
Event driven programming in Perl using the Event module

Table of contents

1 Event driven programming in Perl using the Event module ...1
1.1 Table of Contents..1

2 1. Introduction ..2
2.1 1.1. The task..2
2.2 1.2. Implementations of asynchronous programs..4
2.3 1.3. Event handling with Perl...4

3 2. An overview of the Event module ..5
3.1 2.1. The watcher concept..5
3.2 2.2. Making watchers...8
3.3 2.3. Starting the loop...9
3.4 2.4. A complete example...9

4 3. Event in detail ..11
4.1 3.1. Watcher attributes..11
4.2 3.2. Object management...12
4.3 3.3. A watchers life cycle...13
4.4 3.4. Priorities..16
4.5 3.5. Watcher teams...17
4.6 3.6. Writing callbacks...17
4.7 3.7. Loop management..19

5 4. Advanced features ..20
5.1 4.1. Watching Watchers..20
5.2 4.2. Watcher suspension...20
5.3 4.3. Customization...22
5.4 4.4. Event and other looping modules...22

6 5. Application examples..24

7 6. Outlook ...25

8 A. Data..26

Event driven programming in Perl using the Event module

i

1 Event driven programming in Perl using the Event module
Jochen Stenzel (perl@jochen−stenzel.de)22 February 2000

1.1 Table of Contents

1. Introduction

1.1. The task
1.2. Implementations of asynchronous programs
1.3. Event handling with Perl
2. An overview of the Event module

2.1. The watcher concept
2.2. Making watchers
2.3. Starting the loop
2.4. A complete example
3. Event in detail

3.1. Watcher attributes
3.2. Object management
3.3. A watchers life cycle
3.4. Priorities
3.5. Watcher teams
3.6. Writing callbacks
3.7. Loop management
4. Advanced features

4.1. Watching Watchers
4.2. Watcher suspension
4.3. Customization
4.4. Event and other looping modules
5. Application examples
6. Outlook
A. Data

1 Event driven programming in Perl using the Event module 1

mailto:perl@jochen-stenzel.de

2 1. Introduction

2.1 1.1. The task

Everyone of us knows programs like this

A click somewhere, and something happens. Another click somewhere else, and (usually) anything else happens. If
my application is a web browser receiving a site from a server, the browser is able to take this site while it is still
usable. Hopefully. So, if I prefer, I can stop the download even before it is completed by just clicking a button or
choosing a menu option.

Clicks, server messages and menu choices are events. The principle of such a program is to work on base of events.
And regardless of time and frequency of events, in every case the appropriate handler function is called to serve it.
This could be illustrated like this:

Various graphical interfaces do even more than that: they work asynchronously as well. This means that a second
event can be detected while the first event is served, a user has not to wait until the first result arrives. It also means
that the results of earlier events can be provided before the results of later events.

2 1. Introduction 2

 If I request a web page and use the same application
 to check my mailbox while the page is loaded, mails
 may arrive before the page.

Contrary to this, programs without a graphical interface usually work synchronously and can handle events only if
they are expected:

The first event will be served first, and the second subsequently. (Well, signal handlers are an exception here both in
Perl and C − in a limited matter.)

 A usual shell (without job control) cannot handle new
 commands while it is still processing another. But while
 it offers a prompt, it cannot do anything until the user
 will have been entered a new command.

But there is no need to restrict the event driven, asynchronous architecture to graphical interfaces. (Even if it is really
hard to imagine a synchronous GUI.)

 An asynchronous shell would provide a new prompt
 while it processes a command, so the user could already
 enter new commands. The shell would process all entered
 commands simultaneously and would offer the first
 available result first, regardless of the command
 order.

Event driven architectures are really worth a thought everytime a program has several handling lines which do not
strongly depend one from another, if these subtasks need certain start impulses and if they could be finished
(completely or in parts) quick enough to avoid mutual blocking.

 Independend tasks could be

 − background calculations;

Event driven programming in Perl using the Event module

2 1. Introduction 3

 − preparation of data to provide them quickly on request;
 − displaying process progress while the process still progresses;
 − accepting commands;
 − receiving data from other processes;
 − supervision of several IPC connections (e.g. IRC);
 − signal processing;
 − date reminding;
 − ...

2.2 1.2. Implementations of asynchronous programs

There are several ways to build asynchronous programs. Multiprocess systems on base of fork() are very popular
(think of the usual servers). Threads are a light weight variant of them. And, finally, event driven programming is
another way. This term, from now on, is used in this document for systems handling occuring events on base of a
loop. Each of these systems has certain advantages and disadvantages:

method expense data sharing parallelism remarks

fork() relatively high (depending
on the operating system)

difficult (theoretically)
real

the system limits the
number of processes

Threads relatively low (sometimes enormous)
synchronization overhead

(theoretically)
real

not really usable in perl
5.005

event driven
programming

low simple serialization long running tasks
have to be split up or
delegated

With all these methods, the solution has to be split up into several parts.

Note: The mentioned methods do not mutually exclude each other in a program. Sometimes it can be useful to
combine them to get the greatest possible advantage (see the callback section for examples). But here I first want to
point out ways to implement the base algorithm.

Event driven programming turns out to be real alternative here!

2.3 1.3. Event handling with Perl

A simple form of event handling is provided by %SIG. This interface is simple indeed, easy to use − and limited. It can
handle signals only, for example, and there is no loop.

But Perl provides a real base function to implement event driven programs: select() lets the system take control
until one of certain user defined events occurs. This can be made the base of a loop. Additionally, an optional timeout
can be set to reactivate the program if nothing else happens. Events are described by vectors which make the
interface more sophisticated, but the IO::Select module simplifies both usage and readability as a wrapper.

Well, on the other hand, select() and IO::Select are restricted to exactly one timeout and events happening on
handles. Other types of events are not covered. Changing and maintaining event masks is not easy. While it
is possible to build event loops basing on select() / IO::Select, building them a flexible way could become a
challenge.

But there is no need for such effort: Event by J. N. Pritikin (CPAN−ID JPRIT) provides a powerful, flexible, scalable
and fast event loop with a relatively easy interface, designed for various event types. It gives you the chance to build
event driven scripts in minutes. Besides this, Event code is easy to read.

Event driven programming in Perl using the Event module

2.2 1.2. Implementations of asynchronous programs 4

3 2. An overview of the Event module
In event driven process models, all essential things happen in exactly one process. To manage this, they install an
event loop − a base function which embeds, controls and serializes anything else. While the loop is running, two
tasks have to be performed again and again: events have to be recognized and associated functions have to be
called to handle them.

As usual, Event implements the serialization of handler calls by a queue. To detect events, the module uses special
objects called watchers.

3.1 2.1. The watcher concept

Event works an object oriented way. Its main actors are so called watchers which expect the happening of certain
events and are prepared to initiate appropriate answers.

These watchers are very specialized. Each of them is responsible to detect events of a certain type. Some look for
IO events, others for timers, others detect signals and others watch variables. There is even a group of watchers
trained to recognize "nothing" − they get alarmed if the program is idle. And finally, a group of special agents
shadows other watchers.

events watcher

I/O io

timer timer

signals signal

nothing else happened idle

3 2. An overview of the Event module 5

variable access var

other watchers acting group

And there are more types to come, e.g. to observe semaphores.

Well, technically spoken, all these various watchers of course are objects of several classes derived from
Event (Event::io, Event::timer etc.). They connect certain events and certain functions.

As soon as a watcher detects an occurence of its target event it initiates the call of its handler. Well, in principle.

The real process is more complex: in order to ensure the teamwork of all watchers, Event uses intermediate steps to
perform the call of an event handler. If an event is recognized, a watcher generates a new object of a special
Event subclass (Event::Event or Event::Event::Io, respectively) and stores it in the queue. (To avoid
confusion, I will use Event::Event only from now on to name that class.) This object represents an order and
contains informations about the detected event, the handler to call and the detecting watcher. By doing so, the
watchers event handling is done, and it continues immediately to watch for events again.

Event driven programming in Perl using the Event module

3 2. An overview of the Event module 6

The generated Event::Event object, on the other hand, remains in the queue until it is processed in the loops
handling phase. The loop then calls the handler function referenced in the object.

Event driven programming in Perl using the Event module

3 2. An overview of the Event module 7

After the order is carried out completely the loop destroyes the order object.

An order object in the queue is no longer influenced by its "parent" watcher. It only contains a reference to it. That's
why at a given time a number of Event::Event objects may be stored in the queue which are all made by the same
watcher. Every watcher provides a method pending() which supplies its still queued orders in a list context:

 # get the still pending orders
 @pendingOrders=$watcher−>pending;
 # How many still unhandled tasks did the watcher produce?
 print $watcher−>desc, ": ", scalar(@pendingOrders), " tasks\n";

In a scalar context, pending() supplies a true value if such orders still exist.

To sum things up at this point, three important parts of the Event model became already visible: watchers to
recognize events, callbacks (stored in queued Event::Event objects) to handle them and the loop which controls
everything using a queue. And so, watchers, loop and callbacks are the base elements of Event programming.

3.2 2.2. Making watchers

An Event loop without active watchers would do nothing, and that's why such a loop terminates itself immediately.
So, to avoid this, at least one watcher is installed usually before the loop starts:

 # install an io watcher to check STDIN and
 # initiate callback() calls if anything happens
 Event−>io(fd=>*STDIN, cb=>\&callback);

Watcher constructors are named according to their type. In this example, an I/O watcher was built. Watchers of the
other types could be installed by similar constructor calls (Event−>timer(), Event−>var() usf.).

The behaviour of a watcher is controlled by its attributes. All the parameters passed to an constructor call are simply
attribute settings configuring the watcher properties. Usually, only a subset of available attributes is used explicitly in

Event driven programming in Perl using the Event module

3.2 2.2. Making watchers 8

a watchers constructor call, the remaining attributes are set by default. In the example above, the made I/O watcher
should call a certain function callback() if something happens at handle STDIN.

There is no limit in the number of watchers, you can build as many as you need.

And here comes another example, installing a timer:

 # install a pizza alarm facility
 Event−>timer(
 repeat => 0,
 interval => 300,
 cb => sub {warn "Look at the pizza!"},
);

All these shown example watchers become active immediately after the constructor call. This means that they detect
events. But, to give them a chance to handle these events, you have to establish the loop.

3.3 2.3. Starting the loop

If there is at least one active watcher, the loop can be started. This is done by the class method loop():

 Event::loop;

And that's all! Your script is running event driven now. Linear and synchronous program flow is left behind. If there
are statements after the loop() call, they are delayed until the loop processing will be stopped.

As long as the loop runs, the program is controlled by the installed watchers, their callbacks and, of course, by
occuring events.

A running loop can be stopped by the class method unloop():

 Event::unloop();

This method stops the running loop without effect to the installed watchers. This means that you could restart the loop
later on by a new call of loop() and it would run as before.

Obviously, unloop() calls has to be implemented in watchers callbacks.

3.4 2.4. A complete example

The following example demonstrates all base elements of Event programming together.

 # set pragma
 use strict;

 # load module
 use Event qw(loop unloop);

 # install initial watcher
 Event−>io(fd=>*STDIN, poll=>'r', cb=>\&io);

 # start loop
 loop;

 # FUNCTIONS ###

 # io handler
 sub io
 {
 # read line
 my $cmd=<STDIN>;
 chomp $cmd;

Event driven programming in Perl using the Event module

3.3 2.3. Starting the loop 9

 # stop processing, if necessary
 unloop, return if uc($cmd) eq 'QUIT';

 # get alarm data
 warn("[Error] Wrong format in \"$cmd\".\n"), return unless $cmd=~/^(\d+)\s+(.+)/;
 my ($period, $msg)=($1, $2);

 # install a new one shot alarm timer
 Event−>timer(
 prio => 2, # before IO;
 at => time+$period, # set alarm;
 cb => sub # callback;
 {
 warn "[Alarm] $msg\n"; # inform
 $_[0]−>w−>cancel; # clean up
 },
 repeat => 0, # one shot;
);

 # display a message
 warn '[Info] Your timer "', $msg, '" is running.', "\n";
 }

This script is a reminder: you can enter dates and it will remind you. Simply, isn't it?

Event driven programming in Perl using the Event module

3.3 2.3. Starting the loop 10

4 3. Event in detail
This chapter describes details of Event which the introduction could not provide.

4.1 3.1. Watcher attributes

The properties of a watcher are determined by its object attributes. Attributes are set explicitly in a watchers
constructor or later on by attribute methods. Besides this, a lot of attributes require no explicit setting because they
have reasonable default values.

A number of base attribues are owned by watchers of all types.

base watcher attributes
attribut description

unlimited
access:

cb callback function to be invoked if an event happens

debug trace level setting

desc watcher description, useful to identify and search the watcher

max_cb_tm callback timeout, a callback is interrupted and terminated if it exceeds this limit

prio priority

reentrant a flag permitting nested callbacks

repeat controls if the watcher dies after the first event or not

read−only
access:

cbtime time of last recent callback invocation (if you check this in the related callback, it shows its current
startup time)

is_running the number of callbacks currently running for the watcher

constructors
only:

async enforces immediate event handling bypassing the event queue (ignoring other watchers
completely), this is overwritten by prio

parked prevents that the new watcher becomes active (it is made but detects no events)

nice priority as offset to the default value, this is overwritten by prio and async

Beginning with version 0.60, Event additionally provides the base attribute data. It is intended not for configuration
but for user controlled data storage.

Besides these base attributes, each watcher type owns more specific configuration settings.

spezific watcher attributes
attribute description

io:

fd the watched handle

poll specifies which events are of interest: this may be read or write access to the handle, errors or
timeouts (or combinations)

4 3. Event in detail 11

timeout after this time the callback is called even without a handler event

timeout_cb alternative callback to be called if the event times out (this is an optional attribute, by default, the
watcher will invoke the cb callback this case as well)

hard specifies if timeouts of repeated calls start at invokation or finish of an callback (only useful if a timeout
is specified)

timer:

at event time (ASSUMPTION: this is overwritten by interval)

interval period until event

hard specifies if a the interval of repeated calls starts running at start or finish of an invoked callback (only
useful if interval is used)

signal:

signal the watched signal (as a string)

idle:

max period after which the callback should be invoked, even without event

min period to wait between two subsequent callbacks (regardless if intermediate events)

var:

var the watched variable (by reference)

poll describes access types of interest: reading or/and writing

group:

timeout period after which the callback should be invoked, even without event

add contains a watcher object to be shadowed (the watched watchers activity is the expected event). This
is a list attribute which can be used multiply. An event is recognized if any member of the so grouped
watchers acts. (Group members can be removed by the watcher method del().)

Attributes are initialized in the constructor by similar named parameters:

 # register a timer
 Event−>timer(interval=>32, hard=>1, cb=>\&callback);

Additionally, attributes can be queried and modified during the whole lifetime of a watcher by similar named watcher
methods, like so:

 # modify a watchers description
 $timerWatcher−>desc("Really that late?");

 # report callback runtime
 print "Last recent callback started at ",
 POSIX::strftime("%c\n", localtime($w−>cbtime));

4.2 3.2. Object management

You may have wondered about the constructor calls in the examples above. Usually, it is a good Perl tradition to take
and store the object a constructor supplies:

 my $watcher=Event−>io(fd=>*STDIN, cb=>\&callback);

And of course, this is possible with Event objects as well. But more often you will see simplified Event code like the
following:

 Event−>io(fd=>*STDIN, cb=>\&callback);

Event driven programming in Perl using the Event module

4.2 3.2. Object management 12

What's going on? The answer is simply that Event manages the watcher objects internally itself. If you want to
access them later, you can found them by using class methods:

method description

all_watchers() supplies all registered watchers

all_running() provides a list of all watchers with currently running callbacks

all_idle() offers a list of idle watchers ready to be served but currently delayed by higher priorized events

The internal, automatic management of a watcher performed by Event results in the side effect that the reference
counter of an watcher object is influenced by internal module operations. That's why in

 {
 my $watcher=Event−>io(fd=>*STDIN, parked=>1);
 }

the new watcher remains alive even after the block is leaved.

But of course, if you want to do this, you can manage a watcher object yourself. This may be useful indeed if you
have to access it later on because searching it via class methods can become a waste of time (if done regularly or
you have to find certain watchers among a great number of such objects). Only keep in mind that you are not the only
one managing a watcher object. Especially, prevent modifying access to a watcher after it was cancelled (or risk an
exception). The current watcher state can be checked by various methods, especially by is_cancelled().

The following section describes watcher states in detail.

4.3 3.3. A watchers life cycle

During its life, a watcher enters various states which determine its behaviour. This means that a watcher object is not
only made, run and destroyed. You can, for example, deactivate it until you need it again. The several state changes
can be initiated explicitly by object methods, or they are performed implicitly caused by fullfilled preconditions. The
current state of a watcher is reported by special functions and methods.

Event driven programming in Perl using the Event module

4.3 3.3. A watchers life cycle 13

The state of a watcher reflects both its activity and its registration. Activity describes if it waits for and detects events.
Registration means if the loop knows the watcher so that the watcher can add handling orders to the queue.

States

ABSENT: The initial state of each Perl variable. The watcher is not made yet, or the watcher object was already
destroyed. Such a watcher is neither registered nor active.

As usually, this special state can be detected by defined().

ACTIVE: The watcher is registered and active, which means it detects events and generates handling orders in the
queue.

is_active() replies a true value in this state.

INACTIVE: The watcher no longer takes care of events, they are ignored. It does not generate handling orders but is
still registered. Regardless of all this, its entire configuration remains unchanged.

You can check for this state using the method is_active() as well. It supplies a "false" value this case.

CANCELLED: The watcher is no longer able to recognize events and generate orders, it is neither active nor
registered. Because of the lost registration it cannot return into states where it would be registered. Its configuration
remains unchanged but cannot be modified, any modifying access will raise an exception. A cancelled watcher
cannot be reactivated.

There is a method is_cancelled() which can be used to check for this critical state before modifications are
performed.

Event driven programming in Perl using the Event module

4.3 3.3. A watchers life cycle 14

This state is intended to be very temporary. It is designed as the final watcher state before destruction and usually the
watcher object passes through this state immediately inside the Event code. The only exception is caused by still
existing external watcher references, located in an Event::Event object representing a still unserved order
generated by the watcher, or in your data if you preferred to store watcher references. Take care in such cases.

State changes

Implicit changes: In general, a watcher can occupy state ACTIVE only if its attributes are sufficient.

 A watcher without callback, for example,
 cannot generate orders that make sense.

As soon as this precondition is violated, a watcher in state ACTIVE is transformed into state INACTIVE automatically.
The following table describes which settings are the minimum for an active watcher.

sufficient watcher settings
watchertype preconditions

all callback set

io timeout set or valid handle stored in fd

timer timeout set, repeated calls only possible with valid interval

signal valid signal stored in signal

idle −

var attributes poll and var have to be set, but not for read−only variables like $1

group at least one watcher in the group

The following example demonstrates a forced implicit state change.

 # deactivate an active watcher implicitly
 # (demonstration only!)
 my $w=Event−>signal(signal=>'INT');
 print "Watcher started.\n" if $w−>is_active;
 $w−>signal('FUN');
 print "Watcher deactivated.\n" unless $w−>is_active;

Constructor calls: The parameter parked (if set to a true value) instructs the constructor to generate the new
watcher in state INACTIVE by calling method stop() (the default state is ACTIVE entered by start()). Besides
this explicit setting, INACTIVE is entered implicitly in case of insufficient attribute settings (see table above for details).

 # new and active watcher
 print Event−>var(var=>\$var, cb=>\&cb)−>is_active, "\n";

 # similar, but explicitly deactivated
 print Event−>var(var=>\$var, cb=>\&cb, parked=>1)−>is_active, "\n";

 # insufficient attributes −> state INACTIVE
 Event−>io−>is_active or die "[BUG] Insufficient watcher attributes!";

The constructor parameter parked was introduced to enable watcher storage. By prebuilding watchers expected to
be used later on, you can accelerate your application because it is more expensive to make than to configure a
watcher. On the other hand, measurements showed that the real performance advantage of such pools strongly
depends on your application.

Deactivation: You can deactivate a watcher by calling its stop() method which enforces the watcher to enter the
INACTIVE state. This does not influence orders of this watcher which are already stored in the queue. A deactivated
watcher can be reactivated by calling its method again() (you may use start() alternatively). Of course, the
ACTIVE state can only be entered if the watchers attributes are still sufficient.

 # stop watcher temporarily ...
 $w−>stop;

Event driven programming in Perl using the Event module

4.3 3.3. A watchers life cycle 15

 ...
 # and reactivate it
 $w−>again;

Cancellation: To finally deactivate a watcher there is a method cancel(). Inside Event, it deregisters the watcher
so that it becomes invisible to the loop and enters the state CANCELLED. All internal references to the watcher
object are removed, and this means that unless there are further object references externally, Perls garbage
collection will immediately remove the object by DESTROY(). But if there are still external references, the object will
remain in state CANCELLED.

Where could external references be located? First, there may be orders made by the watcher still waiting in the
queue. The order objects include a reference to their parent watcher. Second, your own code could have stored the
watcher object somewhere.

 # generate a cancelled watcher
 my $cw=Event−>io;
 $cw−>cancel;
 print $cw−>is_cancelled, "\n";

In no case the state change influences orders already stored in the queue.

4.4 3.4. Priorities

If events happen simultaneously, the callback invocation order should be determined.

 In most cases it is useful to handle a
 signal immediately, even if a timer
 in the same moment wants to inform you
 about coffee.

Priorities allow to control which event should be served before others in such a case. Lower priorized events have to
wait before they can be served. For this purpose, Event provides eight levels of priority − including "immediately" as
well as "sometimes". To simplify the interface, each watcher type has its own default priority.

priorities
level description default

−1 asynchronous handling: the callback is invoked without delay, ignoring the queue

0 highest "regular" priority

1

2 provided as importable constant PRIO_HIGH signal

3

4 provided as importable constant PRIO_NORMAL idle, io, timer, var

5

6 lowest priority

But of course everyone can specify its own priority hierarchy. All watcher constructors offer three attributes for this
purpose: prio sets an explicit priority, nice defines the target priority as an offset to the default value, and
async selects priority −1.

 # a default signal watcher
 $sigWatch=Event−>signal(signal=>'PIPE');
 print "Default: ", $sigWatch−>prio, "\n";

 # watcher with explicit priority setting
 $sigWatch=Event−>signal(signal=>'PIPE', prio=>1);
 print "Prio 1: ", $sigWatch−>prio, "\n";

 # constructor using prio offset

Event driven programming in Perl using the Event module

4.4 3.4. Priorities 16

 $sigWatch=Event−>signal(signal=>'PIPE', nice=>−2);
 print "Default−2: ", $sigWatch−>prio, "\n";

 # signals should be served immediately
 $sigWatch=Event−>signal(signal=>'PIPE', async=>1);
 print "Asynchronous: ", $sigWatch−>prio, "\n";

If more than one priority attribute is passed to the constructor, prio will overwrite async, and both have precedence
over nice.

And, of course, the priority setting can be modified at runtime as well, even if there is only one method to do this:
prio() (async and nice are available in constructors only).

 # signals should be served immediately
 $sigWatch=Event−>signal(signal=>'PIPE', async=>1);
 print "Initial: ", $sigWatch−>prio, "\n";

 # oops, back to default priority
 print "Modified priority: ", $sigWatch−>prio(PRIO_HIGH), "\n";

If you are building a priority hierarchy for various watchers, please keep in mind that even events of the lowest priority
should finally be served. That's why an events priority has not only to reflect importance and urgency of its handling
but has also to take care of its (probable) frequency. If "important" events occur too often they may block all other
watchers. The optimal design sees very important events happening extremely seldom.

4.5 3.5. Watcher teams

It is explicitly allowed to have an unlimited number of watchers for the same event, regardless of the watchers type. If
such a well watched event happens, all callbacks are invoked subsequently. (Nevertheless, priorities are still in effect,
so there is no guarantee that the sequence of orders may not be interrupted by a callback of a watcher outside the
team if you assign different priorities to the team members.)

4.6 3.6. Writing callbacks

Orders in the queue are represented by objects of the class Event::Event. The loop performs the order by invoking
the callback function stored in this object.

Event driven programming in Perl using the Event module

4.5 3.5. Watcher teams 17

The Event::Event object is passed to the callback as its only parameter, this is managed automatically. Because it
stores more informations besides the callback itself, it connects the callback with both the initial event and the
watcher which detected the event and generated the order. Once the callback is finished, this intermediate transfer
object is destroyed.

 # callback taking the Event object
 Event−>io(..., cb=>sub {my ($event)=@_;});

So well, an Event::Event object is very passing thing, but nevertheless it plays an important part in handling an
event.

Event::Event objects are very similar to watcher objects: they own attributes which can be accessed by methods
of the same name. But different to watchers Event::Event attributes cannot be modified, they are read−only.

Event::Event object attributes
attribute description

got only available if the corresponding watcher has a poll attribute: then it describes the event in
poll format

hits here the watcher stored the sequential number of the generated order, so you can see how often the
initial event was detected by the watcher yet

prio the parent watchers priority (at event time)

w the parent watcher object (in current state)

Especially the offered access to the parent watcher is often used to modify the watchers configuration or state, like so:

 sub callback
 {
 # get Event object
 my ($event)=@_;

Event driven programming in Perl using the Event module

4.5 3.5. Watcher teams 18

 ...
 # cancel the initial watcher, if possible
 $event−>w−>cancel if $allExpectedEventsArrived;
 ...
 }

Keep in mind that the watcher may have been modified between the events occurence and the callbacks
invokation. While an Event::Event object "freezes" the event state in the queue, the related watcher works on and
all parts of the program are free to modify it until this event will be handled by callback invokation, which could take a
significant while. The watcher might even been cancelled which means that modifying access would raise an
exception. That's why you should check a watchers state before you modify it in a callback.

 # something seems to block us, we should act more often!
 $event−>w−>prio($event−>w−>prio−1) unless $event−>w−>is_cancelled;

On the other hand, often your callbacks will not need the informations provided by the passed Event::Event object
and you can ignore it.

Besides the parameter interface there is only one thing which should be taken into account: a callback should
return quickly. Remember that there is only one process for event recognition and handling, which ideally means the
handling of all detected events in a reasonable time. As long as a callback is performed, watchers, loop and other
callbacks are definitly blocked. That's why a long running callback should be shortened. There are several methods to
do this, one is to split it up into partial tasks which are performed subsequently by a state machine. Each callback
invokation could handle one state, for example. Another method is delegation to other processes which might run in
the same process space (threads or subprocesses) or in a foreign one (on a server). The third alternative is
cooperation: you can enforce an intermediate event recognition and handling by calling Events class method
sweep(). This and other class methods of loop management are described in the next section.

4.7 3.7. Loop management

Besides watchers and callbacks the event loop itself is the third pillar of Event. The loop is managed by various class
methods. In most cases, loop() and unloop() are sufficient.

An interesting aspect of the Event design is that loops can be nested. This means that you can call loop() from a
running callback (which is embedded into a loop itself) to enter a new inner loop level. Nevertheless, all registered
watchers are still active there.

loop control
methode description

loop() enters a new loop level. Loops are terminated automatically unless there are active watchers.

unloop() terminates the most inner loop level, all registered watchers remain unchanged.

unloop_all() terminates all loop levels (but still without effect to the installed watchers)

sweep() enables a callback to let Event recognize and handle intermediately occured events. After doing so,
sweep() returns immediately. (The priority of events to be served by the method can be limited by a
sweep() parameter.)

Because a loop without active watchers terminates itself immediately, the following idiom is often used to cleanup
both loops and watchers:

 # stop all loops AND deregister all watchers
 $_−>cancel foreach Event::all_watchers;

Event driven programming in Perl using the Event module

4.7 3.7. Loop management 19

5 4. Advanced features

5.1 4.1. Watching Watchers

Event provides a number of powerful features for debugging, error tracking and tuning. Already a default installation
offers a class variable $Event::DebugLevel and a debug attribute in each watcher to activate traces of various
levels. If compiled with −DEVENT_MEMORY_DEBUG, Event offers an additional class method
_memory_counters() which informs about the currently installed watchers.

 # display installed watchers
 warn "[Trace] Watchers: ", join("−", Event::_memory_counters), "\n";

 # This displays something like
 # "1−29509−0−0−0−0−5−0−3−0−8−0−0−0−0−0−0−0−0−0", where
 # each slot is a certain event or watcher counter.

Even more, there is an add on module Event::Stats which provides ways to interrogate runtime informations of every
certain watcher. Finally, the add on module NetServer::ProcessTop can be used to install a small telnet server
within an Event application which lists all registered watchers live in tradition of the UNIX utility top. It is fascinating
to look inside the running loop, watching the whole process or a user defined group of watchers! But the highlight of
all indeed is the possibility to use this server to modify and tune watcher attributes and states dynamically from a
remote site.

 Watchers at work: NetServer::ProcessTop

 serviceStatvfs PID=10012 @ redbull | 15:57:33 [60s]
 14 events; load averages: 0.97, 0.98, 0.00; lag 0%

 EID PRI STATE RAN TIME CPU TYPE
 DESCRIPTION P1
 10 4 sleep 84 0:46 86.2% io action registration socket
 5 3 sleep 1 0:05 9.9% io NetServer::ProcessTop
 0 7 150 0:00 1.6% sys idle
 7 3 wait 70 0:00 1.6% idle idle process
 3 3 sleep 51 0:00 0.4% io interface connection to s8a8263 via port
 16 3 cpu 11 0:00 0.2% io NetServer::ProcessTop::Client s8a8263
 2 3 sleep 13 0:00 0.0% time Event::Stats
 9 4 sleep 0 0:00 0.0% io more restricted interface registration s
 8 4 sleep 0 0:00 0.0% io less restricted interface registration s
 11 2 sleep 0 0:00 0.0% time controler host list update timer
 12 2 sleep 0 0:00 0.0% time action host list update timer
 13 1 sleep 0 0:00 0.0% sign signal handler for HUP
 14 1 sleep 0 0:00 0.0% sign signal handler for INT
 15 1 sleep 0 0:00 0.0% io controler socket
 6 6 sleep 0 0:00 0.0% time system check timer: actions
 0 −1 0 0:00 0.0% sys other processes

 %

It is planned to extend NetServer::ProcessTop by remote symbol table inspection.

5.2 4.2. Watcher suspension

Every watcher can enter a special mode SUSPENDED. This mode behaves similar to a state at first sight but is very
different in detail. It was implemented for development, tuning and debugging. This mode only effects activity.

Suspension enforces watchers in state ACTIVE or INACTIVE to behave exactly like a deactivated one while they still
own their original states: they do not recognize events and therefore generate no orders. (It is possible to suspend a
cancelled watcher as well, but without visible effect.) You may imagine that SUSPENDED freezes a watcher so that
you can study it as long as you want without disturbance by timeouts or something like that. (And of course, you
can change the watchers real state while it is suspended.)

5 4. Advanced features 20

SUSPENDED (similar to states) provides a special recognition method. This is is_suspended().

The "freezing" of watchers is exclusively controled by the attribute suspend and the method suspend(),
respectively. Event recognition and order generation are disabled as long as the attributes value is true. This takes no
effect to orders already stored in the queue or to the real watcher state because suspensions were designed as a
utility for debugging, development and tuning. That's why a watcher can be both ACTIVE and SUSPENDED at the
same time. Because of this it is not recommended to use suspensions in your applications real code, stop() suits
better there.

 # build a new active watcher
 my $w=Event−>var(var=>$object, cb=>\&cb);
 print "Watcher started.\n" if $w−>is_active;

 # suspend the watcher, check its state
 $w−>suspend(1);
 print "Watcher is still active ...\n" if $w−>is_active;
 print "... but suspended.\n" if $w−>is_suspended;

 # cancel suspension
 $w−>suspend(0);

Additionally, the NetServer::ProcessTop module introduced in the previous section provides a way to suspend
watchers remotely.

The special intention of this mode becomes visible in the following example as well. It shows that Event embeds a
watcher into a very special environment if it enters SUSPENDED. This enables to perform operations which would
normally be denied by Event, e.g. setting a watcher with insufficient attributes into state ACTIVE. Please note that
Event rebuilds a valid watcher state when SUSPENDED is leaved.

 # In this example a watcher with insufficient
 # attributes is set ACTIVE. This would normally
 # be prevented by Event, but is possible in
 # state SUSPENDED. As soon as SUSPENDED is leaved,
 # Event immediately restores a valid state.

 use strict;
 use Event;

 # make proband
 my $w=Event−>io(fd=>*STDIN, parked=>1);

 # check
 state($w);
 switch($w, 'suspend', 1);
 switch($w, 'again');
 switch($w, 'stop');
 switch($w, 'start');
 switch($w, 'suspend', 0);
 switch($w, 'suspend', 1);
 switch($w, 'again');
 switch($w, 'stop');
 switch($w, 'start');
 switch($w, 'cb', sub {});
 switch($w, 'suspend', 0);
 switch($w, 'cancel');
 state($w);

 sub switch
 {
 # get operation
 my ($w, $op, @par)=@_;

 # get current state
 my @prev=($w−>is_active(), $w−>is_suspended(), $w−>is_cancelled());

 # perform operation
 eval {$w−>$op(@par);};
 die $@ if $@;

Event driven programming in Perl using the Event module

5 4. Advanced features 21

 # check new state, prepare message
 my ($msg, $diff)=("$op(@par): ", 0);
 $msg=join('', $msg, $diff?', ':'',
 "activity: $prev[0] ==> ", $w−>is_active
),
 $diff=1 if $prev[0] ne $w−>is_active;

 $msg=join('', $msg, $diff?', ':'',
 "cancellation: $prev[2] ==> ", $w−>is_cancelled
),
 $diff=1 if $prev[2] ne $w−>is_cancelled;

 $msg=join('', $msg, $diff?', ':'',
 "suspension: $prev[1] ==> ", $w−>is_suspended
),
 $diff=1 if $prev[1] ne $w−>is_suspended;

 # report changes
 print "$msg.\n";
 }

 sub state
 {
 # get operation
 my ($w)=@_;

 # report state
 print "STATE: active=>", $w−>is_active,
 ", cancelled=>", $w−>is_cancelled,
 ", suspended=>", $w−>is_suspended, ".\n";
 }

Note: SUSPENDED is entered internally during callback execution if the callbacks "parent" watcher unset its
reentrant attribute. This way nested callbacks can be prevented by Event without touching the user controled
watcher state.

5.3 4.3. Customization

Event offers a wide range of flexible tuning features to the experienced user which could not be described here in
detail.

Raising exceptions are caught and displayed as messages, while the loop still runs uneffected. This handling is very
similar to the behaviour of eval() but can be replaced by a user provided function.

Important parts of the internal Event kernel can be extended or replaced by own routines if one prefers.

Finally there is a special API which allows to write fast callbacks in C.

5.4 4.4. Event and other looping modules

Perl/Tk implements its own event handling. That's why it cannot be combined with Event today (as I know), so the
usual statement that a Perl script can easily get a graphical interface by using Perl/Tk is not necessarily true if this
script uses Event. Instead of this, you would have to decide which loop to use. But as I know, Nick−Ing Simmons (the
author of Perl/Tk) is watching Event carefully. Maybe there is a common loop one day − but this is still only a wish.

gtk+, another popular GUI library used together with Perl, is built on yet another event model (from glibc). As I know
today, there is no successfully tried way of combination with Event. Perhaps it could be found by using
Events hooks?

Contrary to this, PerlQt which provides one more framework for graphical interfaces is reported to work very well with

Event driven programming in Perl using the Event module

5.3 4.3. Customization 22

Event.

 J. N. Pritikin provided this example
 of teamwork. It demonstrates how Event
 and Qt can be combined.

 use Qt 2.0;
 use Event;

 package MyMainWindow;

 use base 'Qt::MainWindow';
 use Qt::slots 'quit()';

 sub quit {Event::unloop(0);}

 package main;

 import Qt::app;

 Event−>io(
 desc => 'Qt',
 fd => Qt::xfd(),
 timeout => .25,
 cb => sub {
 $app−>processEvents(3000); #read
 $app−>flushX(); #write
 }
);

 my $w=MyMainWindow−>new;

 my $file=Qt::PopupMenu−>new;
 $file−>insertItem("Quit", $w, 'quit()');
 my $mb=$w−>menuBar;
 $mb−>insertItem("File", $file);

 my $at=1000;
 my $label=Qt::Label−>new("$at", $w);
 $w−>setCentralWidget($label);

 Event−>timer(
 interval => .25,
 cb => sub {
 −−$at;
 $label−>setText($at);
 }
);

 $w−>resize(200, 200);
 $w−>show;

 $app−>setMainWidget($w);
 exit Event::loop();

Complicated at first sight is the teamwork of Event and other modules implementing some sort of event handling as
well, like Term::ReadLine::Gnu. This module, if configured that way, catches every keystroke passed to STDIN to
implement autocompletion of filenames and commands for example. Well, a keystroke is an event as well if someone
watches STDIN. More than that, there are two kinds of loops now. But with the help of both module authors, it
became clear that this problem can be solved. The Event distribution contains an example demonstrating how these
modules can be combined.

Event driven programming in Perl using the Event module

5.3 4.3. Customization 23

6 5. Application examples
The following projects on base of Event were reported in the Event mailinglist:

Application

A bankers trading system.

The state machine library POE (to be found on CPAN) shall be reimplemented using Event.

A system watching utility checking logfiles, ports, network, processes and more. If an event is detected, an alarm
is send to either a mailbox or a tool like Tivoli. This system is reported to be flexible, completely configurable and
modular built on base of user defined agents. The author wrote: "The Event module allows me to service all agents
in a controlled & timely manner ... Watching a few active log files & testing each record against 20−30 regex's,
checking the process list & netstat every minute, opening a couple of application ports & passing some info from
time−to−time, & keeping an eye on paging −− in total, costs about a minute of CPU a day. The benefits are many."

database frontends

web backends

client/server architectures

6 5. Application examples 24

7 6. Outlook
Event is constantly improved. J. N. Pritikin provides excellent maintenance and listens very carefully to users. He
often publishes patches and fixes within hours. Some weeks ago he announced a business caused change into a
Windows environment which might possibly result in a Windows port of his module.

The Perl porters group which is the core team in Perl development already started to discuss the need of an event
handling model built into Perl itself. The discussion seems to be in an early state and it is still unclear if this extension
will base on Event. But in spite of this discussion, Event allows flexible event driven programming in Perl already
today.

7 6. Outlook 25

8 A. Data
Information Details

name Event.pm by J. N. Pritikin (JPRIT).

version This introduction is based on version 0.67.

modules
manpage

http://theoryx5.uwinnipeg.ca/CPAN/data/Event/Event.html

implementation mostly in C for maximal performance. Lots of "Perl magic".

limits Event loops are threadsafe as long as Event is used in only one thread. Better thread support is
already planned.

known bugs If a script using Event dies, perls final memory cleanup process can fail sometimes. If the script is
started standalone this only causes some curious error messages which you might never seen
before. Take care if the script call is embedded into another program. The reasons of this failure
are still unclear but perl itself seems to support it by an own already reported bug.

platforms UNIX (various derivates), a Windows port seems to be possible in the future.

support and
discussion

mailinglist perl−loop@perl.org.

8 A. Data 26

http://theoryx5.uwinnipeg.ca/CPAN/data/Event/Event.html
mailto:perl-loop@perl.org

	Table of contents
	1 Event driven programming in Perl using the Event module
	1.1 Table of Contents

	2 1. Introduction
	2.1 1.1. The task
	2.2 1.2. Implementations of asynchronous programs
	2.3 1.3. Event handling with Perl

	3 2. An overview of the Event module
	3.1 2.1. The watcher concept
	3.2 2.2. Making watchers
	3.3 2.3. Starting the loop
	3.4 2.4. A complete example

	4 3. Event in detail
	4.1 3.1. Watcher attributes
	4.2 3.2. Object management
	4.3 3.3. A watchers life cycle
	4.4 3.4. Priorities
	4.5 3.5. Watcher teams
	4.6 3.6. Writing callbacks
	4.7 3.7. Loop management

	5 4. Advanced features
	5.1 4.1. Watching Watchers
	5.2 4.2. Watcher suspension
	5.3 4.3. Customization
	5.4 4.4. Event and other looping modules

	6 5. Application examples
	7 6. Outlook
	8 A. Data

