√︀
𝐺2 + 4𝐻3

}︁
,

which completely obscures this fact. The values of 𝐺, 𝐻, and 𝐺2 + 4𝐻3 are
therefore found to be

𝐺 = 𝑎2𝑦𝑁 , 𝐻 = −𝑎2𝛿2 and 𝐺2 + 4𝐻3 = 𝑎4(𝑦2
𝑁 − ℎ2).

However, Equation 2 can be rewritten as

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
(𝑦𝑁 + ℎ) (𝑦𝑁 − ℎ)

}︂
.

If the 𝑦-coordinate of a turning point is 𝑦𝑇 then let

𝑦𝑁 + ℎ = 𝑦𝑇1 and 𝑦𝑁 − ℎ = 𝑦𝑇2.

Our solution (Equation 2) can therefore be written as

𝑝3 = 1
2𝑎

{︁
−𝑦𝑁 ± √

𝑦𝑇1𝑦𝑇2

}︁
.

Using the symbol Δ3 for the [geometric] discriminant 10, 11 of the cubic, we have

Δ3 = 𝑦𝑇1𝑦𝑇2 = 𝑦2
𝑁 − ℎ2.

9Providing ℎ ̸= 0 then this is equivalent to (see also footnote 13)

𝑝3 = 𝛿3

{︃
−𝑦𝑁

ℎ
±

√︂
𝑦2

𝑁

ℎ2 − 1

}︃
.

10Note that the product 𝑦𝑇1𝑦𝑇2 of the y-coordinates of the turning points is known as the
geometric discriminant Δ of the cubic; it is the geometric analogue of the algebraic discriminant
(see Nickalls and Dye (1996)—for URL see footnote 6). The classical discriminant 𝐺2 + 4𝐻3 has
the same sign as the geometric discriminant since 𝐺2 + 4𝐻3 = 𝑎4(𝑦2

𝑁 − ℎ2) = 𝑎4𝑦𝑇1𝑦𝑇2.
11The algebraic discriminant 𝐷 of the cubic is defined as the product of squared differences of

the roots 𝐷 = (𝛼 − 𝛽)2(𝛼 − 𝛾)2(𝛽 − 𝛾)2 and hence 𝑎2𝐷 = −27(𝑦2
𝑁 − ℎ2) = −27𝑦𝑇1𝑦𝑇2.
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Returning to the geometrical viewpoint, Figure 1 shows that the rest of the
solution depends on the sign of the discriminant 12 as follows:

𝑦2
𝑁 > ℎ2 1 real root,

𝑦2
𝑁 = ℎ2 3 real roots (two or three equal roots),

𝑦2
𝑁 < ℎ2 3 distinct real roots.

These are now dealt with in order.

2.2 𝑦2
𝑁 > ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 > 0, or Cardan’s 𝐺2 + 4𝐻3 > 0

Clearly, there can only be 1 real root under these circumstances (see Figure 1). As
the discriminant is positive the value of the real root 𝛼 is easily obtained as 13, 14

𝛼 = 𝑥𝑁 + 3

√︃
1
2𝑎

(︂
−𝑦𝑁 +

√︁
𝑦2

𝑁 − ℎ2
)︂

+ 3

√︃
1
2𝑎

(︂
−𝑦𝑁 −

√︁
𝑦2

𝑁 − ℎ2
)︂

.

2.3 𝑦2
𝑁 = ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 = 0, or Cardan’s 𝐺2 + 4𝐻3 = 0

Providing ℎ ̸= 0 this condition yields two equal roots, the roots being 𝑧 = 𝛿, 𝛿
and −2𝛿. The true roots are then 𝑥 = 𝑥𝑁 + 𝛿, 𝑥𝑁 + 𝛿 and 𝑥𝑁 − 2𝛿. Since there
are two double root conditions the sign of 𝛿 is critical, and depends on the sign of
𝑦𝑁 , and so in these circumstances 𝛿 has to be determined from

𝛿 = 3

√︂
𝑦𝑁

2𝑎
.

If 𝑦𝑁 = ℎ = 0 then 𝛿 = 0, in which case there are three equal roots at 𝑥 = 𝑥𝑁 .
12Since the sign reflects the relative magnitude of 𝑦2

𝑁 and ℎ2.
13The remaining two complex roots are given by

𝛽, 𝛾 = 𝑥𝑁 − (𝛼 − 𝑥𝑁 )
2 ± 𝑗

√
3

2
√︀

(𝛼 − 𝑥𝑁 )2 − 4𝛿2

where 𝑗2 = −1 (for derivation see: Nickalls RWD (2009). Feedback: 93.35: The Mathematical
Gazette; 93 (Mar), 154–156. http://www.nickalls.org/dick/papers/maths/cubictables2009.pdf).

14Note that multiplying top and bottom by ℎ (ℎ ̸= 0) gives

𝛼 = 𝑥𝑁 + 3

⎯⎸⎸⎷ ℎ

2𝑎

{︃
−𝑦𝑁

ℎ
+

√︂
𝑦2

𝑁

ℎ2 − 1

}︃
+ 3

⎯⎸⎸⎷ ℎ

2𝑎

{︃
−𝑦𝑁

ℎ
−

√︂
𝑦2

𝑁

ℎ2 − 1

}︃
,

and since ℎ = 2𝑎𝛿3 then ℎ/2𝑎 = 𝛿3, and hence

𝛼 = 𝑥𝑁 + 𝛿 3

⎯⎸⎸⎷{︃
−𝑦𝑁

ℎ
+

√︂
𝑦2

𝑁

ℎ2 − 1

}︃
+ 𝛿 3

⎯⎸⎸⎷{︃
−𝑦𝑁

ℎ
−

√︂
𝑦2

𝑁

ℎ2 − 1

}︃
,

which highlights the significance of the ratio 𝑦𝑁 /ℎ. Thus when 𝑦𝑁 /ℎ = −1 we obtain 𝛼 = 𝑥𝑁 +2𝛿.

http://www.nickalls.org/dick/papers/maths/cubictables2009.pdf
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Figure 2:

2.4 𝑦2
𝑁 < ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 < 0, or Cardan’s 𝐺2 + 4𝐻3 < 0

From Figures 1 and 2 it is clear that there are three distinct real roots in this
case. However, our solution requires that we find the cube root of a complex
number, so it is easier to use trigonometry to solve the reduced form using the
substitution 15 𝑧 = 2𝛿 cos 𝜃 in Equation 1. This gives

2𝑎𝛿3
(︁
4 cos3 𝜃 − 3 cos 𝜃

)︁
+ 𝑦𝑁 = 0,

and since 2𝑎𝛿3 = ℎ, this becomes

cos 3𝜃 = −𝑦𝑁

ℎ
. (3)

15Note that if we use instead the substitution 𝑧 = 2𝛿 sin 𝜑, this leads to sin 3𝜑 = 𝑦𝑁 /ℎ,
for which the condition 𝑦𝑁 = 0 is associated with 𝜑 = 0. Use of this form is described in
Nickalls, RWD (2006). Viète, Descartes and the cubic equation. The Mathematical Gazette;
90 (July), 203–208. (http://www.nickalls.org/dick/papers/maths/descartes2006.pdf).

http://www.nickalls.org/dick/papers/maths/descartes2006.pdf
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The three roots 𝛼, 𝛽 and 𝛾 are therefore given by 16, 17⎧⎪⎨⎪⎩
𝛼 = 𝑥𝑁 + 2𝛿 cos 𝜃,
𝛽 = 𝑥𝑁 + 2𝛿 cos (2𝜋/3 + 𝜃),
𝛾 = 𝑥𝑁 + 2𝛿 cos (4𝜋/3 + 𝜃).

(4)

These are shown in Figure 2 in relation to a circle, radius 2𝛿, centred above N.
Note that the maximum between roots 𝛽 and 𝛾 corresponds to the angle 2𝜋/3.

16Assuming 𝛿 ≠ 0, since otherwise ℎ = 0 and hence cos 3𝜃 = −𝑦𝑁 /0 etc. In practice, this
situation does not arise since if 𝛿 = 0 then the reduced cubic (equation 1) reduces to the trivial
form 𝑎𝑥3 + 𝑦𝑁 = 0 which is easily solved.

17Extending footnote 13 to embrace the three real-root condition −1 ≤ 𝑦𝑁 /ℎ ≤ +1 (see
Figures 1 and 2) we can write

𝛼 = 𝑥𝑁 + 𝛿
3

√︃
−𝑦𝑁

ℎ
− 𝑗

√︂
1 − 𝑦2

𝑁

ℎ2 + 𝛿
3

√︃
−𝑦𝑁

ℎ
+ 𝑗

√︂
1 − 𝑦2

𝑁

ℎ2 ,

and so the substitution −𝑦𝑁 /ℎ = cos 3𝜃 then gives

𝛼 = 𝑥𝑁 + 𝛿 3
√︀

cos 3𝜃 − 𝑗 sin 3𝜃 + 𝛿 3
√︀

cos 3𝜃 + 𝑗 sin 3𝜃,

and hence
𝛼 = 𝑥𝑁 + 𝛿(cos 𝜃 − 𝑗 sin 𝜃) + 𝛿(cos 𝜃 + 𝑗 sin 𝜃),

i.e.
𝛼 = 𝑥𝑁 + 2𝛿 cos 𝜃.

Note that it is sometimes convenient to express the three roots in the following succinct form:
𝛼, 𝛽, 𝛾 = 𝑥𝑁 + 2𝛿 cos (2𝑘𝜋/3 + 𝜃) , (𝑘 = 0, 1, 2).
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It is clear from Equation 3 that trigonometry [using real 𝜃 ]18 can only be used
to solve the reduced cubic when

−1 ≤ 𝑦𝑁

ℎ
≤ +1,

a point which is completely obscured by the corresponding classical form

cos 3𝜃 = −𝐺

2 (−𝐻)
3
2

.

18However, if we extend the range of 𝜃 to include complex angles (𝜃 ∈ C), then all cubics can
be solved using this approach. Consider the cubic 𝑥3 − 2𝑥 + 4 = 0 (roots: −2, 1 ± 𝑗) for which
𝑥𝑁 = 0, 𝛿2 = 2/3, ℎ = 2𝑎𝛿3 ≈ 1·08, and 𝑦𝑁 /ℎ ≈ 3·67. Using (4) the roots are therefore given by

𝑟𝑘 = 2𝛿 cos(𝜃 + 2𝑘𝜋

3 ), (𝑘 = 0, 1, 2)

where cos 3𝜃 = −𝑦𝑁 /ℎ ≈ −3·67. Working in degrees for convenience, it follows that
3𝜃 = (180∘ + 𝑗113·18∘). Thus 𝜃 = (60∘ + 𝑗37·7∘), and hence the three roots 𝑟𝑘 are given
by

𝑟𝑘 = 2𝛿 cos(60∘ + 𝑘(120∘) + 𝑗37·7∘), (𝑘 = 0, 1, 2).
For example, 𝑘 = 1 generates the single real root 𝑟1, as follows:

𝑟1 = 2𝛿 cos(180∘ + 𝑗37·7∘).

Using the identity cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 this becomes

𝑟1 = 2𝛿{cos(180∘) cos(𝑗37·7∘) − sin(180∘) sin(𝑗37·7∘)},

which reduces to
𝑟1 = −2𝛿 cos(𝑗37·7∘).

Using the power series cos 𝑥 ≡ 1 − 𝑥2/2! + 𝑥4/4! + . . ., and letting 𝑥 = 37·7𝜋/180 (since 𝑥 is in
radians) we obtain (since 𝑗2 = −1)

𝑟1 = −2𝛿(1 + 𝑥2/2! + 𝑥4/4! + . . .) ≡ −2𝛿 cosh(𝑥) = −2𝛿(1·2247),

and since 𝛿2 = 2/3, this gives

𝑟1 = −2
√︀

2/3 (1·2247) = −2,

as required.
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3 Example

Solve the equation 19

𝑥3 − 7𝑥2 + 14𝑥 − 8 = 0
The parameters are

𝑥𝑁 = 7/3, 𝑦𝑁 = 𝑓(𝑥𝑁) ≈ −0·7407, 𝛿2 = 7/9 and ℎ = 2𝑎𝛿3 ≈ 1·3718.

Since 𝑦2
𝑁 < ℎ2, it follows (see Figures 1 and 2) that there are three distinct real

roots, which are given by
𝑥 = 𝑥𝑁 + 2𝛿 cos 𝜃,

where
cos 3𝜃 = −𝑦𝑁

ℎ
≈ 0·7407

1·3718 ≈ 0·5399.

So 𝜃 ≈ 19·1066∘, and the three roots are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼 = 7
3 + 2

√︂
7
9 cos 19·1066∘ = 4,

𝛽 = 7
3 + 2

√︂
7
9 cos 139·1066∘ = 1,

𝛾 = 7
3 + 2

√︂
7
9 cos 259·1066∘ = 2.

4 Conclusion

Finally, I would like to suggest that the usual Cardan-type terminology for cubics
and quartics, though it has been used for hundreds of years, be abandoned in
favour of the parameters 𝛿, ℎ, 𝑥𝑁 , 𝑦𝑁 , which reveal to such advantage how the
algebraic solution is related to the geometry of the cubic.
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19For another example see: Nickalls RWD (1996). A note on solving cubics. The Mathemati-
cal Gazette; 80 (November), 576–577 (jstor). (http://www.nickalls.org/dick/papers/maths/
cubefink.pdf)

20The 1st ed (1881) is available on the web at http://quod.lib.umich.edu/cgi/t/text/text-
idx?c=umhistmath;idno=ACA7397
See §§ 56–57 (pp. 104–107), and the excellent historical notes at back of the book, especially
Note A Algebraic solution of equations, pp. 433–436, and Note B Solution of numerical equations,
pp. 437–440.
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