
Test::Class Best Practices
xUnit style testing for Per l

by
Cur tis "Ovid" Poe

©2009, Curtis "Ovid" Poe

Test::Class Best Practices
xUnit style testing for Per l

by
Cur tis "Ovid" Poe

ABSTRACT

When wor king with large test suites, using procedural tests for object-oriented code
becomes clumsy after a while. This is where Test::Class really shines. Unfor tunately,
many programmers struggle to learn this module or don’t utilize its full power.

Please note that article assumes a basic familiar ity with object-oriented Per l and testing.
Also, some of these classes are not "proper" by the standards of many OO program-
mers (your author included), but have been written for clarity rather than purity.

MODULES AND THEIR VERSIONS

This article was written with the following modules and versions:

• Test::Class version 0.31
• Test::Most version 0.21
• Test::Harness version 3.15
• Moose version 0.7
• Class::Data::Inheritable version 0.08

You may use lower versions of these modules (and write the OO by hand instead of
using Moose), but be aware that you may see slightly different behavior.

Notes about the code

Note that Moose packages should generally end with this:

__PACKAGE__->meta->make_immutable;

no Moose;

- 1 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

We’re omitting this from our examples. We’re also omitting use strict and use
warnings, but assume they are there (they’re automatically used when you use
Moose). The code will, however, run just fine without this. We do this merely to focus on
the core features of the code in question.

Of course, you may need to adjust the shebang line (#!/usr/bin/env perl -T) for
your system.

EVOLUTION OF A PERL PROGRAMMER

There are many paths programmers take in their development, but a typical one seems
to be this:

• Star t wr iting simple procedural programs.
• Star t wr iting modules when they find they need to reuse code.
• Star t using objects when they need more powerful abstractions.
• Star t wr iting tests.

While it would be nice if people started writing tests from day 1, the reality is most pro-
grammers don’t. But when they do, what do those tests look like? Well, they’re often
straight-forward procedural tests like this:

#!/usr/bin/env perl -T

use strict;

use warnings;

use Test::More tests => 3;

use_ok ’List::Util’, ’sum’ or die;

ok defined &sum, ’sum() should be exported to our namespace’;

is sum(1,2,3), 6, ’... and it should sum lists correctly’;

Now there’s nothing wrong with procedural tests and they’re great for non-OO code. For
most projects, they handle everything you need to do and if you download most mod-
ules off the CPAN you’ll generally find their tests -- if they have them -- procedural in

- 2 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

style. How ever, when you start to wor k with larger code bases, merely have a t/ direc-
tor y with 317 test scripts starts to get a bit tedious. Where is the test you need? Trying
to memorize all of your test names and grepping through your tests to find out which
ones test the code you’re wor king with becomes tedious. That’s where Adrian Howard’s
Test::Class, can help.

USING TEST::CLASS

Creating a simple test class

Now let’s star t digging into Test::Class. I’m a huge "dive right in" fan, so we’ll now
skip a lot of the theory and just see how things wor k. Though I often use test-driven
development (TDD), I’ll reverse the process here so you can see explicitly what we’re
testing. Also, Test::Class has quite a number of different features, not all of which I’m
going to explain here. See the documentation for more infor mation.

First, we’ll create a ver y simple Person class. Because I don’t like writing out simple
methods over and over, we’ll use Moose to automate a lot of the grunt wor k for us.

package Person;

use Moose;

has first_name => (is => ’rw’, isa => ’Str’);

has last_name => (is => ’rw’, isa => ’Str’);

sub full_name {

my $self = shift;

return $self->first_name . ’ ’ . $self->last_name;

}

1;

This gives us the constructor and first_name, last_name and full_name methods.

Now let’s write a simple Test::Class program for it. In order to do this, we need a
place to put the tests. Fur ther, to avoid namespace collisions, we need should choose

- 3 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

our package name carefully. I like prepending my test classes with MyTest:: to ensure
that we have no ambiguity. In this case, I’ll put my Test::Class tests in t/tests/
and our first class will be named MyTest::Person. We’ll assume the following direc-
tor y str ucture:

lib/

lib/Person.pm

t/

t/tests/

t/tests/MyTest

t/tests/MyTest/Person.pm

Tip: though it might seem nice to put your tests in a Test:: namespace, don’t do that.
You might accidentally clash with a testing module on the CPAN.

And the actual test class might start out looking like this:

package MyTest::Person;

use Test::Most;

use parent ’Test::Class’;

sub class { ’Person’ }

sub startup : Tests(startup => 1) {

my $test = shift;

use_ok $test->class;

}

sub constructor : Tests(3) {

my $test = shift;

my $class = $test->class;

can_ok $class, ’new’;

ok my $person = $class->new,

’... and the constructor should succeed’;

isa_ok $person, $class, ’... and the object it returns’;

}

1;

- 4 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

Note: we’re using Test::Most instead of Test::More. We’ll be taking advantage of
Test::Most features later. Also, those methods should really be ’ro’ (read-only)
because now we can leave the object in an inconsistent state. This is part of what I
meant about "proper" OO code, but again, this is written for illustration purposes only.

Before we get into what all of that means, let’s jump ahead and run this. To do that, in
our t/ director y, include the following program as run.t.

#!/usr/bin/env perl -T

use lib ’t/tests’;

use MyTest::Person;

Test::Class->runtests;

This little program sets the path to our test classes, loads them and runs the tests. Now
you can run that with the prove utility:

prove -lv --merge t/run.t

Tip: The --merge tells prove to merge STDOUT and STDERR. This avoids synchro-
nization problems that happen when STDERR is not always output in synchronization
with STDOUT. It’s recommended that you do not use this unless you’re running your
tests in verbose mode. This is because failure diagnostic will then be sent to STDOUT
and TAP::Harness discards STDOUT lines beginning with ’#’ if not running in verbose
mode.

- 5 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

And we get the output similar to the following:

t/run.t ..

1..4

ok 1 - use Person;

#

MyTest::Person->constructor

ok 2 - Person->can(’new’)

ok 3 - ... and the constructor should succeed

ok 4 - ... and the object it returns isa Person

ok

All tests successful.

Files=1, Tests=4, 0 wallclock secs

Result: PASS

(For layout reasons, detailed timing infor mation after "wallclock secs" is omitted).

You’ll note that the test output (named the "Test Anything Protocol", or "TAP", if you’re
cur ious) for the constructor method begins with the following diagnostic line:

MyTest::Person->constructor

That occurs before every test method’s output and makes it ver y easy to find which tests
failed.

Now let’s take a closer look at our tests and see what’s going on.

01: package MyTest::Person;

02:

03: use Test::Most;

04: use parent ’Test::Class’;

05:

06: sub class { ’Person’ }

07:

08: sub startup : Tests(startup => 1) {

09: my $test = shift;

10: use_ok $test->class;

11: }

12:

13: sub constructor : Tests(3) {

- 6 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

14: my $test = shift;

15: my $class = $test->class;

16: can_ok $class, ’new’;

17: ok my $person = $class->new,

18: ’... and the constructor should succeed’;

19: isa_ok $person, $class, ’... and the object it returns’;

20: }

21:

22: 1;

Lines 1 through 4 are fair ly straightforward. Line 4 has us inheriting from Test::Class
and that’s what makes all of this wor k. Line 6 defines a class method which our tests
will use to know which class they’re testing. It’s ver y impor tant to do this rather than
hard-coding the class name in our test methods. That’s good OO practice in general and
later we’ll see how this helps us.

The startup method has an attribute, ’Tests’, which has the arguments startup and
1. Any method labeled as a startup method will run once before any of the other
methods run. The 1 (one) in the attribute says "we’re also going to run one test in this
method". If you don’t run any tests in your startup method, omit this number :

sub load_db : Tests(startup) {

my $test = shift;

$test->_create_database;

}

sub _create_database {

...

}

Tip: as you can see from the code above , you don’t need to name the startup
method startup. I recommend you give it the same name as the attribute for reasons
discussed later.

That will be run once and only once for each test class. Because the _create_data-
base method does not have any attr ibutes, you may safely call it and Test::Class will
not try to run it as a test.

Of course, there’s a corresponding shutdown available:

- 7 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

sub shutdown_db : Tests(shutdown) {

my $test = shift;

$test->_shutdown_database;

}

This allows you to set up and tear down a pristine testing environment for every test
class without worr ying that other test classes will interfere with the current tests. Of
course, this means that tests may not be able to run in parallel and there are ways
around that, but it’s beyond the scope of this article.

As mentioned, our startup method has a second argument which tells Test::Class
that we’re going to run one test in this startup method. This is strictly optional. Here
we use it to safely test that we can load our Person class. As an added feature, if
Test::Class detects that the startup test failed or an exception is thrown, it
assumes that there’s no point in running the rest of the tests, so it skips the remaining
tests for the class.

Tip: Don’t run tests in your startup method. We’ll explain why in a bit. For now, it’s bet-
ter to do this:

sub startup : Tests(startup) {

my $test = shift;

my $class = $test->class;

eval “use $class”;

die $@ if $@;

}

However, we’ll keep the test in the startup method for a while longer, just so you can
see how it wor ks.

Now let’s take a closer look at the constructor method.

13: sub constructor : Tests(3) {

14: my $test = shift;

15: my $class = $test->class;

16: can_ok $class, ’new’;

17: ok my $person = $class->new,

18: ’... and the constructor should succeed’;

19: isa_ok $person, $class, ’... and the object it returns’;

20: }

- 8 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

Tip: We did not name the constructor tests new because that’s a Test::Class
method and overr iding it will cause our tests to break.

Our Tests attr ibute lists the number of tests as ’3’, but if we don’t know how many tests
we’re going to have , we can still use no_plan.

sub constructor : Tests(no_plan) { ... }

As a short-cut, omitting arguments to the attribute will also mean no_plan:

sub constructor : Tests { ... }

The my $test = shift line is equivalent to my $self = shift. I’ve like to rename
$self to $test in my test classes, but that’s merely a matter of personal preference.

Also, the $test object is an empty hashref. This allows you to stash data there, if
needed. For example:

sub startup : Tests(startup) {

my $test = shift;

my $pid = $test->_start_process or die “Could not start process: $?”;

$test->{pid} = $pid;

}

sub run : Tests(no_plan) {

my $test = shift;

my $process = $test->_get_process($test->{pid});

...

}

The rest of the test method is self-explanator y if you’re familiar with Test::More.

Of course, we also had first_name, last_name and full_name, so let’s write those
tests. Because we’re in "development mode", we’ll leave these tests as no_plan, but
don’t forget to set the number of tests when you’re done.

- 9 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

sub first_name : Tests {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’first_name’;

ok !defined $person->first_name,

’... and first_name should start out undefined’;

$person->first_name(’John’);

is $person->first_name, ’John’,

’... and setting its value should succeed’;

}

sub last_name : Tests {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’last_name’;

ok !defined $person->last_name,

’... and last_name should start out undefined’;

$person->last_name(’Public’);

is $person->last_name, ’Public’,

’... and setting its value should succeed’;

}

sub full_name : Tests {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’full_name’;

ok !defined $person->full_name,

’... and full_name should start out undefined’;

$person->first_name(’John’);

$person->last_name(’Public’);

is $person->full_name, ’John Public’,

’... and setting its value should succeed’;

}

Tip: when possible, name your test methods after the method they’re testing. This
makes finding them much easier. You can even write editor tools to automatically jump
to them. Of course, not all test methods will fit this pattern, but many will.

The first_name and last_name tests can probably have common elements factored
out, but for now they’re fine. Let’s see what happens when we run this (war nings

- 10 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

omitted):

t/run.t ..

ok 1 - use Person;

#

MyTest::Person->constructor

ok 2 - Person->can(’new’)

ok 3 - ... and the constructor should succeed

ok 4 - ... and the object it returns isa Person

#

MyTest::Person->first_name

ok 5 - Person->can(’first_name’)

ok 6 - ... and first_name should start out undefined

ok 7 - ... and setting its value should succeed

#

MyTest::Person->full_name

ok 8 - Person->can(’full_name’)

not ok 9 - ... and full_name should start out undefined

Failed test ’... and full_name should start out undefined’

at t/tests/Test/Person.pm line 48.

(in MyTest::Person->full_name)

ok 10 - ... and setting its value should succeed

#

MyTest::Person->last_name

ok 11 - Person->can(’last_name’)

ok 12 - ... and last_name should start out undefined

ok 13 - ... and setting its value should succeed

1..13

Looks like you failed 1 test of 13.

Dubious, test returned 1 (wstat 256, 0x100)

Failed 1/13 subtests

Test Summary Report

t/run.t (Wstat: 256 Tests: 13 Failed: 1)

Failed test: 9

Non-zero exit status: 1

Files=1, Tests=13, 0 wallclock secs

Result: FAIL

- 11 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

Uh oh. We can see that full_name isn’t behaving the way we expected it to. Let’s
assume that we want to croak if either the first or last name is not set. To keep this sim-
ple, we’ll just assume that neither first_name nor last_name may be set to a false
value.

sub full_name {

my $self = shift;

unless ($self->first_name && $self->last_name) {

Carp::croak(“Both first and last names must be set”);

}

return $self->first_name . ’ ’ . $self->last_name;

}

That should be pretty clear, now let’s look at the new test. We’ll use the throws_ok test
from Test::Exception to test the Carp::croak(). Because we’re using
Test::Most instead of Test::More, we can use this test function without specifically
using Test::Exception.

sub full_name : Tests(no_plan) {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’full_name’;

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->first_name(’John’);

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->last_name(’Public’);

is $person->full_name, ’John Public’,

’... and setting its value should succeed’;

}

- 12 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

And now our tests all pass and we can go back and set our test plan numbers, if
desired:

All tests successful.

Files=1, Tests=14, 0 wallclock secs

Result: PASS

Inheriting tests

By now you’re probably looking at that and saying "that’s a heck of a lot of wor k just for
testing a class" and if this was all there is to it, you’d be perfectly justified in forgetting
about Test::Class. How ever, let’s see how Test::Class really shines by writing a
subclass of Person named Person::Employee. We’ll keep it simple by only providing
an employee_number method, but you’ll quickly understand the benefits.

package Person::Employee;

use Moose;

extends ’Person’;

has employee_number => (is => ’rw’, isa => ’Int’);

1;

And the test class for it:

package MyTest::Person::Employee;

use Test::Most;

use parent ’MyTest::Person’;

sub class {’Person::Employee’}

sub employee_number : Tests(3) {

my $test = shift;

my $employee = $test->class->new;

can_ok $employee, ’employee_number’;

ok !defined $employee->employee_number,

’... and employee_number should not start out defined’;

- 13 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

$employee->employee_number(4);

is $employee->employee_number, 4,

’... but we should be able to set its value’;

}

1;

Notice that instead of inheriting from Test::Class, we’ve inher ited from
MyTest::Person, just like out Person::Employee class inherited from Person.
Also, we have overr idden the class method to ensure that tests know which class
they’re using.

At this time, we also need to add MyTest::Person::Employee to t/run.t:

#!/usr/bin/env perl -T

use lib ’t/tests’;

use MyTest::Person;

use MyTest::Person::Employee;

Test::Class->runtests;

And when we run it t/run.t:

All tests successful.

Files=1, Tests=31, 1 wallclock secs

Whoa! Wait a minute. We only added three tests. We star ted with 14, how come we now
have 31?

Because MyTest::Person::Employee inher ited the tests from MyTest::Person.
That means that the 14 original tests plus the 14 inherited tests and the 3 added tests
give us 31 tests! But these aren’t frivolous tests, either. Look at the new test’s output:

- 14 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

MyTest::Person::Employee->constructor

ok 16 - Person::Employee->can(’new’)

ok 17 - ... and the constructor should succeed

ok 18 - ... and the object it returns isa Person::Employee

#

MyTest::Person::Employee->employee_number

ok 19 - Person::Employee->can(’employee_number’)

ok 20 - ... and employee_number should not start out defined

ok 21 - ... but we should be able to set its value

#

MyTest::Person::Employee->first_name

ok 22 - Person::Employee->can(’first_name’)

ok 23 - ... and first_name should start out undefined

ok 24 - ... and setting its value should succeed

#

MyTest::Person::Employee->full_name

ok 25 - Person::Employee->can(’full_name’)

ok 26 - ... and full_name() should croak() if the either name is not set

ok 27 - ... and full_name() should croak() if the either name is not set

ok 28 - ... and setting its value should succeed

#

MyTest::Person::Employee->last_name

ok 29 - Person::Employee->can(’last_name’)

ok 30 - ... and last_name should start out undefined

ok 31 - ... and setting its value should succeed

Because we didn’t explicitly hard-code the class name in our tests and because
MyTest::Person::Employee had overr idden the class method, these new tests
are being run against instances of Person::Employee, not Person. This allows us to
know that we did not break any of our inherited behavior! However, if we do need to
alter the behavior of one of those methods, as we might expect with object-oriented
code, all you need to do is overr ide the corresponding test method. For example, what if
employees must have their full names listed in the for mat "last name, first name"?

sub full_name {

my $self = shift;

unless ($self->first_name && $self->last_name) {

Carp::croak(“Both first and last names must be set”);

}

- 15 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

return $self->last_name . ’, ’ . $self->first_name;

}

The appropriate test method in MyTest::Person::Employee might look like this:

sub full_name : Tests(no_plan) {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’full_name’;

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->first_name(’John’);

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->last_name(’Public’);

is $person->full_name, ’Public, John’,

’... and setting its value should succeed’;

}

Make those changes and all tests will pass. MyTest::Person::Employee will call its
own full_name test method and not that of its parent class.

Refactoring test classes

Refactoring with methods

There’s a lot of duplication in the full_name test which you should factor out into com-
mon code. In our MyTest::Person class, one way to do this might be:

- 16 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

sub full_name : Tests(no_plan)

my $test = shift;

$test->_full_name_validation;

my $person = $test->class->new(

first_name => ’John’,

last_name => ’Public’,

);

is $person->full_name, ’John Public’,

’The name of a person should render correctly’;

}

sub _full_name_validation {

my ($test, $person) = @_;

my $person = $test->class->new;

can_ok $person, ’full_name’;

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->first_name(’John’);

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

}

And in MyTest::Person::Employee:

sub full_name : Tests(no_plan)

my $test = shift;

$test->_full_name_validation;

my $person = $test->class->new(

first_name => ’Mary’,

last_name => ’Jones’,

);

is $person->full_name, ’Jones, Mary’,

’The employee name should render correctly’;

}

- 17 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

Just like with any other OO code, we inher it the _full_name_validation method
and can share it with our subclass.

Refactoring with fixtures

When writing test classes, the startup and shutdown methods are ver y handy, but
those run only at the beginning and end of your test class. Sometimes you need code to
run before the beginning and end of every test method. For example, in our code above ,
many of the test methods had the following line of code:

my $person = $test->class->new;

Now you really may not want to duplicate that every time, so you can use what’s known
as a fixture. A fixture is "fixed state" for you tests to run against. These allow you to
remove a lot of duplicated code from your tests and to have a controlled environment.
You could do something like this:

sub setup : Tests(setup) {

my $test = shift;

my $class = $test->class;

$test->{person} = $class->new;

}

Or if you want to start with a known set of data:

sub setup : Tests(setup) {

my $test = shift;

my $class = $test->class;

$test->{person} = $class->new(

first_name => ’John’,

last_name => ’Public’,

);

}

Now, all of your test methods can simply use $test->{person} (you can make that a
method if you prefer) to access a new instance of the class you’re testing without having
to constantly duplicate that code.

Now, all of your test methods can simply use $test->{person} (you can make that a
method if you prefer) to access a new instance of the class you’re testing without having

- 18 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

to constantly duplicate that code.

The corresponding teardown method is useful if you need to clean up on a per test
basis. We’ll cover more of these methods later.

MAKING OUR TESTING LIVES EASIER

Auto-discovering your test classes

By this time, you’re probably beginning to understand how Test::Class can make
managing large codebases a bit easier, but what about making Test::Class tests
easier? The first problem is our helper script, t/run.t:

#!/usr/bin/env perl -T

use lib ’t/tests’;

use MyTest::Person;

use MyTest::Person::Employee;

Test::Class->runtests;

Right now, this doesn’t look so bad, but as we star t to add more classes, this gets to be
unwieldy. What if you forget to add a test class? Your class might be broken, but since
the test class is not run, how will you know? So let’s fix this to ’auto-discover’ our tests.

#!/usr/bin/env perl -T

use Test::Class::Load qw(t/tests);

Test::Class->runtests;

Just tell Test::Class::Load (bundled with Test::Class) which directories your
test classes are in and it will find them for you. It does this by loading attempting to load
all files with a .pm extension, so if you have "helper" test modules which are not
Test::Class tests, keep them in a separate directory.

- 19 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

Using a common base class

Naturally, because this is programming, we want to be able to factor out common code.
We’ve done a little bit of this already, but there’s room for improvement. You’ll notice that
both test classes have a method for returning the name of the class being tested. But
since we can calculate the name of this class, so why not push this into a base class?
We’ll put this in t/tests/My/Test/Class.pm.

package My::Test::Class;

use Test::Most;

use parent qw(Test::Class Class::Data::Inheritable);

BEGIN {

__PACKAGE__->mk_classdata(’class’);

}

sub startup : Tests(startup => 1) {

my $test = shift;

(my $class = ref $test) =˜ s/ˆMyTest:://;

return ok 1, “$class loaded” if $class eq __PACKAGE__;

use_ok $class or die;

$test->class($class);

}

1;

For Person::Employee, we merely need to delete the class method. For Person,
we delete the class method, delete the startup method and have it inher it from
My::Test::Class instead of Test::Class. Now. class will always retur n the cur-
rent class we’re testing and it’s guaranteed to be loaded by the time the test class has
run. Here’s what the new MyTest::Person class looks like:

package MyTest::Person;

use Test::Most;

use parent ’My::Test::Class’;

sub constructor : Tests(3) {

my $test = shift;

- 20 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

my $class = $test->class;

can_ok $class, ’new’;

ok my $person = $class->new, ’... and the constructor should succeed’;

isa_ok $person, $class, ’... and the object it returns’;

}

sub first_name : Tests(3) {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’first_name’;

ok !defined $person->first_name,

’... and first_name should start out undefined’;

$person->first_name(’John’);

is $person->first_name, ’John’, ’... and setting its value should succeed’;

}

sub last_name : Tests(3) {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’last_name’;

ok !defined $person->last_name,

’... and last_name should start out undefined’;

$person->last_name(’Public’);

is $person->last_name, ’Public’, ’... and setting its value should succeed’;

}

sub full_name : Tests(4) {

my $test = shift;

$test->_full_name_validation;

my $person = $test->class->new(

first_name => ’John’,

last_name => ’Public’,

);

is $person->full_name, ’John Public’,

’... and setting its value should succeed’;

}

sub _full_name_validation {

my ($test, $person) = @_;

my $person = $test->class->new;

- 21 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

can_ok $person, ’full_name’;

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

$person->first_name(’John’);

throws_ok { $person->full_name }

qr/ˆBoth first and last names must be set/,

’... and full_name() should croak() if the either name is not set’;

}

1;

And the test results for MyTest::Person::Employee:

All tests successful.

Files=1, Tests=32, 1 wallclock secs

Now we have an extra test, but that’s because of the ok 1 found in the
My::Test::Class::startup method. It gets called an extra time for the loading of
My::Test::Class.

Tip: If your class must be loaded at BEGIN time, overr ide this startup method in your
test class but be sure to provide a class method.

Run individual test classes

When I’m running tests, I hate to leave my editor merely to run tests from the command
line. To avoid this, I have something similar to following mapping in my .vimrc file:

noremap ,t :!prove --merge -lv %<CR>

Then, when I’m writing tests, I merely hit ,t and my test runs. How ever, doing this in a
test class doesn’t wor k. The class gets loaded, but the tests do not run. I could simply
add a new mapping:

noremap ,T :!prove -lv --merge t/run.t<CR>

- 22 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

The problem is that this runs all of my test classes. If I have sev eral hundred tests, I
don’t want to hunt back through all of the test output to see which tests failed. Instead, I
want to run a single test class. To do this, I first alter my mapping to include the path to
my test classes.

noremap ,t :!prove -lv --merge -It/tests %<CR>

I also remove the Test::Class->runtests line from t/run.t (or else I’ll have my
tests run twice if I run the full test suite). Instead, now that I have a common base class,
I add the following line to My::Test::Class:

INIT { Test::Class->runtests }

Now, regardless of whether or not I’m in a standard Test::Most test program or one of
my new test classes, I can type ,t and run just the tests in the file I’m editing.

If you run the tests for MyTest::Person::Employee, you’ll see the full run of 32 tests
because Test::Class will run the tests for the current class and all classes which it
inher its from. If you run the tests for MyTest::Person, you’ll only see 15 tests run,
which is the behavior we wanted.

If you prefer Emacs, you can put the following in your ˜/.emacs file.

(eval-after-load "cperl-mode"

’(add-hook ’cperl-mode-hook

(lambda () (local-set-key "\C-ct" ’cperl-prove))))

(defun cperl-prove ()

"Run the current test."

(interactive)

(shell-command (concat "prove -lv --merge -It/tests "

(shell-quote_argument (buffer-file-name)))))

That will bind this to C-c t and you can pretend that you’re as cool as vim users (just
kidding! Stop the hate mail already).

- 23 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

HANDLING STARTUP/SETUP/TEARDOWN/SHUTDOWN METHODS

We often find that when we’re running tests, we often need to have special code run at
the start and end of a class and at the start and end of every test method. These might
be useful to connecting to databases, deleting temp files, setting up test fixtures and so
on. Test::Class can help us with this.

For simplicity’s sake, we’ll refer to Test::Class’s methods for handling this as test
control methods.

Test::Class provides four such methods.

• startup This method is run once for each class, before any tests are run.

• shutdown This method is run once for each class, after all tests have run.

• setup This method is run before each test method.

• teardown This method is run after each test method.

"star tup" and "shutdown"

One common function for the startup and shutdown methods is to set up and tear
down a database:

package Tests::My::Resultset::Customer;

use parent ’My::Test::Class’;

sub startup : Tests(startup) {

my $test = shift;

$test->_connect_to_database;

}

sub shutdown : Tests(shutdown) {

my $test = shift;

$test->_disconnect_from_database;

}

- 24 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

... and so on

What happens here is that when the test class is loaded, the first code which gets run is
startup. At the end of the test, the shutdown method is called and we disconnect
from the database. Note that if the startup method has any tests and one fails, or if it
throws any exception, the rest of the tests will not be run, but any tests for parent
classes will still be run.

sub startup : Tests(startup) {

ok 0; # the test class will abort here

}

If this occurs, the shutdown method will not be called.

"setup" and "teardown"

Of course, we also might need to run code before and after every test method. Here’s
how to do that:

sub setup : Tests(setup) {

my $test = shift;

$test->_start_db_transaction;

}

sub check_priviledges : Tests(no_plan) {

my $test = shift;

$test->_load_priviledge_fixture;

...

}

sub teardown : Tests(teardown) {

my $test = shift;

$test->_rollback_db_transaction;

}

The above code let’s us star t a database transaction before every test method. The
check_priviledges method loads its own test fixture and the teardown method
rolls back the transaction, ensuring that the next test will have a pristine database. Note
that if the setup method fails a test, the teardown method will still be called. This is

- 25 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

different behavior for the startup method because Test::Class moves on to the
next test and assumes you still want to continue.

Overriding test control methods

Tw o common problems which occur with users new to Test::Class is that they either
find that they’re running more test control methods than they expected or their test con-
trol methods are running in an order they did not expect. For example, let’s say we have
this in our test base class:

Controlling order of execution

sub connect_to_db : Tests(startup) {

my $test = shift;

$test->_connect_to_db;

}

And in a test subclass:

sub assert_db : Tests(startup => 1) {

my $test = shift;

ok $test->_is_connected_to_db,

’We still have a database connection’;

}

That will probably fail and your tests will not be run. Why? Because Test::Class runs
tests in alphabetical order in a test class. Because it includes inher ited tests in your test
class, you’ve inher ited connect_to_db, but since that sorts after assert_db, it gets
run after it. Thus, you’re asserting your database connection before you’ve connected.

The problem here is that this is OO code and you shouldn’t be relying on execution
order. The fix is simple. Rename both startup methods to startup and have the child
class call the super class method:

- 26 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

sub startup : Tests(startup) {

my $test = shift;

$test->SUPER::startup;

die unless $test->_is_connected_to_db,

’We still have a database connection’;

}

This wor ks because Test::Class knows you’ve overr idden the method and you can
simply call it manually.

Warning: Note that we now die in the startup method rather than running a test. This
is because Test::Class has no way of knowing if you’re really doing to call the super
class or not. As a result, it has no way of knowing what the real test count is. Thus, we
die instead of relying on a test failure to halt the startup method.

Tip: for reasons mentioned above , don’t put tests in your in your test control methods.

Controlling what gets executed

Let’s say that you’ve a web page which shows infor mation, but if the user is authenti-
cated, they get extra features. You might test this with the following:

sub unauthenticated_startup : Test(startup) {

my $test = shift;

$test->_connect_as_unauthenticated;

}

And in your "authenticated" subclass:

sub authenticated_startup : Test(startup) {

my $test = shift;

$test->_connect_as_authenticated;

}

Again, your tests will probably fail because authenticated_startup is run before
unauthenticated_startup and you have probably connected as the unauthenti-
cated user in your "authenticated" subclass. How ever, this time you probably don’t even
need unauthenticated_startup to run. Again, give the tests the same name but
don’t call the parent’s method.

- 27 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

sub startup : Test(startup) {

my $test = shift;

$test->_connect_as_authenticated;

}

Again note that we’re not running tests in this control method. If the connect fails, throw
an exception.

PERFORMANCE

With Test::Class::Load, you can run all of your test class tests in one process:

use Test::Class::Load qw(path/to/tests);

That loads the tests and all modules you’re testing once. This can be a huge perfor-
mance boost if you’re loading "heavy" modules such as Catalyst or DBIx::Class.
However, be aware that you’re now loading all classes in a single process and there are
potential drawbacks here. For example, if one of your classes alters a singleton or global
variable that another class depends on, you may get unexpected results. Also, many
classes load modules which globally alter Per l’s behavior. You can grep through your
CPAN modules for UNIVERSAL:: or CORE::GLOBAL:: to see just how many classes
do this.

Bugs involving global state changes can be ver y hard to track down. You will have to
decide for yourself whether the benefits of Test::Class outweigh these drawbacks.
My exper ience is that these bugs are usually ver y painful to resolve, but in finding them,
I often find intermittant problems in my code bases that I could not have found any other
way. For me, Test::Class is a win here, despite occasional frustration.

For those who prefer not to run all of their code in a single process, they often create
separate "driver" tests for them:

- 28 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

#!/usr/bin/env perl -T

use MyTest::Person;

Test::Class->runtests;

And:

#!/usr/bin/env perl -T

use MyTest::Person::Employee;

Test::Class->runtests;

Of course, you should omit the call to runtests if you’ve included this in your base
class INIT.

MAKING YOUR CLASSES BEHAVE LIKE XUNIT CLASSES

In xUnit style tests, this is an entire test:

sub first_name : Tests(tests => 3) {

my $test = shift;

my $person = $test->class->new;

can_ok $person, ’first_name’;

ok !defined $person->first_name,

’... and first_name should start out undefined’;

$person->first_name(’John’);

is $person->first_name, ’John’, ’... and setting its value should succeed’;

}

In the TAP wor ld, we would look at this as three tests, but xUnit says we have three
asser ts to validate one feature, thus we have one test. Now TAP-based tests have a
long way to go before wor king for xUnit users, but there’s one thing we can do. Let’s say
that you have a test with 30 asserts and the four th asser t fails. Many xUnit programmers
argue that once an assert fails, the rest of the infor mation in the test is unreliable. Thus,
the tests should be halted. Now regardless of whether or not you agree with this (I hate
the fact that, for example, junit requires the test method to stop), you can get this behav-
ior with Test::Class. Just use Test::Most instead of Test::More and put this in

- 29 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

your test base class:

BEGIN { $ENV{DIE_ON_FAIL} = 1 }

Because each test method in Test::Class is wrapped in an eval, that test method will
stop running, the appropriate teardown method (if any) will execute and the tests will
resume with the next test method.

I’m not a huge fan of this technique, but your mileage may var y.

- 30 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

CONCLUSION

While many projects are just fine using simple Test::More programs, larger projects
can wind up with scalability problems. Test::Class gives you better opportunities for
managing your tests, refactor ing common code and having your test code better mirror
your production code.

Here’s a quick summar y of tips listed above:

• Name your test classes consistently after the classes they’re testing.
• When possible, do the same for your test methods.
• Don’t use a constructor test named new.
• Don’t put your tests in the Test:: namespace.
• Create your own Test::Class base class.
• Abstract the the name of the class you’re testing into a class method in your base

class.
• Name test control methods after their attribute.
• Decide case-by-case whether to call a control method’s parent method.
• Don’t put tests in your test control methods.

- 31 -

Cur tis "Ovid" Poe TEST::CLASS BEST PRACTICES

ACKNOWLEDGMENTS

Thanks to Adrian Howard for creating the Test::Class module and providing me with
tips in making it easier to use. Also, David Wheeler provided some useful comments,
but that was on a first draft written years ago. I wonder if he remembers? :)

- 32 -

