Perl Programmers Reference Guide

Perl Version 5.004 BETA
23—Mar—1997

"There’s more than one way to do it."
—— Larry Wall, Author of the Perl Programming Language

Author: Perl5-Porters@perl.org

blank

perl Perl Programmers Reference Guide perl
NAME

perl — Practical Extraction and Report Language
SYNOPSIS

perl [-sTuU]
[-hv][-V[:configval]
[—cw] [—d[:debuggef] [-D[number/lis}]
[-pna][—Fpattern] [—I[octall] [—O[octal|]
[-Idir][=-m[-]module] [-M[-]'module...’]
[-P]
[-S]
[—x[dir]]
[—i[extensioh]
[—e‘command’] [—] [programfile] [argument]...

For ease of access, the Perl manual has been split up into a number of sections:

perl
perldelta
perlfaq

perldata
perlsyn
perlop
perlre
perlrun
perlfunc
perlvar
perlsub
perimod
perlform
perllocale

perlref
perldsc
perllol
perltoot
perlobj
perltie
perlbot
perlipc

perldebug
perldiag
perlsec
perltrap
perlstyle

perlpod
perlbook

perlembed
perlapio
perlxs
perixstut
perlguts
perlcall

Perl overview (this section)
Perl changes since previous version
Perl frequently asked questions

Perl data structures

Perl syntax

Perl operators and precedence
Perl regular expressions
Perl execution and options
Perl builtin functions
Perl predefined variables
Perl subroutines

Perl modules
Perl formats

Perl locale support

Perl references
Perl data structures intro
Perl data structures: lists of lists
Perl OO tutorial
Perl objects
Perl objects hidden behind simple variables
Perl OO tricks and examples
Perl interprocess communication

Perl debugging
Perl diagnostic messages
Perl security
Perl traps for the unwary
Perl style guide

Perl plain old documentation
Perl book information

Perl how to embed perl in your C or C++ app
Perl internal 10 abstraction interface

Perl XS application programming interface
Perl XS tutorial
Perl internal functions for those doing extensions
Perl calling conventions from C

23-Mar-1997

Perl Version 5.004 BETA

perl

Perl Programmers Reference Guide perl

(If you're intending to read these straight through for the first time, the suggested order will tend to reduce
the number of forward references.)

Additional documentation for Perl modules is available in/tie/local/man/ directory. Some of this is
distributed standard with Perl, but you'll also find third—party modules there. You should be able to view
this with your man(1) program by including the proper directories in the appropriate start-up files. To find
out where these are, type:

perl =V:man.dir

If the directories wergusr/local/man/manl and /ust/local/man/man3 you would need to add only
/usr/local/manto your MANPATH. If they are different, you'll have to add both stems.

If that doesn't work for some reason, you can still use the suppkedoc script to view module
information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you‘re not sure where you should look for help,
try the—w switch first. It will often point out exactly where the trouble is.

DESCRIPTION

Perl is a language optimized for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information. It's also a good language for many system management tasks.
The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant,
minimal).

Perl combines (in the author‘s opinion, anyway) some of the best featuresexf @yk, andsh, so people

familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh Pascal, and even BASIC-PLUS.) Expression syntax corresponds quite closely to C
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if you‘ve

got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And
the tables used by hashes (previously called "associative arrays") grow as necessary to prevent degraded
performance. Perl uses sophisticated pattern matching techniques to scan large amounts of data very
quickly. Although optimized for scanning text, Perl can also deal with binary data, and can make dbm files
look like hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which
prevents many stupid security holes.

If you have a problem that would ordinarily used or awk or sh, but it exceeds their capabilities or must
run a little faster, and you don'‘t want to write the silly thing in C, then Perl may be for you. There are also
translators to turn yowsedandawk scripts into Perl scripts.

But wait, there's more...
Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

e Many usability enhancements

It is now possible to write much more readable Perl code (even within regular expressions).
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages are more
informative, and the optional warnings will catch many of the mistakes a novice might make. This
cannot be stressed enough. Whenever you get mysterious behavior,-tny givtch!!! Whenever

you don‘t get mysterious behavior, try using anyway.

e Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rules have
been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all old Perl
scripts will continue to work unchanged.

e Lexical scoping
Perl variables may now be declared within a lexical scope, like "auto” variables in C. Not only is this
more efficient, but it contributes to better privacy for "programming in the large". Anonymous
subroutines exhibit deep binding of lexical variables (closures).

Perl Version 5.004 BETA 23—-Mar-1997

perl

Perl Programmers Reference Guide perl

e Arbitrarily nested data structures
Any scalar value, including any array element, may now contain a reference to any other variable or
subroutine. You can easily create anonymous variables and subroutines. Perl manages your
reference counts for you.

e Modularity and reusability
The Perl library is now defined in terms of modules which can be easily shared among various
packages. A package may choose to import all or a portion of a module's published interface.
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

e Object-oriented programming
A package can function as a class. Dynamic multiple inheritance and virtual methods are supported
in a straightforward manner and with very little new syntax. Filehandles may now be treated as
objects.

e Embeddable and Extensible
Perl may now be embedded easily in your C or C++ application, and can either call or be called by
your routines through a documented interface. The XS preprocessor is provided to make it easy to
glue your C or C++ routines into Perl. Dynamic loading of modules is supported, and Perl itself can
be made into a dynamic library.

e POSIX compliant
A major new module is the POSIX module, which provides access to all available POSIX routines
and definitions, via object classes where appropriate.

e Package constructors and destructors
The new BEGIN and END blocks provide means to capture control as a package is being compiled,
and after the program exits. As a degenerate case they work just like awk's BEGIN and END when
you use the-p or —n switches.

e Multiple simultaneous DBM implementations
A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from the
same script simultaneously. In fact, the old dbmopen interface has been generalized to allow any
variable to be tied to an object class which defines its access methods.

e Subroutine definitions may now be autoloaded
In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for undefined
subroutine calls. It's not for just autoloading.

e Regular expression enhancements
You can now specify non—greedy quantifiers. You can now do grouping without creating a
backreference. You can now write regular expressions with embedded whitespace and comments for
readability. A consistent extensibility mechanism has been added that is upwardly compatible with
all old regular expressions.

e Innumerable Unbundled Modules
The Comprehensive Perl Archive Network describggeirmodcontains hundreds of plug—and-play
modules full of reusable code. Sa#://www.perl.com/CPANor a site near you.

e Compilability
While not yet in full production mode, a working perl-to—C compiler does exist. It can generate
portable bytecode, simple C, or optimized C code.

Okay, that'sdefinitelyenough hype.

23—-Mar-1997 Perl Version 5.004 BETA 5

perl Perl Programmers Reference Guide perl

ENVIRONMENT
Seeperlrun.

AUTHOR
Larry Wall darry@wall.org with the help of oodles of other folks.

FILES

"ftmp/perl-e$$" temporary file for -e commands
"@INC" locations of perl libraries

SEE ALSO
azp awk to perl translator
s2p sed to perl translator

DIAGNOSTICS
The-w switch produces some lovely diagnostics.

Seeperldiagfor explanations of all Perl‘s diagnostics.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In the case of a script passed to Pexlswiiches, eacke is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure dependency".
Seeperlsec

Did we mention that you should definitely consider using-theswitch?
BUGS

The-w switch is not mandatory.

Perl is at the mercy of your machine's definitions of various operations such as type e#st{hg, , and
sprintf() . The latter can even trigger a core dump when passed ludicrous input values.

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn't apply teysread() andsyswrite() .)

While none of the built—in data types have any arbitrary size limits (apart from memory size), there are still a
few arbitrary limits: a given variable name may not be longer than 255 characters, and no component of
your PATH may be longer than 255 if you us8 A regular expression may not compile to more than
32767 bytes internally.

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orfrl -V) to <perlbug@perl.comlf you've succeeded in compiling
perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don't tell anyone | said that.

NOTES

The Perl motto is "There's more than one way to do it." Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

6 Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

NAME
perldelta — what's new for perl5.004

DESCRIPTION

This document describes differences between the 5.003 release (as documdegiamming Perl
second edition—the Camel Book) and this one.

Supported Environments
Perl5.004 builds out of the box on Unix, Plan9, LynxOS, VMS, 0S/2, QNX, and AmigaOS.

Core Changes
Most importantly, many bugs were fixed. See@mangesfile in the distribution for details.

Compilation Option: Binary Compatibility With 5.003
There is a new Configure question that asks if you want to maintain binary compatibility with Perl 5.003. If
you choose binary compatibility, you do not have to recompile your extensions, but you might have symbol
conflicts if you embed Perl in another application, just as in the 5.003 release. By default, binary
compatibility is preserved at the expense of symbol table pollution.

No Autovivification of Subroutine Parameters

In Perl versions 5.002 and 5.003, array and hash elements used as subroutine parameters were "autovivified";
that is, they were brought into existence if they did not already exist. For example, calling
func($h{foo}) would create$h{foo} if it did not already exist, causingxists $h{foo} to

become true ankieys %h to return(‘foo’)

Perl 5.004 returns to the pre-5.002 behavianaifautovivifying array and hash elements used as subroutine
parameters.

Fixed Parsing of $$<digit , &$<digit , etc.
A bug in previous versions of Perl 5.0 prevented proper parsing of numeric special variables as symbolic

references. That bug has been fixed. As a result, the sBH@J "is no longer equivalent $$."0", but
rather to${$0}. To get the old behavior, chande$" followed by a digit to ${$}".

No Resetting of $. on Implicit Close

The documentation for Perl 5.0 has always stated®has not reset when an already—open file handle is
re—opened with no intervening call¢tose . Due to a bug, perl versions 5.000 through 5.@003eset$.
under that circumstance; Perl 5.004 does not.

Changes to Tainting Checks

A bug in previous versions may have failed to detect some insecure conditions when taint checks are turned
on. (Taint checks are used in setuid or setgid scripts, or when explicitly turned on wifh itheocation

option.) Although it's unlikely, this may cause a previously—working script to now fail — which should be
construed as a blessing, since that indicates a potentially—serious security hole was just plugged.

New Opcode Module and Revised Safe Module

A new Opcode module supports the creation, manipulation and application of opcode masks. The revised
Safe module has a new API and is implemented using the new Opcode module. Please read the new Opcode
and Safe documentation.

Embedding Improvements

In older versions of Perl it was not possible to create more than one Perl interpreter instance inside a single
process without leaking like a sieve and/or crashing. The bugs that caused this behavior have all been fixed.
However, you still must take care when embedding Perl in a C program. See the updated perlembed
manpage for tips on how to manage your interpreters.

23—-Mar-1997 Perl Version 5.004 BETA 7

perldelta Perl Programmers Reference Guide perldelta

Internal Change: FileHandle Class Based on 10::* Classes

File handles are now stored internally as type 10::Handle. The FileHandle module is still supported for
backwards compatibility, but it is now merely a front end to the 10::* modules — specifically, 10::Handle,
10::Seekable, and 10::File. We suggest, but do not require, that you use the 10::* modules in new code.

In harmony with this change!GLOB{FILEHANDLE} is now a backward—-compatible synonym for
*STDOUT{IO} .

Internal Change: PerllO internal 10 abstraction interface
It is now possible to build Perl with AT's sfio 10 package instead of stdio. Swerlapio for more
details, and th&NSTALL file for how to use it.

New and Changed Built-in Variables

$7E Extended error message on some platforms. (Also knoEdFENDED OS_ERRGORyou use
English).

$"H The current set of syntax checks enabledisy strict . See the documentation sifict for
more details. Not actually new, but newly documented. Because it is intended for internal use by Perl
core components, there is nge English long name for this variable.

$"M By default, running out of memory it is not trappable. However, if compiled for this, Perl may use the
contents of$"M as an emergency pool aftdie() ing with this message. Suppose that your Perl
were compiled with —-DEMERGENCY_SBRK and used Perl‘'s malloc. Then

$"M ='a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. SE®N®BIEALL file for information on how
to enable this option. As a disincentive to casual use of this advanced feature, thengsés no
English long name for this variable.

New and Changed Built-in Functions

delete on slices
This now works. (e.glelete @ENV{'PATH', ‘MANPATH'})

flock
is now supported on more platforms, prefers fcntl to lockf when emulating, and always flushes before
(un)locking.

printf and sprintf

now support "%i" as a synonym for "%d", and the "h" modifier. So "%hi" means "short integer in
decimal”, and "%ho" means "unsigned short integer as octal".

keys as an Ivalue

As an lvaluekeys allows you to increase the number of hash buckets allocated for the given hash.
This can gain you a measure of efficiency if you know the hash is going to get big. (This is similar to
pre—extending an array by assigning a larger numk&#aaray.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it. These buckets will be retained even if you
do %hash = () ; useundef %hash if you want to free the storage whiléhash is still in scope.

You can‘t shrink the number of buckets allocated for the hash keygg in this way (but you needn‘t
worry about doing this by accident, as trying has no effect).

my() in Control Structures

You can now useamy() (with or without the parentheses) in the control expressions of control
structures such as:

while (defined(my $line = <>)) {

8 Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

$line = Ic $line;
} continue {

print $line;
}

if ((my $answer = <STDIN>) =~ /*y(es)?$/i) {
user_agrees();
} elsif ($answer =~ /*n(0)?%/i) {
user_disagrees();
}else {
chomp $answer;
die "$answer’ is neither ‘yes’ nor ‘no™;
}
Also, you can declare a foreach loop control variable as lexical by preceding it with the word "my".
For example, in:

foreach my $i (1, 2, 3) {
some_function();

}

$i is a lexical variable, and the scopebofextends to the end of the loop, but not beyond it.
Note that you still cannot usey() on global punctuation variables suctbasand the like.

unpack() and pack()
A new format ‘W’ represents a BER compressed integer (as defined in ASN.1). Its format is a
sequence of one or more bytes, each of which provides seven bits of the total value, with the most
significant first. Bit eight of each byte is set, except for the last byte, in which bit eight is clear.

use VERSION
If the first argument toise is a number, it is treated as a version number instead of a module name. If
the version of the Perl interpreter is less than VERSION, then an error message is printed and Perl
exits immediately. Becausese occurs at compile time, this check happens immediately during the
compilation process, unlikeequire VERSION , which waits until run—time for the check. This is
often useful if you need to check the current Perl version bek®éng library modules which have
changed in incompatible ways from older versions of Perl. (We try not to do this more than we have
to.)

use Module VERSION LIST
If the VERSION argument is present between Module and LIST, tharsthevill call the VERSION
method in class Module with the given version as an argument. The default VERSION method,
inherited from the Universal class, croaks if the given version is larger than the value of the variable
$Module::VERSION. (Note that there is not a comma after VERSION!)

This version—checking mechanism is similar to the one currently used in the Exporter module, but it is
faster and can be used with modules that don‘t use the Exporter. It is the recommended method for
new code.

prototype(FUNCTION)
Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION is a reference to or the name of the function whose prototype you want to retrieve. (Not
actually new; just never documented before.)

srand

The default seed fasrand , which used to béime , has been changed. Now it's a heady mix of
difficult—-to—predict system—-dependent values, which should be sufficient for most everyday purposes.

Previous to version 5.004, callingnd without first callingsrand would yield the same sequence of
random numbers on most or all machines. Now, when perl sees that you're reedtingand haven't

23—-Mar-1997 Perl Version 5.004 BETA 9

perldelta Perl Programmers Reference Guide perldelta

yet calledsrand , it callssrand with the default seed. You should still cedand manually if your
code might ever be run on a pre-5.004 system, of course, or if you want a seed other than the default.
$_ as Default
Functions documented in the Camel to defaultonow in fact do, and all those that do are so
documented iperlfunc
m//g does not trigger a pos() reset on failure

Them//g match iteration construct used to reset the iteration when it failed to match (so that the next
m//g match would start at the beginning of the string). You now have to explicithpde &str

= 0; to reset the "last match" position, or modify the string in some way. This change makes it
practical to chainm//g matches together in conjunction with ordinary matches using\Ghe
zero—width assertion. Seerlopandperlre.

nested sub{} closures work now
Prior to the 5.004 release, nested anonymous functions didn‘t work right. They do now.

formats work right on changing lexicals

Just like anonymous functions that contain lexical variables that change (like a lexical index variable
for aforeach loop), formats now work properly. For example, this silently failed before, and is fine

now:

my $i;

foreach $i (1..10){
format =
my i is @#
$i
write;

}

New Built—-in Methods

The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa(CLASS)
isa returnstrueif its object is blessed into a subclas€bASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to check
what a reference points to. Example:

use UNIVERSAL gw(isa);
if(isa($ref, ' ARRAY")) {
}

can(METHOD)

can checks to see if its object has a method cadE@HODIf it does then a reference to the sub is
returned; if it does not thamdefis returned.

VERSION([NEED])

VERSIONTreturns the version number of the class (package). If the NEED argument is given then it
will check that the current version (as defined by $W&RSIONvariable in the given package) not

less than NEED; it will die if this is not the case. This method is normally called as a class method.
This method is called automatically by MERSIONform of use .

use A 1.2 gw(some imported subs);
implies:

10 Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

A->VERSION(L.2);

NOTE: can directly uses Perl‘s internal code for method lookup,iaad uses a very similar method and
caching strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not nesel to
UNIVERSALIn order to make these methods available to your program. This is necessary only if you wish
to haveisa available as a plain subroutine in the current package.

TIEHANDLE Now Supported
Seeperltie for other kinds ofie() s.

TIEHANDLE classname, LIST

This is the constructor for the class. That means it is expected to return an object of some sort. The
reference can be used to hold some internal information.

sub TIEHANDLE {
print "<shout>\n";
my $i;
return bless \$i, shift;

}

PRINT this, LIST

This method will be triggered every time the tied handle is printed to. Beyond its self reference it also
expects the list that was passed to the print function.

sub PRINT {
$r = shift;
$r++;
return print join($, => map {uc} @_), $\;
}
READ this LIST
This method will be called when the handle is read from viagthe orsysread functions.

sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=Soffset";

}
READLINE this

This method will be called when the handle is read from. The method should return undef when there
iS no more data.

sub READLINE {
$r = shift;
return "PRINT called $$r times\n"
}
GETC this
This method will be called when tigetc function is called.

sub GETC { print "Don’t GETC, Get Perl"; return "a";

DESTROY this

As with the other types of ties, this method will be called when the tied handle is about to be destroyed.
This is useful for debugging and possibly for cleaning up.

23—-Mar-1997 Perl Version 5.004 BETA 11

perldelta Perl Programmers Reference Guide perldelta

sub DESTROY {
print "</shout>\n";

}

Malloc Enhancements

Four new compilation flags are recognized by malloc.c. (They have no effect if perl is compiled with system
malloc())

—-DDEBUGGING_MSTATS

If perl is compiled wittDEBUGGING_MSTAT&fined, you can print memory statistics at runtime by
running Perl thusly:

env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on exit; with a value of 1, the statistics
ares printed only on exit. (If you want the statistics at an arbitrary time, you'll need to install the
optional module Devel::Peek.)

-DEMERGENCY_SBRK

If this macro is defined, running out of memory need not be a fatal error: a memory pool can allocated
by assigning to the special varia§teM. See'$'M".

-DPACK_MALLOC

Perl memory allocation is by bucket with sizes close to powers of two. Because of these malloc
overhead may be big, especially for data of size exactly a power of tRéACK_MALLOG defined,

perl uses a slightly different algorithm for small allocations (up to 64 bytes long), which makes it
possible to have overhead down to 1 byte for allocations which are powers of two (and appear quite
often).

Expected memory savings (with 8-byte alignmenalignbytes) is about 20% for typical Perl
usage. Expected slowdown due to additional malloc overhead is in fractions of a percent (hard to
measure, because of the effect of saved memory on speed).

-DTWO_POT_OPTIMIZE

Similarly to PACK_MALLOCthis macro improves allocations of data with size close to a power of
two; but this works for big allocations (starting with 16K by default). Such allocations are typical for
big hashes and special-purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M allocation will not affect speed
of execution, since the tail of such a chunk is not going to be touched (and thus will not require real
memory). However, it may result in a premature out—of-memory error. So if you will be manipulating
very large blocks with sizes close to powers of two, it would be wise to define this macro.

Expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks); expected slowdown is negligible.

Miscellaneous Efficiency Enhancements

Functions that have an empty prototype and that do nothing but return a fixed value are now inlined (e.g.
sub PI () {3.14159}).

Each unique hash key is only allocated once, no matter how many hashes have an entry with that key. So
even if you have 100 copies of the same hash, the hash keys never have to be reallocated.

Pragmata

Four new pragmatic modules exist:

use blib

use blib ‘dir’
Looks for MakeMaker-likeblib’ directory structure starting iir (or current directory) and working
back up to five levels of parent directories.

12

Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

Intended for use on command line with option as a way of testing arbitrary scripts against an
uninstalled version of a package.

use locale
Tells the compiler to enable (or disable) the use of POSIX locales for built-in operations.
Whenuse locale is in effect, the current LC_CTYPE locale is used for regular expressions and
case mapping; LC_COLLATE for string ordering; and LC_NUMERIC for numeric formating in printf

and sprintf (bunot in print). LC_NUMERIC is always used in write, since lexical scoping of formats
is problematic at best.

Eachuse locale orno locale affects statements to the end of the enclosing BLOCK or, if not
inside a BLOCK, to the end of the current file. Locales can be switched and queried with
POSIX::setlocale()

Seeperllocalefor more information.

use ops
Disable unsafe opcodes, or any named opcodes, when compiling Perl code.

use vmsish

Enable VMS-specific language features. Currently, there are three VMS-specific features available:
‘status’, which make$? andsystem return genuine VMS status values instead of emulating POSIX;
‘exit’, which makesexit take a genuine VMS status value instead of assumingxitat is an

error; and ‘time’, which makes all times relative to the local time zone, in the VMS tradition.

Modules

Installation Directories

The installperl script now places the Perl source files for extensions in the architecture—specific library
directory, which is where the shared libraries for extensions have always been. This change is intended to
allow administrators to keep the Perl 5.004 library directory unchanged from a previous version, without
running the risk of binary incompatibility between extensions’ Perl source and shared libraries.

Fentl
New constants in the existing Fcntl modules are now supported, provided that your operating system
happens to support them:

F_GETOWN F_SETOWN
O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC
O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl opesteopen() and fentl() and the basic
database modules like SDBM_File. For the exact meaning of these and other Fcntl constants please refer to
your operating system's documentation fiontl() andopen() .

In addition, the Fcntl module now provides these constants for use with the Perl dimsriafpr
LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where therflogkfjo system call, Perl
emulates it). However, for historical reasons, these constants are not exported unless they are explicitly
requested with the ":flock" tag (eugse Fcntl “:flock’).

Module Information Summary
Brand new modules, arranged by topic rather than strictly alphabetically:

CPAN interface to Comprehensive Perl Archive Network
CPAN::FirstTime create a CPAN configuration file
CPAN::Nox run CPAN while avoiding compiled extensions

23—-Mar-1997 Perl Version 5.004 BETA 13

perldelta Perl Programmers Reference Guide perldelta

10.pm Top-level interface to 10::* classes

IO/File.pm |O::File extension Perl module

IO/Handle.pm 10::Handle extension Perl module

IO0/Pipe.pm 10::Pipe extension Perl module

I0/Seekable.pm 10::Seekable extension Perl module
I0/Select.pm 10::Select extension Perl module

I0/Socket.pm 10::Socket extension Perl module

Opcode.pm Disable named opcodes when compiling Perl code

ExtUtils/Embed.pm Utilities for embedding Perl in C programs
ExtUtils/testlib.pm Fixes up @INC to use just-built extension

FindBin.pm Find path of currently executing program

Class/Template.pm Structure/member template builder

File/stat.pm Object-oriented wrapper around CORE::stat
Net/hostent.pm Object-oriented wrapper around CORE::gethost*
Net/netent.pm Object-oriented wrapper around CORE::getnet*
Net/protoent.pm Object-oriented wrapper around CORE::getproto*
Net/servent.pm Object-oriented wrapper around CORE::getserv*
Time/gmtime.pm Object-oriented wrapper around CORE::gmtime
Time/localtime.pm Object-oriented wrapper around CORE::localtime
Time/tm.pm Perl implementation of "struct tm" for {gm,local}time
User/grent.pm Object-oriented wrapper around CORE::getgr*
User/pwent.pm Object-oriented wrapper around CORE::getpw*

Tie/RefHash.pm Base class for tied hashes with references as keys

UNIVERSAL.pm Base class for *ALL* classes

The 10 module provides a simple mechanism to load all of the IO modules at one go.

includes:

I0::Handle
10::Seekable
10::File
10::Pipe
10::Socket

For more information on any of these modules, please see its respective documentation.

Math::Complex
The Math::Complex module has been totally rewritten, and now supports more operations. These are

overloaded:
+ — * [** <=> neg ~ abs sqrt exp log sin cos atan2 " (stringify)
And these functions are now exported:

pii Re Im arg

log10 logn cbrt root

tan cotan asin acos atan acotan

sinh cosh tanh cotanh asinh acosh atanh acotanh
cplx cplxe

DB_File

There have been quite a few changes made to DB_File. Here are a few of the highlights:

Currently this

14

Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

° Fixed a handful of bugs.

° By public demand, added support for the standard hash furotiists()
° Made it compatible with Berkeley DB 1.86.

° Made negative subscripts work with RECNO interface.

° Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default mode from 0640 to
0666.

° Made DB_File automatically import tlepen() constants (O_RDWR, O_CREAT etc.) from Fcntl, if
available.

° Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of changes. Everything after DB_File 1.01
has been added since 5.003.

Net::Ping
Major rewrite — support added for both udp echo and real icmp pings.

Overridden Built-ins
Many of the Perl built-ins returning lists now have object-oriented overrides. These are:

File::stat
Net::hostent
Net::netent
Net::protoent
Net::servent
Time::gmtime
Time::localtime
User::grent
User::pwent

For example, you can now say

use File::stat;
use User::pwent;
$his = (stat($filename)—>st_uid == pwent($whoever)->pw_uid);

Utility Changes
xsubpp

void XSUBs now default to returning nothing
Due to a documentation/implementation bug in previous versions of Perl, XSUBs with a return type of
void have actually been returning one value. Usually that value was the GV for the XSUB, but
sometimes it was some already freed or reused value, which would sometimes lead to program failure.

In Perl 5.004, if an XSUB is declared as returniog , it actually returns no value, i.e. an empty list
(though there is a backward—compatibility exception; see below). If your XSUB really does return an
SV, you should give it a return type 8 * .

For backward compatibilitygsubpptries to guess whethewvaid XSUB is reallyvoid or if it wants
to return arSV * . It does so by examining the text of the XSUBxstibppfinds what looks like an
assignment t&T(0) , it assumes that the XSUB's return type is re@Ny* .

C Language API Changes

gv_fetchmethod and perl_call_sv

The gv_fetchmethod function finds a method for an object, just like in Perl 5.003. The GV it
returns may be a method cache entry. However, in Perl 5.004, method cache entries are not visible to

23—-Mar-1997 Perl Version 5.004 BETA 15

perldelta Perl Programmers Reference Guide perldelta

users; therefore, they can no longer be passed diregibritacall_sv . Instead, you should use the
GvCVmacro on the GV to extract its CV, and pass the Qpetb call_sv

The most likely symptom of passing the resulgef fetchmethod to perl_call_sv is Perl's
producing an "Undefined subroutine called" error onseondcall to a given method (since there is
no cache on the first call).

Extended API for manipulating hashes

Internal handling of hash keys has changed. The old hashtable API is still fully supported, and will
likely remain so. The additions to the API allow passing keyS\&s, so thatied hashes can be

given real scalars as keys rather than plain strings (non-tied hashes still can only use strings as keys).
New extensions must use the new hash access functions and macros if they wisB\d ksegs.

These additions also make it feasible to maniputdgs (hash entries), which can be more efficient.
Seeperlgutsfor details.

Documentation Changes
Many of the base and library pods were updated. These new pods are included in section 1:

perldelta
This document.

perllocale
Locale support (internationalization and localization).

peritoot
Tutorial on Perl OO programming.

perlapio
Perl internal 10 abstraction interface.

perldebug
Although not new, this has been massively updated.

perlsec
Although not new, this has been massively updated.

New Diagnostics

Several new conditions will trigger warnings that were silent before. Some only affect certain platforms.
The following new warnings and errors outline these. These messages are classified as follows (listed in
increasing order of desperation):

(W) A warning (optional).

(D) A deprecation (optional).

(S) A severe warning (mandatory).

(F) A fatal error (trappable).

(P) An internal error you should never see (trappable).
(X) A very fatal error (non—trappable).

(A) An alien error message (not generated by Perl).

"my" variable %s masks earlier declaration in same scope

(S) A lexical variable has been redeclared in the same scope, effectively eliminating all access to the
previous instance. This is almost always a typographical error. Note that the earlier variable will still
exist until the end of the scope or until all closure referents to it are destroyed.

%s argument is not a HASH element or slice
(F) The argument tdelete() = must be either a hash element, such as

$foo{$bar}
$ref->[12]->{"susie"

16 Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

or a hash slice, such as

@foo{$bar, $baz, $xyzzy}
@{$ref->[12]H{"susie", "queue"}
Allocation too large: %lx
(X) You can't allocate more than 64K on an MSDOS machine.

Allocation too large
(F) You can't allocate more than 2731+"small amount" bytes.

Attempt to free non—existent shared string
(P) Perl maintains a reference counted internal table of strings to optimize the storage and access of
hash keys and other strings. This indicates someone tried to decrement the reference count of a string
that can no longer be found in the table.

Attempt to use reference as Ivalue in substr
(W) You supplied a reference as the first argumerstutastr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first.sGestt

Unsupported function fork
(F) Your version of executable does not support forking.
Note that under some systems, like OS/2, there may be different flavors of Perl executables, some of
which may support fork, some not. Try changing the name you call Perlgeyrlto , perl__ , and
S0 on.

llI-formed logical name |%s]| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Since it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce non—-standard names, or it
may indicate that a logical name table has been corrupted.

Can't use bareword ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowgerii®ée

Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsubr commentary and workarounds.

Died
(F) You passedie() an empty string (the equivalent die
both$@and$_ were empty.

) or you called it with no args and

Integer overflow in hex number
(S) The literal hex number you have specified is too big for your architecture. On a 32-bit architecture
the largest hex literal is OXFFFFFFFF.

Integer overflow in octal number
(S) The literal octal number you have specified is too big for your architecture. On a 32-bit
architecture the largest octal literal is 037777777777.

Name "%s::%s" used only once: possible typo

(W) Typographical errors often show up as unique variable names. If you had a good reason for having
a unigue name, then just mention it again somehow to suppress the message Ydrs pragma
is provided for just this purpose).

23—-Mar-1997 Perl Version 5.004 BETA 17

perldelta Perl Programmers Reference Guide perldelta

Null picture in formline

(F) The first argument to formline must be a valid format picture specification. It was found to be
empty, which probably means you supplied it an uninitialized value p&#erm

Offset outside string

(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer. This is
difficult to imagine. The sole exception to this is thgsread() ing past the buffer will extend the
buffer and zero pad the new area.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’

(P) Overloading resolution over @ISA tree may be broken by importing stubs. Stubs should never be
implicitely created, but explicit calls wan may break this.

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘s’
(P) Internal error trying to resolve overloading specified by a method name (as opposed to a subroutine
reference).

Out of memory!
(X|F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way Perl was compiled.
By default it is not trappable. However, if compiled for this, Perl may use the contebitd afs an
emergency pool aftetie() ing with this message. In this case the error is trapuesitie

Out of memory during request for %s
(F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request. However, the request was judged large enough (compile-time
default is 64K), so a possibility to shut down by trapping this error is granted.

Possible attempt to put comments in gw() list
(W) gw() lists contain items separated by whitespace; as with literal strings, comment characters are
not ignored, but are instead treated as literal data. (You may have used different delimiters than the
exclamation marks parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

@list = qw(
a# acomment
b # another comment

)i
when you should have written this:
@list = qw(
a
b
)i
If you really want comments, build your list the old—fashioned way, with quotes and commas:
@list = (

‘a’, #acomment
'b’, # another comment

)i
Possible attempt to separate words with commas

(W) gw() lists contain items separated by whitespace; therefore commas aren‘t needed to separate the
items. (You may have used different delimiters than the parentheses shown here; braces are also

18

Perl Version 5.004 BETA 23—-Mar-1997

perldelta Perl Programmers Reference Guide perldelta

frequently used.)
You probably wrote something like this:
gw!a, b, cl;

which puts literal commas into some of the list items. Write it without commas if you don‘t want them
to appear in your data:

gw!'abcl;

Scalar value @%s{%s} better written as $%s{%s}

(W) You've used a hash slice (indicated by @) to select a single element of a hash. Generally it's
better to ask for a scalar value (indicatedbhy The difference is tha@ifoo{&bar} always behaves

like a scalar, both when assigning to it and when evaluating its argument, @fol&&bar}

behaves like a list when you assign to it, and provides a list context to its subscript, which can do weird
things if you're expecting only one subscript.

untie attempted while %d inner references still exist
(W) A copy of the object returned frotie (ortied) was still valid whemuntie was called.

Value of %s construct can be "0"; test with defined()

(W) In a conditional expression, you used <HANDLE, <* (glob)remddir = as a boolean value.

Each of these constructs can return a value of "0"; that would make the conditional expression false,
which is probably not what you intended. When using these constructs in conditional expressions, test
their values with thelefined operator.

Variable "%s" may be unavailable

(W) An inner (nestedqnonymousubroutine is inside mamedsubroutine, and outside that is another
subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable defined in the
outermost subroutine. For example:

sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or referenced (directly or indirectly) from the outermost
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is called or
referenced when the outermost subroutine is not active, it will see the value of the shared variable as it
was before and during the *first* call to the outermost subroutine, which is probably not what you
want.

In these circumstances, it is usually best to make the middle subroutine anonymous, ssibd}jthe
syntax. Perl has specific support for shared variables in nested anonymous subroutines; a named
subroutine in between interferes with this feature.

Variable "%s" will not stay shared

(W) An inner (nested)hamed subroutine is referencing a lexical variable defined in an outer
subroutine.

When the inner subroutine is called, it will probably see the value of the outer subroutine's variable as
it was before and during the *first* call to the outer subroutine; in this case, after the first call to the
outer subroutine is complete, the inner and outer subroutines will no longer share a common value for
the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itself, then
the outer and inner subroutines witvershare the given variable.

This problem can usually be solved by making the inner subroutine anonymous, usob the
syntax. When inner anonymous subs that reference variables in outer subroutines are called or
referenced, they are automatically re—bound to the current values of such variables.

23—-Mar-1997 Perl Version 5.004 BETA 19

perldelta Perl Programmers Reference Guide perldelta

Warning: something's wrong

(W) You passedvarn() an empty string (the equivalent whrn
and$_ was empty.

) or you called it with no args

Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you're using an obsolete version of Perl, and this should
not happen anyway.

Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

prefix1;prefix2
or
prefix1 prefix2

with non—-empty prefixl and prefix2. grefix1 is indeed a prefix of a builtin library search path,
prefix2 is substituted. The error may appear if components are not found, or are too long. See
PERLLIB_PREFIX in perlos2

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find gsheshell in. See
PERL_SH_DIR in perlos2

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix applications die in silence. It is
considered a feature of the OS/2 port. One can easily disable this by appropriate sighandlers, see
Signals in perlipc SeeProcess terminated by SIGTERM/SIGINT in perlos2

BUGS

If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/, the Perl Home
Page.

If you believe you have an unreported bug, please rurpéhnbug program included with your release.
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl =V , will be sent off to perlbug@perl.conto be analysed by the Perl porting team.

SEE ALSO
The Changesfile for exhaustive details on what changed.

TheINSTALL file for how to build Perl. This file has been significantly updated for 5.004, so even veteran
users should look through it.

The README file for general stuff.
The Copyingfile for copyright information.

HISTORY

Constructed by Tom Christiansen, grabbing material with permission from innumerable contributors, with
kibitzing by more than a few Perl porters.

Last update: Sat Mar 8 19:51:26 EST 1997

20 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq Perl Programmers Reference Guide perlfaq

NAME
perlfag - frequently asked questions about Fbfe: 1997/03/17 22:17:58)

DESCRIPTION
This document is structured into the following sections:

perlfaq: Structural overview of the FAQ.
This document.

perlfaql: General Questions About Perl
Very general, high—level information about Perl.

perlfaq2: Obtaining and Learning about Perl
Where to find source and documentation to Perl, support and training, and related matters.

perlfaq3: Programming Tools
Programmer tools and programming support.

perlfaqg4: Data Manipulation
Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data issues.

perifag5: Files and Formats

I/0 and the "f" issues: filehandles, flushing, formats and footers.
perifaq6: Regexps

Pattern matching and regular expressions.

perlfaq7: General Perl Language Issues
General Perl language issues that don't clearly fit into any of the other sections.

perlfag8: System Interaction
Interprocess communication (IPC), control over the user-interface (keyboard, screen and pointing
devices).

perlfaq9: Networking
Networking, the Internet, and a few on the web.

Where to get this document

This document is posted regularly to comp.lang.perl.announce and several other related newsgroups. It is
available in a variety of formats from CPAN in the /CPAN/doc/FAQs/FAQ/ directory, or on the web at
http://www.perl.com/perl/faqg/ .

How to contribute to this document
You may mail corrections, additions, and suggestions to perlfag—suggestions@perl.com. Mail sent to the old
perlfaq alias will merely cause the FAQ to be sent to you.

What will happen if you mail your Perl programming problems to the authors
Your questions will probably go unread, unless they‘re suggestions of new questions to add to the FAQ, in
which case they should have gone to the perlfag—suggestions@perl.com instead.

You should have read section 2 of this faq. There you would have learned that comp.lang.perl.misc is the
appropriate place to go for free advice. If your question is really important and you require a prompt and
correct answer, you should hire a consultant.

Credits

When | first began the Perl FAQ in the late 80s, | never realized it would have grown to over a hundred
pages, nor that Perl would ever become so popular and widespread. This document could not have been
written without the tremendous help provided by Larry Wall and the rest of the Perl Porters.

23—-Mar-1997 Perl Version 5.004 BETA 21

perlfaq Perl Programmers Reference Guide perlfaq

Author and Copyright Information
Copyright (¢) 1997 Tom Christiansen and Nathan Torkington. All rights reserved.

Non-commercial Reproduction

Permission is granted to distribute this document, in part or in full, via electronic means or printed copy
providing that (1) that all credits and copyright notices be retained, (2) that no charges beyond reproduction
be involved, and (3) that a reasonable attempt be made to use the most current version available.

Furthermore, you may include this document in any distribution of the full Perl source or binaries, in its
verbatim documentation, or on a complete dump of the CPAN archive, providing that the three stipulations
given above continue to be met.

Commercial Reproduction

Requests for all other distribution rights, including the incorporation in part or in full of this text or its code
into commercial products such as but not limited to books, magazine articles, or CD-ROMs, must be made
to perlfag-legal@perl.com. Any commercial use of any portion of this document without prior written
authorization by its authors will be subject to appropriate action.

Disclaimer

This information is offered in good faith and in the hope that it may be of use, but is not guaranteed to be
correct, up to date, or suitable for any particular purpose whatsoever. The authors accept no liability in
respect of this information or its use.

Changes

17/March/97 Version
Various typos fixed throughout.
Added new question on Perl BNF parlfag?.

Initial Release: 11/March/97
This is the initial release of version 3 of the FAQ; consequently there have been no changes since its
initial release.

22 Perl Version 5.004 BETA 23—-Mar-1997

perlfaql Perl Programmers Reference Guide perlfaql

NAME

perlfagl — General Questions About P&Révision: 1.10%)
DESCRIPTION

This section of the FAQ answers very general, high—level questions about Perl.
What is Perl?

Perl is a high—level programming language with an eclectic heritage written by Larry Wall and a cast of
thousands. It derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the
Unix shell, and at least a dozen other tools and languages. Perl's process, file, and text manipulation facilities
make it particularly well-suited for tasks involving quick prototyping, system utilities, software tools,
system management tasks, database access, graphical programming, networking, and world wide web
programming. These strengths make it especially popular with system administrators and CGI script authors,
but mathematicians, geneticists, journalists, and even managers also use Perl. Maybe you should, too.

Who supports Perl? Who develops it? Why is it free?

The original culture of the pre—populist Internet and the deeply—held beliefs of Perl's author, Larry Wall,
gave rise to the free and open distribution policy of perl. Perl is supported by its users. The core, the
standard Perl library, the optional modules, and the documentation you‘re reading now were all written by
volunteers. See the personal note at the end of the README file in the perl source distribution for more
details.

In particular, the core development team (known as the Perl Porters) are a rag—tag band of highly altruistic
individuals committed to producing better software for free than you could hope to purchase for money.
You may shoop on pending developments via news://genetics.upenn.edu/perl.porters—gw/ and
http://www.frii.com/~gnat/perl/porters/summary.html.

While the GNU project includes Perl in its distributions, there's no such thing as "GNU Perl". Perl is not
produced nor maintained by the Free Software Foundation. Perl's licensing terms are also more open than
GNU software's tend to be.

You can get commercial support of Perl if you wish, although for most users the informal support will more
than suffice. See the answer to "Where can | buy a commercial version of perl?" for more information.

Which version of Perl should | use?

You should definitely use version 5. Version 4 is old, limited, and no longer maintained. Its last patch
(4.036) was in 1992. The last production release was 5.003, and the current experimental release for those at
the bleeding edge (as of 27/03/97) is 5.003_92, considered a beta for production release 5.004, which will
probably be out by the time you read this. Further references to the Perl language in this document refer to
the current production release unless otherwise specified.

What are perl4 and perl5?

Perl4 and perl5 are informal names for different versions of the Perl programming language. It's easier to
say "perl5" than it is to say "the 5(.004) release of Perl", but some people have interpreted this to mean
there's a language called "perl5", which isn‘t the case. Perl5 is merely the popular name for the fifth major
release (October 1994), while perl4 was the fourth major release (March 1991). There was also a perll (in
January 1988), a perl2 (June 1988), and a perl3 (October 1989).

The 5.0 release is, essentially, a complete rewrite of the perl source code from the ground up. It has been
modularized, object-oriented, tweaked, trimmed, and optimized until it almost doesn‘t look like the old
code. However, the interface is mostly the same, and compatibility with previous releases is very high.

To avoid the "what language is perl5?" confusion, some people prefer to simply use "perl" to refer to the
latest version of perl and avoid using "perl5" altogether. It's not really that big a deal, though.
How stable is Perl?

Production releases, which incorporate bug fixes and new functionality, are widely tested before release.
Since the 5.000 release, we have averaged only about one production release per year.

23—-Mar-1997 Perl Version 5.004 BETA 23

perlfaql Perl Programmers Reference Guide perlfaql

Larry and the Perl development team occasionally make changes to the internal core of the language, but all
possible efforts are made toward backward compatibility. While not quite all perl4 scripts run flawlessly
under perl5, an update to perl should nearly never invalidate a program written for an earlier version of perl
(barring accidental bug fixes and the rare new keyword).

Is Perl difficult to learn?

Perl is easy to start learning — and easy to keep learning. It looks like most programming languages you‘re
likely to have had experience with, so if you‘ve ever written an C program, an awk script, a shell script, or
even an Excel macro, you're already part way there.

Most tasks only require a small subset of the Perl language. One of the guiding mottos for Perl development
is "there's more than one way to do it" (TMTOWTDI, sometimes pronounced "tim toady"). Perl's learning
curve is therefore shallow (easy to learn) and long (there's a whole lot you can do if you really want).

Finally, Perl is (frequently) an interpreted language. This means that you can write your programs and test
them without an intermediate compilation step, allowing you to experiment and test/debug quickly and
easily. This ease of experimentation flattens the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind of programming experience, an
understanding of regular expressions, and the ability to understand other people's code. If there's something
you need to do, then it's probably already been done, and a working example is usually available for free.
Don't forget the new perl modules, either. They‘re discussed in Part 3 of this FAQ, along with the CPAN,
which is discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?

Favorably in some areas, unfavorably in others. Precisely which areas are good and bad is often a personal
choice, so asking this question on Usenet runs a strong risk of starting an unproductive Holy War.

Probably the best thing to do is try to write equivalent code to do a set of tasks. These languages have their
own newsgroups in which you can learn about (but hopefully not argue about) them.

Can | do [task] in Perl?

Perl is flexible and extensible enough for you to use on almost any task, from one-line file—processing tasks
to complex systems. For many people, Perl serves as a great replacement for shell scripting. For others, it
serves as a convenient, high—level replacement for most of what they‘d program in low-level languages like
C or C++. lIt's ultimately up to you (and possibly your management ...) which tasks you'll use Perl for and
which you won't.

If you have a library that provides an API, you can make any component of it available as just another Perl
function or variable using a Perl extension written in C or C++ and dynamically linked into your main perl
interpreter. You can also go the other direction, and write your main program in C or C++, and then link in
some Perl code on the fly, to create a powerful application.

That said, there will always be small, focused, special-purpose languages dedicated to a specific problem
domain that are simply more convenient for certain kinds of problems. Perl tries to be all things to all
people, but nothing special to anyone. Examples of specialized languages that come to mind include prolog
and matlab.

When shouldn‘t | program in Perl?

When your manager forbids it — but do consider replacing them :-).

Actually, one good reason is when you already have an existing application written in another language
that's all done (and done well), or you have an application language specifically designed for a certain task
(e.g. prolog, make).

For various reasons, Perl is probably not well-suited for real-time embedded systems, low—level operating
systems development work like device drivers or context—switching code, complex multithreaded
shared—memory applications, or extremely large applications. You'll notice that perl is not itself written in
Perl.

24

Perl Version 5.004 BETA 23—-Mar-1997

perlfaql Perl Programmers Reference Guide perlfaql

The new native—code compiler for Perl may reduce the limitations given in the previous statement to some
degree, but understand that Perl remains fundamentally a dynamically typed language, and not a statically
typed one. You certainly won't be chastized if you don't trust nuclear—plant or brain—surgery monitoring
code to it. And Larry will sleep easier, too — Wall Street programs not withstanding. :-)

What's the difference between "perl" and "Perl"?

One bit. Oh, you weren't talking ASCII? :-) Larry now uses "Perl" to signify the language proper and "perl"
the implementation of it, i.e. the current interpreter. Hence Tom's quip that "Nothing but perl can parse
Perl." You may or may not choose to follow this usage. For example, parallelism means "awk and perl" and
"Python and Perl" look ok, while "awk and Perl" and "Python and perl" do not.

Is it a Perl program or a Perl script?
It doesn‘t matter.

In "standard terminology" programhas been compiled to physical machine code once, and can then be be
run multiple times, whereasszript must be translated by a program each time it's used. Perl programs,
however, are usually neither strictly compiled nor strictly interpreted. They can be compiled to a bytecode
form (something of a Perl virtual machine) or to completely different languages, like C or assembly
language. You can't tell just by looking whether the source is destined for a pure interpreter, a parse-tree
interpreter, a byte—code interpreter, or a native—code compiler, so it's hard to give a definitive answer here.

What is a JAPH?

These are the "just another perl hacker" signatures that some people sign their postings with. About 100 of
the of the earlier ones are available from http://www.perl.com/CPAN/misc/japh .

Where can | get a list of Larry Wall witticisms?

Over a hundred quips by Larry, from postings of his or source code, can be found at
http://www.perl.com/CPAN/misc/lwall-quotes .

How can | convince my sysadmin/supervisor/employees to use version (5/5.004/Perl instead of
some other language)?

If your manager or employees are wary of unsupported software, or software which doesn't officially ship
with your Operating System, you might try to appeal to their self-interest. If programmers can be more
productive using and utilizing Perl constructs, functionality, simplicity, and power, then the typical
manager/supervisor/employee may be persuaded. Regarding using Perl in general, it's also sometimes
helpful to point out that delivery times may be reduced using Perl, as compared to other languages.

If you have a project which has a bottleneck, especially in terms of translation, or testing, Perl almost
certainly will provide a viable, and quick solution. In conjunction with any persuasion effort, you should not
fail to point out that Perl is used, quite extensively, and with extremely reliable and valuable results, at many
large computer software and/or hardware companies throughout the world. In fact, many Unix vendors now
ship Perl by default, and support is usually just a news—posting away, if you can‘t find the answer in the
comprehensivdocumentation, including this FAQ.

If you face reluctance to upgrading from an older version of perl, then point out that version 4 is utterly
unmaintained and unsupported by the Perl Development Team. Another big sell for Perl5 is the large
number of modules and extensions which greatly reduce development time for any given task. Also mention
that the difference between version 4 and version 5 of Perl is like the difference between awk and C++.
(Well, ok, maybe not quite that distinct, but you get the idea.) If you want support and a reasonable
guarantee that what you‘re developing will continue to work in the future, then you have to run the supported
version. That probably means running the 5.004 release, although 5.003 isn‘t that bad (it's just one year and
one release behind). Several important bugs were fixed from the 5.000 through 5.002 versions, though, so
try upgrading past them if possible.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 25

perlfaq2 Perl Programmers Reference Guide perlfaq2

NAME
perlfag2 — Obtaining and Learning about P§R¢vision: 1.13%)

DESCRIPTION

This section of the FAQ answers questions about where to find source and documentation for Perl, support
and training, and related matters.

What machines support Perl? Where do | get it?

The standard release of Perl (the one maintained by the perl development team) is distributed only in source
code form. You can find this at http://www.perl.com/CPAN/src/latest.tar.gz, which is a gzipped archive in
POSIX tar format. This source builds with no porting whatsoever on most Unix systems (Perl's native
environment), as well as Plan 9, VMS, QNX, OS/2, and the Amiga.

Although it's rumored that the (imminent) 5.004 release may build on Windows NT, this is yet to be proven.
Binary distributions for 32—bit Microsoft systems and for Apple systems can be found
http://www.perl.com/CPAN/ports/ directory. Because these are not part of the standard distribution, they
may and in fact do differ from the base Perl port in a variety of ways. You'll have to check their respective
release notes to see just what the differences are. These differences can be either positive (e.g. extensions for
the features of the particular platform that are not supported in the source release of perl) or negative (e.g.
might be based upon a less current source release of perl).

A useful FAQ for Win32 Perl users is
http://www.endcontsw.com/people/evangelo/Perl_for_Win32_FAQ.html

How can | get a binary version of Perl?

If you don‘t have a C compiler because for whatever reasons your vendor did not include one with your
system, the best thing to do is grab a binary version of gcc from the net and use that to compile perl with.
CPAN only has binaries for systems that are terribly hard to get free compilers for, not for Unix systems.

| copied the Perl binary from one machine to another, but scripts don‘t work.

That's probably because you forgot libraries, or library paths differ. You really should build the whole
distribution on the machine it will eventually live on, and then typeke install . Most other
approaches are doomed to failure.

One simple way to check that things are in the right place is to print out the hard—coded @INC which perl is
looking for.

perl —e 'print join("\n",@INC)’

If this command lists any paths which don‘t exist on your system, then you may need to move the
appropriate libraries to these locations, or create symlinks, aliases, or shortcuts appropriately.

| grabbed the sources and tried to compile but gdbm/dynamic loading/malloc/linking/... failed.
How do | make it work?

Read thdNSTALL file, which is part of the source distribution. It describes in detail how to cope with most
idiosyncracies that the Configure script can‘t work around for any given system or architecture.

What modules and extensions are available for Perl? What is CPAN? What does CPAN/src/...
mean?

CPAN stands for Comprehensive Perl Archive Network, a huge archive replicated on dozens of machines all
over the world. CPAN contains source code, non—-native ports, documentation, scripts, and many
third—party modules and extensions, designed for everything from commercial database interfaces to
keyboard/screen control to web walking and CGI scripts. The master machine for CPAN is
ftp://ftp.funet.fi/pub/languages/perl/CPAN/, but you can use the address
http://www.perl.com/CPAN/CPAN.html to fetch a copy from a "site near you". See
http://www.perl.com/CPAN (without a slash at the end) for how this process works.

CPAN/path/... is a naming convention for files available on CPAN sites. CPAN indicates the base directory
of a CPAN mirror, and the rest of the path is the path from that directory to the file. For instance, if you‘re

26 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

using ftp://ftp.funet.fi/pub/languages/perl/CPAN as your CPAN site, the file CPAN/misc/japh file is
downloadable as ftp://ftp.funet.fi/pub/languages/perl/CPAN/misc/japh .

Considering that there are hundreds of existing modules in the archive, one probably exists to do nearly
anything you can think of. Current categories under CPAN/modules/by—category/ include perl core modules;
development support; operating system interfaces; networking, devices, and interprocess communication;
data type utilities; database interfaces; user interfaces; interfaces to other languages; filenames, file systems,
and file locking; internationalization and locale; world wide web support; server and daemon utilities;
archiving and compression; image manipulation; mail and news; control flow utilities; filehandle and I/O;
Microsoft Windows modules; and miscellaneous modules.

Is there an ISO or ANSI certified version of Perl?
Certainly not. Larry expects that he'll be certified before Perl is.

Where can | get information on Perl?
The complete Perl documentation is available with the perl distribution. If you have perl installed locally,
you probably have the documentation installed as well: type perl if you're on a system resembling
Unix. This will lead you to other important man pages. If you're not on a Unix system, access to the
documentation will be different; for example, it might be only in HTML format. But all proper perl
installations have fully—accessible documentation.

You might also tryperldoc perl in case your system doesn‘t have a proper man command, or it's been
misinstalled. If that doesn‘t work, try looking in /usr/local/lib/perl5/pod for documentation.

If all else fails, consult the CPAN/doc directory, which contains the complete documentation in various
formats, including native pod, troff, html, and plain text. There's also a web page at
http://www.perl.com/perl/info/documentation.html that might help.

It's also worth noting that there's a PDF version of the complete documentation for perl available in the
CPAN/authors/id/BMIDD directory.

Many good books have been written about Perl — see the section below for more details.

What are the Perl newsgroups on USENET? Where do | post questions?
The now defunct comp.lang.perl newsgroup has been superseded by the following groups:

comp.lang.perl.announce Moderated announcement group
comp.lang.perl.misc Very busy group about Perl in general
comp.lang.perl.modules Use and development of Perl modules
comp.lang.perl.tk Using Tk (and X) from Perl

comp.infosystems.www.authoring.cgi Writing CGI scripts for the Web.

There is also USENET gateway to the mailing list used by the crack Perl development team (perl5—porters)
at news://genetics.upenn.edu/perl.porters—gw/ .

Where should | post source code?

You should post source code to whichever group is most appropriate, but feel free to cross-post to
comp.lang.perl.misc. If you want to cross—post to alt.sources, please make sure it follows their posting
standards, including setting the Followup—To header line to NOT include alt.sources; see their FAQ for
details.

Perl Books

A number books on Perl and/or CGI programming are available. A few of these are good, some are ok, but
many aren‘t worth your money. Tom Christiansen maintains a list of these books, some with extensive
reviews, at http://www.perl.com/perl/critiques/index.html.

The incontestably definitive reference book on Perl, written by the creator of Perl and his apostles, is now in
its second edition and fourth printing.

Programming Perl (the "Camel Book"):

23—-Mar-1997 Perl Version 5.004 BETA 27

perlfaq2 Perl Programmers Reference Guide perlfaq2

Authors: Larry Wall, Tom Christiansen, and Randal Schwartz
ISBN 1-56592-149-6 (English)
ISBN 4-89052-384-7 (Japanese)

(French and German translations in progress)

Note that O'Reilly books are color—coded: turquoise (some would call it teal) covers indicate perl5 coverage,
while magenta (some would call it pink) covers indicate perl4 only. Check the cover color before you buy!

What follows is a list of the books that the FAQ authors found personally useful. Your mileage may (but, we
hope, probably won't) vary.

If you're already a hard—core systems programmer, then the Camel Book just might suffice for you to learn
Perl from. But if you‘re not, check out the "Llama Book". It currently doesn‘t cover perl5, but the 2nd
edition is nearly done and should be out by summer 97:

Learning Perl (the Llama Book):
Author: Randal Schwartz, with intro by Larry Wall
ISBN 1-56592-042-2 (English)
ISBN 4-89502-678-1 (Japanese)
ISBN 2-84177-005-2 (French)
ISBN 3-930673-08-8 (German)

Another stand-out book in the turquoise O'Reilly Perl line is the "Hip Owls" book. It covers regular
expressions inside and out, with quite a bit devoted exclusively to Perl:

Mastering Regular Expressions (the Cute Owls Book):
Author: Jeffrey Friedl
ISBN 1-56592-257-3

You can order any of these books from O'ReilyAssociates, 1-800-998-9938. Local/overseas is
1-707-829-0515. If you can locate an O‘Reilly order form, you can also fax to 1-707-829-0104. See
http://www.ora.com/ on the Web.

Recommended Perl books that are not from O'Reilly are the following:

Cross—Platform Perl, (for Unix and Windows NT)
Author: Eric F. Johnson
ISBN: 1-55851-483-X

How to Set up and Maintain a World Wide Web Site, (2nd edition)
Author: Lincoln Stein, M.D., Ph.D.
ISBN: 0-201-63462-7

CGI Programming in C & Perl,
Author: Thomas Boutell
ISBN: 0-201-42219-0

Note that some of these address specific application areas (e.g. the Web) and are not general-purpose
programming books.

Perl in Magazines

The Perl Journal is the first and only magazine dedicated to Perl. It is published (on paper, not online)
quarterly by Jon Orwant (orwant@tpj.com), editor. Subscription information is at http://tpj.com or via email
to subscriptions@tpj.com.

Beyond this, two other magazines that frequently carry high—quality articles on Perl are Web Techniques
(see http://www.webtechniques.com/) and Unix Review (http://www.unixreview.com/).

Perl on the Net: FTP and WWW Access

To get the best (and possibly cheapest) performance, pick a site from the list below and use it to grab the
complete list of mirror sites. From there you can find the quickest site for you. Remember, the following list
is notthe complete list of CPAN mirrors.

28 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

http://www.perl.com/CPAN (redirects to another mirror)
http://www.perl.org/CPAN
ftp://ftp.funet.fi/pub/languages/perl/CPAN/
http://www.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.cs.colorado.edu/pub/perl/CPAN/

What mailing lists are there for perl?

Most of the major modules (tk, CGl, libwww-perl) have their own mailing lists. Consult the documentation
that came with the module for subscription information. The following are a list of mailing lists related to
perl itself.

If you subscribe to a mailing list, it behooves you to know how to unsubscribe from it. Strident pleas to the

list itself to get you off will not be favorably received.

MacPerl
There is a mailing list for discussing Macintosh Perl. Contact "mac—perl-request@iis.ee.ethz.ch".
Also see Matthias Neeracher's (the creator and maintainer of MacPerl) webpage at
http://www.iis.ee.ethz.ch/~neeri/macintosh/perl.html for many links to interesting MacPerl sites, and
the applications/MPW tools, precompiled.

Perl5—-Porters
The core development team have a mailing list for discussing fixes and changes to the language. Send
mail to "perl5-porters—-request@perl.org" with help in the body of the message for information on
subscribing.

NTPerl
This list is used to discuss issues involving Win32 Perl 5 (Windows NT and Win95). Subscribe by
emailing ListManager@ActiveWare.com with the message body:

subscribe Perl-Win32-Users

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, email the following in the message body to the same address like so:

unsubscribe Perl-Win32-Users
You can also check http://www.activeware.com/ and select "Mailing Lists" to join or leave this list.

Perl-Packrats
Discussion related to archiving of perl materials, particularly the Comprehensive PerlArchive Network
(CPAN). Subscribe by emailing majordomo@cis.ufl.edu:
subscribe perl-packrats

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, simple prepend the same command with an "un", and mail to the same
address like so:

unsubscribe perl-packrats

Archives of comp.lang.perl.misc
Have you tried Deja News or Alta Vista?

ftp.cis.ufl.edu:/pub/perl/comp.lang.perl.*/monthly has an almost complete collection dating back to 12/89
(missing 08/91 through 12/93). They are kept as one large file for each month.

You'll probably want more a sophisticated query and retrieval mechanism than a file listing, preferably one
that allows you to retrieve articles using a fast—access indices, keyed on at least author, date, subject, thread
(as in "trn") and probably keywords. The best solution the FAQ authors know of is the MH pick command,
but it is very slow to select on 18000 articles.

23—-Mar-1997 Perl Version 5.004 BETA 29

perlfaq2 Perl Programmers Reference Guide perlfaq2

If you have, or know where can be found, the missing sections, please let perlfag—suggestions@perl.com
know.

Perl Training

While some large training companies offer their own courses on Perl, you may prefer to contact individuals
near and dear to the heart of Perl development. Two well-known members of the Perl development team
who offer such things are Tom Christiansen <perl-classes@perl.com and Randal Schwartz
<perl-training—info@stonehenge.com, plus their respective minions, who offer a variety of professional
tutorials and seminars on Perl. These courses include large public seminars, private corporate training, and
fly—ins to Colorado and Oregon. See http://www.perl.com/perl/info/training.html for more details.

Where can | buy a commercial version of Perl?

In a sense, Perl alreatsycommercial software: It has a licence that you can grab and carefully read to your
manager. It is distributed in releases and comes in well-defined packages. There is a very large user
community and an extensive literature. The comp.lang.perl.* newsgroups and several of the mailing lists
provide free answers to your questions in near real-time. Perl has traditionally been supported by Larry,
dozens of software designers and developers, and thousands of programmers, all working for free to create a
useful thing to make life better for everyone.

However, these answers may not suffice for managers who require a purchase order from a company whom
they can sue should anything go wrong. Or maybe they need very serious hand-holding and contractual
obligations. Shrink—-wrapped CDs with perl on them are available from several sources if that will help.

Or you can purchase a real support contract. Although Cygnus historically provided this service, they no
longer sell support contracts for Perl. Instead, the Paul Ingram Group will be taking up the slack through The
Perl Clinic. The following is a commercial from them:

"Do you need professional support for Perl and/or Oraperl? Do you need a support contract with defined
levels of service? Do you want to pay only for what you need?

"The Paul Ingram Group has provided quality software development and support services to some of the
world's largest corporations for ten years. We are now offering the same quality support services for Perl at
The Perl Clinic. This service is led by Tim Bunce, an active perl porter since 1994 and well known as the
author and maintainer of the DBI, DBD::Oracle, and Oraperl modules and author/co—maintainer of The Perl
5 Module List. We also offer Oracle users support for Perl5 Oraperl and related modules (which Oracle is
planning to ship as part of Oracle Web Server 3). 20% of the profit from our Perl support work will be
donated to The Perl Institute."

For more information, contact the The Perl Clinic:

Tel: +44 1483 424424

Fax: +44 1483 419419

Web: http://www.perl.co.uk/

Email: perl-support-info@perl.co.uk or Tim.Bunce@ig.co.uk

Where do | send bug reports?

If you are reporting a bug in the perl interpreter or the modules shipped with perl, use the perlbug program in
the perl distribution or email your report to perlbug@perl.com.

If you are posting a bug with a non-standard port (see the answer to "What platforms is Perl available for?"),
a binary distribution, or a non-standard module (such as Tk, CGl, etc), then please see the documentation
that came with it to determine the correct place to post bugs.

Read the perlbug man page (perl5.004 or later) for more information.

What is perl.com? perl.org? The Perl Institute?

perl.org is the official vehicle for The Perl Institute. The motto of TPI is "helping people help Perl help
people" (or something like that). It's a non—profit organization supporting development, documentation, and
dissemination of perl. Current directors of TPI include Larry Wall, Tom Christiansen, and Randal Schwartz,
whom you may have heard of somewhere else around here.

30

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

The perl.com domain is Tom Christiansen's domain. He created it as a public service long before perl.org
came about. It's the original PBS of the Perl world, a clearinghouse for information about all things Perlian,
accepting no paid advertisements, glossy gifs, or (gasp!) java applets on its pages.

How do | learn about object-oriented Perl programming?
perltoot (distributed with 5.004 or later) is a good place to start. Alsolobj, perlref, and perlmod are
useful references, whilgerlbothas some excellent tips and tricks.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 31

perlfaq3 Perl Programmers Reference Guide perlfaq3

NAME
perlfag3 — Programming Tool$Revision: 1.19%)
DESCRIPTION
This section of the FAQ answers questions related to programmer tools and programming support.

How do | do (anything)?

Have you looked at CPAN (seerlfaqd? The chances are that someone has already written a module that
can solve your problem. Have you read the appropriate man pages? Here's a brief index:

Objects perlref, perimod, perlobj, perltie

Data Structures perlref, perllol, perldsc

Modules perlmod, perlsub

Regexps perlre, perlfunc, perlop

Moving to perl5 perltrap, perl

Linking w/C perixstut, perlxs, perlcall, perlguts, perlembed

Various http://www.perl.com/CPAN/doc/FMTEYEWTK/index.html

(not a man—page but still useful)
perltocprovides a crude table of contents for the perl man page set.

How can | use Perl interactively?
The typical approach uses the Perl debugger, described in the perldebug(l) man page, on an "empty"
program, like this:
perl —de 42

Now just type in any legal Perl code, and it will be immediately evaluated. You can also examine the
symbol table, get stack backtraces, check variable values, set breakpoints, and other operations typically
found in symbolic debuggers

Is there a Perl shell?

In general, no. The Shell.pm module (distributed with perl) makes perl try commands which aren‘t part of
the Perl language as shell commands. perlsh from the source distribution is simplistic and uninteresting, but
may still be what you want.

How do | debug my Perl programs?
Have you usedw?

Have you triedise strict ?

Did you check the returns of each and every system call?
Did you readperltrap?

Have you tried the Perl debugger, describegeiridebug

How do | profile my Perl programs?
You should get the Devel::DProf module from CPAN, and also use Benchmark.pm from the standard
distribution. Benchmark lets you time specific portions of your code, while Devel::DProf gives detailed
breakdowns of where your code spends its time.

How do | cross-reference my Perl programs?
The B::Xref module, shipped with the new, alpha-release Perl compiler (not the general distribution), can be
used to generate cross-reference reports for Perl programs.

perl -MO=Xref[,OPTIONS] foo.pl

32 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

Is there a pretty—printer (formatter) for Perl?

There is no program that will reformat Perl as much as indent(1) will do for C. The complex feedback
between the scanner and the parser (this feedback is what confuses the vgrind and emacs programs) makes it
challenging at best to write a stand—alone Perl parser.

Of course, if you simply follow the guidelinesperistyle you shouldn‘t need to reformat.

Your editor can and should help you with source formatting. The perl-mode for emacs can provide a
remarkable amount of help with most (but not all) code, and even less programmable editors can provide
significant assistance.

If you are using to using vgrind program for printing out nice code to a laser printer, you can take a stab at
this using http://www.perl.com/CPAN/doc/misc/tips/working.vgrind.entry, but the results are not particularly
satisfying for sophisticated code.

Is there a ctags for Perl?
There's a simple one at http://www.perl.com/CPAN/authors/id/TOMC/scripts/ptags.gz which may do the
trick.

Where can | get Perl macros for vi?
For a complete version of Tom Christiansen's vi configuration file, see ftp:/ftp.perl.com/pub/vi/toms.exrc,
the standard benchmark file for vi emulators. This runs best with nvi, the current version of vi out of
Berkeley, which incidentally can be built with an embedded Perl interpreter — see
http://www.perl.com/CPAN/src/misc .

Where can | get perl-mode for emacs?
Since Emacs version 19 patchlevel 22 or so, there have been both a perl-mode.el and support for the perl
debugger built in. These should come with the standard Emacs 19 distribution.

In the perl source directory, you'll find a directory called "emacs”, which contains a cperl-mode that
color—codes keywords, provides context—sensitive help, and other nifty things.

Note that the perl-mode of emacs will have fits with "main‘foo" (single quote), and mess up the indentation
and hilighting. You should be using "main::foo", anyway.

How can | use curses with Perl?
The Curses module from CPAN provides a dynamically loadable object module interface to a curses library.

How can | use X or Tk with Perl?
Tk is a completely Perl-based, object-oriented interface to the Tk toolkit that doesn't force you to use Tcl
just to get at Tk. Sx is an interface to the Athena Widget set. Both are available from CPAN.

How can | generate simple menus without using CGI or Tk?
The http://www.perl.com/CPAN/authors/id/SKUNZ/perimenu.v4.0.tar.gz module, which is curses-based,
can help with this.

Can | dynamically load C routines into Perl?
If your system architecture supports it, then the standard perl on your system should also provide you with
this via the DynalLoader module. Regaetixstutfor details.

What is undump?
See the next questions.

How can | make my Perl program run faster?

The best way to do this is to come up with a better algorithm. This can often make a dramatic difference.
Chapter 8 in the Camel has some efficiency tips in it you might want to look at.

Other approaches include autoloading seldom-used Perl code. See the AutoSplit and AutoLoader modules
in the standard distribution for that. Or you could locate the bottleneck and think about writing just that part
in C, the way we used to take bottlenecks in C code and write them in assembler. Similar to rewriting in C is

23—-Mar-1997 Perl Version 5.004 BETA 33

perlfaq3 Perl Programmers Reference Guide perlfaq3

the use of modules that have critical sections written in C (for instance, the PDL module from CPAN).

In some cases, it may be worth it to use the backend compiler to produce byte code (saving compilation
time) or compile into C, which will certainly save compilation time and sometimes a small amount (but not
much) execution time. See the question about compiling your Perl programs.

If you're currently linking your perl executable to a shared libc.so, you can often gain a 10-25%
performance benefit by rebuilding it to link with a static libc.a instead. This will make a bigger perl
executable, but your Perl programs (and programmers) may thank you for it. S48TA&L file in the
source distribution for more information.

Unsubstantiated reports allege that Perl interpreters that use sfio outperform those that don'‘t (for 10 intensive
applications). To try this, see tReSTALL file in the source distribution, especially the "Selecting File 10
mechanisms" section.

The undump program was an old attempt to speed up your Perl program by storing the already—compiled
form to disk. This is no longer a viable option, as it only worked on a few architectures, and wasn‘t a good
solution anyway.

How can | make my Perl program take less memory?

When it comes to time—space tradeoffs, Perl nearly always prefers to throw memory at a problem. Scalars in
Perl use more memory than strings in C, arrays take more that, and hashes use even more. While there's still

a lot to be done, recent releases have been addressing these issues. For example, as of 5.004, duplicate hash
keys are shared amongst all hashes using them, so require no reallocation.

In some cases, usirgybstr() orvec() to simulate arrays can be highly beneficial. For example, an
array of a thousand booleans will take at least 20,000 bytes of space, but it can be turned into one 125-byte
bit vector for a considerable memory savings. The standard Tie::SubstrHash module can also help for
certain types of data structure. If you‘'re working with specialist data structures (matrices, for instance)
modules that implement these in C may use less memory than equivalent Perl modules.

Another thing to try is learning whether your Perl was compiled with the system malloc or with Perl's
built-in malloc. Whichever one it is, try using the other one and see whether this makes a difference.
Information about malloc is in tH&ISTALL file in the source distribution. You can find out whether you

are using perl‘'s malloc by typingerl —V:usemymalloc

Is it unsafe to return a pointer to local data?

No, Perl's garbage collection system takes care of this.

sub makeone {
my @a=(1..10);
return \@a;

}

for$i(1..10)¢
push @many, makeone();

}
print $many[4][5], "\n";
print "@many\n";

How can | free an array or hash so my program shrinks?

You can‘t. Memory the system allocates to a program will never be returned to the system. That's why
long-running programs sometimes re—exec themselves.

However, judicious use afy() on your variables will help make sure that they go out of scope so that Perl
can free up their storage for use in other parts of your program. niMB: variables also execute about

10% faster than globals.) A global variable, of course, never goes out of scope, so you can'‘t get its space
automatically reclaimed, althougindef() ing and/ordelete() ing it will achieve the same effect. In
general, memory allocation and de—allocation isn‘t something you can or should be worrying about much in

34

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

Perl, but even this capability (preallocation of data types) is in the works.

How can | make my CGl script more efficient?

Beyond the normal measures described to make general Perl programs faster or smaller, a CGI program has
additional issues. It may be run several times per second. Given that each time it runs it will need to be
re—compiled and will often allocate a megabyte or more of system memory, this can be a killer. Compiling
into Cisn‘t going to help youbecause the process start—-up overhead is where the bottleneck is.

There are at least two popular ways to avoid this overhead. One solution involves running the Apache HTTP
server (available from http://www.apache.org/) with either of the mod_perl or mod_fastcgi plugin modules.
With mod_perl and the Apache::* modules (from CPAN), httpd will run with an embedded Perl interpreter
which pre-compiles your script and then executes it within the same address space without forking. The
Apache extension also gives Perl access to the internal server API, so modules written in Perl can do just
about anything a module written in C can. With the FCGI module (from CPAN), a Perl executable compiled
with sfio (see theINSTALL file in the distribution) and the mod_fastcgi module (available from
http://www.fastcgi.com/) each of your perl scripts becomes a permanent CGl daemon processes.

Both of these solutions can have far-reaching effects on your system and on the way you write your CGl
scripts, so investigate them with care.

How can | hide the source for my Perl program?

Delete it. :-) Seriously, there are a number of (mostly unsatisfactory) solutions with varying levels of
"security".

First of all, however, yotan't take away read permission, because the source code has to be readable in
order to be compiled and interpreted. (That doesn‘'t mean that a CGl script‘s source is readable by people on
the web, though.) So you have to leave the permissions at the socially friendly 0755 level.

Some people regard this as a security problem. If your program does insecure things, and relies on people
not knowing how to exploit those insecurities, it is not secure. It is often possible for someone to determine
the insecure things and exploit them without viewing the source. Security through obscurity, the name for
hiding your bugs instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN). But crackers might be able to decrypt

it. You can try using the byte-code compiler and interpreter described below, but crackers might be able to
de—-compile it. You can try using the native—code compiler described below, but crackers might be able to

disassemble it. These pose varying degrees of difficulty to people wanting to get at your code, but none can
definitively conceal it (this is true of every language, not just Perl).

If you‘'re concerned about people profiting from your code, then the bottom line is that nothing but a
restrictive licence will give you legal security. License your software and pepper it with threatening
statements like "This is unpublished proprietary software of XYZ Corp. Your access to it does not give you
permission to use it blah blah blah." We are not lawyers, of course, so you should see a lawyer if you want
to be sure your licence's wording will stand up in court.

How can | compile my Perl program into byte—code or C?

Malcolm Beattie has written a multifunction backend compiler, available from CPAN, that can do both these
things. Itis as of Feb—1997 in late alpha release, which means it's fun to play with if you‘re a programmer
but not really for people looking for turn—key solutions.

Pleaseunderstand that merely compiling into C does not in and of itself guarantee that your code will run
very much faster. That's because except for lucky cases where a lot of native type inferencing is possible,
the normal Perl run time system is still present and thus will still take just as long to run and be just as big.
Most programs save little more than compilation time, leaving execution no more than 10-30% faster. A
few rare programs actually benefit significantly (like several times faster), but this takes some tweaking of
your code.

Malcolm will be in charge of the 5.005 release of Perl itself to try to unify and merge his compiler and
multithreading work into the main release.

23—-Mar-1997 Perl Version 5.004 BETA 35

perlfaq3 Perl Programmers Reference Guide perlfaq3

You'll probably be astonished to learn that the current version of the compiler generates a compiled form of
your script whose executable is just as big as the original perl executable, and then some. That's because as
currently written, all programs are prepared for adutil() statement. You can tremendously reduce this

cost by building a shared libperl.so library and linking against that. SdBISTALL podfile in the perl

source distribution for details. If you link your main perl binary with this, it will make it miniscule. For
example, on one author's system, /usr/bin/perl is only 11k in size!

How can | get ‘#!perl’ to work on [MSDOS,NT,...]?

For OS/2 just use
extproc perl =S —your_switches

as the first line irf.cmd file (—S due to a bug in cmd.exe's ‘extproc’ handling). For DOS one should first
invent a corresponding batch file, and codify iINbhTERNATIVE_SHEBANGsee thdNSTALL file in the
source distribution for more information).

The Win95/NT installation, when using the Activeware port of Perl, will modify the Registry to associate the
.pl extension with the perl interpreter. If you install another port, or (eventually) build your own Win95/NT
Perl using WinGCC, then you'll have to modify the Registry yourself.

Macintosh perl scripts will have the the appropriate Creator and Type, so that double-clicking them will
invoke the perl application.

IMPORTANT! Whatever you do, PLEASE don't get frustrated, and just throw the perl interpreter into your
cgi—bin directory, in order to get your scripts working for a web server. This is an EXTREMELY big
security risk. Take the time to figure out how to do it correctly.

Can | write useful perl programs on the command line?

Yes. Readperlrun for more information. Some examples follow. (These assume standard Unix shell
quoting rules.)

sum first and last fields

perl —lane 'print $F[0] + $F[-1]

identify text files

perl —le 'for(@ARGV) {print if -f && -T _}' *

remove comments from C program

perl —0777 —pe 's{*.*?*/}{}gs’ foo.c

make file a month younger than today, defeating reaper daemons
perl —e '$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)’ *

find first unused uid

perl —le '$i++ while getpwuid($i); print $i’

display reasonable manpath
echo $PATH | perl -nl -072 e’
s![M+]*$!man!&&-d&&!$s{$_}++&&push@m,$_;END{print'@m"}

Ok, the last one was actually an obfuscated perl entry. :-)

Why don‘t perl one-liners work on my DOS/Mac/VMS system?

The problem is usually that the command interpreters on those systems have rather different ideas about
guoting than the Unix shells under which the one-liners were created. On some systems, you may have to
change single—quotes to double ones, which you @&t do on Unix or Plan9 systems. You might also

have to change a single % to a %%.

For example:

Unix
perl —e "print "Hello world\n

36

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

DOS, etc.
perl —e "print \"Hello world\n\

Mac
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

#VMS
perl —e "print ""Hello world\n

The problem is that none of this is reliable: it depends on the command interpreter. Under Unix, the first two
often work. Under DOS, it's entirely possible neither works. If 4DOS was the command shell, I'd probably
have better luck like this:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is much like
Unix shells in its support for several quoting variants, except that it makes free use of the Mac's non—-ASCII
characters as control characters.

I'm afraid that there is no general solution to all of this. It is a mess, pure and simple.
[Some of this answer was contributed by Kenneth Albanowski.]

Where can | learn about CGI or Web programming in Perl?

For modules, get the CGI or LWP modules from CPAN. For textbooks, see the two especially dedicated to
web stuff in the question on books. For problems and questions related to the web, like "Why do | get 500
Errors" or "Why doesn‘t it run from the browser right when it runs fine on the command line", see these
sources:

The Idiot’s Guide to Solving Perl/CGI Problems, by Tom Christiansen
http://www.perl.com/perl/faqg/idiots—guide.html

Frequently Asked Questions about CGI Programming, by Nick Kew
ftp://rtfm.mit.edu/pub/usenet/news.answers/www/cgi—faq
http://www3.pair.com/webthing/docs/cgi/fags/cgifag.shtml

Perl/CGI programming FAQ, by Shishir Gundavaram and Tom Christiansen
http://www.perl.com/perl/faqg/perl-cgi—fag.html

The WWW Security FAQ, by Lincoln Stein
http://www-genome.wi.mit.edu/WWW/fags/www-security—faqg.html

World Wide Web FAQ, by Thomas Boutell
http://www.boutell.com/faq/
Where can | learn about object-oriented Perl programming?

perltootis a good place to start, and you canpegobj andperlbotfor reference. Perltoot didn‘t come out
until the 5.004 release, but you can get a copy (in pod, html, or postscript) from
http://www.perl.com/CPAN/doc/FMTEYEWTK/ .

Where can | learn about linking C with Perl? [h2xs, xsubpp]

If you want to call C from Perl, start witherlxstuf moving on toperlxs xsubpp andperlguts If you want
to call Perl from C, then reguerlembedperlcall, andperlguts Don't forget that you can learn a lot from
looking at how the authors of existing extension modules wrote their code and solved their problems.

I've read perlembed, perlguts, etc., but | can't embed perl in
my C program, what am | doing wrong?
Download the ExtUtils::Embed kit from CPAN and run ‘make test'. If the tests pass, read the pods again

and again and again. If they fail, sperlbug and send a bugreport with the output ofake test
TEST_VERBOSE=&long withperl -V

23—-Mar-1997 Perl Version 5.004 BETA 37

perlfaq3 Perl Programmers Reference Guide perlfaq3

When | tried to run my script, | got this message. What does it
mean?

perldiag has a complete list of perl's error messages and warnings, with explanatory text. You can also use
the splain program (distributed with perl) to explain the error messages:

perl program 2>diag.out
splain [-V] [-p] diag.out

or change your program to explain the messages for you:
use diagnostics;

or
use diagnostics —verbose;

What's MakeMaker?
This module (part of the standard perl distribution) is designed to write a Makefile for an extension module
from a Makefile.PL. For more information, sertUtils::MakeMaker

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pe3iaq for
distribution information.

38 Perl Version 5.004 BETA 23—-Mar-1997

ExtUtils::MakeMaker

perlfaq4 Perl Programmers Reference Guide perlfaq4

NAME
perlfag4 — Data Manipulatior$Revision: 1.15%)

DESCRIPTION

The section of the FAQ answers question related to the manipulation of data as numbers, dates, strings,
arrays, hashes, and miscellaneous data issues.

Data: Numbers

Why isn‘t my octal data interpreted correctly?

Perl only understands octal and hex numbers as such when they occur as literals in your program. If they are
read in from somewhere and assigned, no automatic conversion takes place. You must expbcit{y use

or hex() if you want the values converteact() interprets both hex ("0x350") numbers and octal ones
("0350" or even without the leading "0", like "377"), whilex() only converts hexadecimal ones, with or
without a leading "0x", like "0x255", "3A", "ff", or "deadbeef".

This problem shows up most often when people try usihghod() , mkdir() , umask() , or
sysopen() , which all want permissions in octal.

chmod(644, $file); # WRONG —- perl —w catches this
chmod(0644, $file); # right

Does perl have a round function? What about ceil() and floor() ?
Trig functions?

For rounding to a certain number of diggprintf() or printf() is usually the easiest route.

The POSIX module (part of the standard perl distribution) implenoeii(3 , floor() , and a number of
other mathematical and trigonometric functions.

The Math::Complex module (part of the standard perl distribution) defines a number of mathematical
functions that can also work on real numbers. It's not as efficient as the POSIX library, but the POSIX
library can‘t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

How do | convert bits into ints?

To turn a string of 1s and Os like ‘10110110 into a scalar containing its binary value, ysackife
function (documented ipack in perlfuny:

$decimal = pack('B8’, '10110110%);
Here's an example of going the other way:
$binary_string = join("’, unpack('B*', "\x29"));

How do | multiply matrices?

Use the Math::Matrix or Math::MatrixReal modules (available from CPAN) or the PDL extension (also
available from CPAN).

How do | perform an operation on a series of integers?
To call a function on each element in an array, and collect the results, use:

@results = map { my_func($_) } @array;
For example:
@triple = map { 3*$_} @single;

To call a function on each element of an array, but ignore the results:

23—-Mar-1997 Perl Version 5.004 BETA 39

perlfaq4 Perl Programmers Reference Guide perlfaq4

foreach Siterator (@array) {
&my_func($iterator);

}

To call a function on each integer in a (small) range,camuuse:
@results = map { &my_func($_) } (5 .. 25);

but you should be aware that the operator creates an array of all integers in the range. This can take a lot
of memory for large ranges. Instead use:

@results = ();
for ($i=5; $i < 500_005; $i++) {
push(@results, &my_func($i));
}
How can | output Roman numerals?
Get the http://www.perl.com/CPAN/modules/by-module/Roman module.

Why aren‘t my random numbers random?

The short explanation is that you‘re getting pseudorandom numbers, not random ones, because that's how
these things work. A longer explanation is available on
http://www.perl.com/CPAN/doc/FMTEYEWTK/random, courtesy of Tom Phoenix.

You should also check out the Math::TrulyRandom module from CPAN.
Data: Dates

How do I find the week-of-the—year/day—of-the-year?
The day of the year is in the array returneddogaltime() (seelocaltime in perlfunk

$day_of_year = (localtime(time()))[7];
or more legibly (in 5.004 or higher):

use Time::localtime;
$day_of_year = localtime(time())—>yday;

You can find the week of the year by dividing this by 7:
$week_of_year = int($day_of_year / 7);
Of course, this believes that weeks start at zero.

How can | compare two date strings?
Use the Date::Manip or Date::DateCalc modules from CPAN.

How can | take a string and turn it into epoch seconds?
If it's a regular enough string that it always has the same format, you can split it up and pass the parts to
timelocal in the standard Time::Local module. Otherwise, you should look into one of the Date modules
from CPAN.

How can | find the Julian Day?
Neither Date::Manip nor Date::DateCalc deal with Julian days. Instead, there is an example of Julian date
calculation in http://www.perl.com/CPAN/authors/David_Muir_Sharnoff/modules/Time/JulianDay.pm.gz,
which should help.

Does Perl have a year 2000 problem?

Not unless you use Perl to create one. The date and time functions supplied with perl (gmtime and localtime)
supply adequate information to determine the year well beyond 2000 (2038 is when trouble strikes). The year
returned by these functions when used in an array context is the year minus 1900. For years between 1910
and 1999 thihappengo be a 2-digit decimal number. To avoid the year 2000 problem simply do not treat
the year as a 2—digit number. It isn't.

40 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

When gmtime() and localtime() are used in a scalar context they return a timestamp string that
contains a fully-expanded year. For exampiimestamp = gmtime(1005613200) sets
$timestamp to "Tue Nov 13 01:00:00 2001". There's no year 2000 problem here.

Data: Strings

How do | validate input?

The answer to this question is usually a regular expression, perhaps with auxiliary logic. See the more
specific questions (numbers, email addresses, etc.) for detalils.

How do | unescape a string?

It depends just what you mean by "escape". URL escapes are dealt patifagQ Shell escapes with the
backslash (\) character are removed with:

sN\(.)/$1/g;
Note that this won‘t expand \n or \t or any other special escapes.

How do | remove consecutive pairs of characters?
To turn "abbcccd" into "abccd™

s/()\1/$1/g;

How do | expand function calls in a string?

This is documented iperlref. In general, this is fraught with quoting and readability problems, but it is
possible. To interpolate a subroutine call (in a list context) into a string:

print "My sub returned @{[mysub(1,2,3)]} that time.\n",
If you prefer scalar context, similar chicanery is also useful for arbitrary expressions:
print "That yields ${\($n + 5)} widgets\n";

How do | find matching/nesting anything?
This isn‘t something that can be tackled in one regular expression, no matter how complicated. To find
something between two single characters, a pattermd{Ke]*)x/ will get the intervening bits ifs1.
For multiple ones, then something more liképha(.*?)omega/ would be needed. But none of these
deals with nested patterns, nor can they. For that you'll have to write a parser.

How do | reverse a string?
Usereverse() in a scalar context, as documentedeiverse

$reversed = reverse $string;

How do | expand tabs in a string?
You can do it the old—fashioned way:

1 while $string =~ sN\t+/"’ x (length($&) * 8 — length($‘) % 8)/e;
Or you can just use the Text::Tabs module (part of the standard perl distribution).

use Text::Tabs;
@expanded_lines = expand(@lines_with_tabs);
How do | reformat a paragraph?
Use Text::Wrap (part of the standard perl distribution):

use Text::Wrap;

print wrap("\t*, ’ ', @paragraphs);

How can | access/change the first N letters of a string?
There are many ways. If you just want to grab a copy, use substr:

23—-Mar-1997 Perl Version 5.004 BETA 41

perlfaq4 Perl Programmers Reference Guide perlfaq4

$first_byte = substr($a, 0, 1);

If you want to modify part of a string, the simplest way is often tosubstr() as an Ivalue:
substr($a, 0, 3) = "Tom";

Although those with a regexp kind of thought process will likely prefer
$a =~ s/*.../[Tom/;

How do | change the Nth occurrence of something?
You have to keep track. For example, let's say you want to change the fifth occurrence of "whoever" or
"whomever" into "whosoever", case insensitively.

$count = 0;
s{((whom?)ever)}
++$count == # is it the 5th?
? "${2}soever" # yes, swap
1 $1 # renege and leave it there
Yigex;

How can | count the number of occurrences of a substring within a string?

There are a number of ways, with varying efficiency: If you want a count of a certain single character (X)
within a string, you can use th&/ function like so:

$string = "ThisXlineXhasXsomeXx'sXinXit":
$count = ($string =~ tr/X//);
print "There are $count X charcters in the string";

This is fine if you are just looking for a single character. However, if you are trying to count multiple
character substrings within a larger stritrif/f won't work. What you can do is wrapwaile() loop
around a global pattern match. For example, let's count negative integers:

$string = "-9 55 48 -2 23 =76 4 14 -44";
while ($string =~ /-\d+/g) { $Scount++ }
print "There are $count negative numbers in the string";

How do | capitalize all the words on one line?
To make the first letter of each word upper case:
$line =~ s\b(\W)A\LB1/g;
To make the whole line upper case:
$line = uc@line);
To force each word to be lower case, with the first letter upper case:
$line =~ s/(\w+)\u\l$1/g;
How can | split a [character] delimited string except when inside
[character]? (Comma-—separated files)
Take the example case of trying to split a string that is comma-separated into its different fields. (We'll
pretend you said comma-separated, not comma-—delimited, which is different and almost never what you

mean.) You can‘t useplit(/,/) because you shouldn't split if the comma is inside quotes. For
example, take a data line like this:

SARO001,"™,"Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core Dumped"

Due to the restriction of the quotes, this is a fairly complex problem. Thankfully, we have Jeffrey Friedl,
author of a highly recommended book on regular expressions, to handle these for us. He suggests (assuming
your string is contained itext):

@new = ();
push(@new, $+) while $text =~ m{

42 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

"(NW*(2:\ NN ¥)*)",? - # groups the phrase inside the quotes
| ([("]+),?
| L]
1o
push(@new, undef) if substr($text,-1,1) eq ’,’;

Alternatively, the Text::ParseWords module (part of the standard perl distribution) lets you say:

use Text::ParseWords;

@new = quotewords(",", 0, $text);

How do I strip blank space from the beginning/end of a string?
The simplest approach, albeit not the fastest, is probably like this:

$string =~ s/Ms*(*?)\s*$/$1/;
It would be faster to do this in two steps:

$string =~ s/Ms+//;
$string =~ s\s+$//;

Or more nicely written as:

for ($string) {
s/MNs+//;
s\s+$/1;
}

How do | extract selected columns from a string?
Usesubstr() orunpack() , both documented iperifunc

How do I find the soundex value of a string?
Use the standard Text::Soundex module distributed with perl.

How can | expand variables in text strings?
Let's assume that you have a string like:

$text = 'this has a $foo in it and a $bar’;
$text =~ s\$(\w+)/${$1}/q;

Before version 5 of perl, this had to be done with a double-eval substitution:
$text =~ s/(\$\w+)/$1/eeg;
Which is bizarre enough that you'll probably actually need an EEG afterwards. :-)

What's wrong with always quoting " $vars"?
The problem is that those double—quotes force stringification, coercing numbers and references into strings,
even when you don‘t want them to be.
If you get used to writing odd things like these:

print "$var"; # BAD
$new = "$old"; # BAD
somefunc("$var"); # BAD

You'll be in trouble. Those should (in 99.8% of the cases) be the simpler and more direct:

print $var;
$new = $old;
somefunc($var);

Otherwise, besides slowing you down, you‘re going to break code when the thing in the scalar is actually
neither a string nor a number, but a reference:

23—-Mar-1997 Perl Version 5.004 BETA 43

perlfaq4 Perl Programmers Reference Guide perlfaq4

func(\@array);
sub func {
my $aref = shift;
my $oref = "$aref’; # WRONG
}
You can also get into subtle problems on those few operations in Perl that actually do care about the
difference between a string and a number, such as the magicautoincrement operator or the
syscall() function.

Why don‘t my <<HERE documents work?
Check for these three things:
1. There must be no space after the << part.

2. There (probably) should be a semicolon at the end.
3. You can't (easily) have any space in front of the tag.

Data: Arrays

What is the difference between $array[l] and @array[1]?

The former is a scalar value, the latter an array slice, which makes it a list with one (scalar) value. You
should use$ when you want a scalar value (most of the time) and @ when you want a list with one scalar
value in it (very, very rarely; nearly never, in fact).

Sometimes it doesn‘t make a difference, but sometimes it does. For example, compare:
$good[0] = ‘some program that outputs several lines’;

with
@bad[0] = ‘same program that outputs several lines’;

The-w flag will warn you about these matters.

How can | extract just the unique elements of an array?

There are several possible ways, depending on whether the array is ordered and whether you wish to
preserve the ordering.

a) If @in is sorted, and you want @out to be sorted:
$prev = 'nonesuch’;
@out = grep($_ ne $prev && ($prev =$_), @in);

This is nice in that it doesn‘t use much extra memory, simulating uniq(1)‘s behavior of removing only
adjacent duplicates.

b) If you don‘t know whether @in is sorted:
undef %saw;
@out = grep(I$saw{$_}++, @in);
c) Like (b), but @in contains only small integers:
@out = grep(I$saw[$_]++, @in);
d) A way to do (b) without any loops or greps:
undef %saw;
@saw{@in} = ();
@out = sort keys %saw; # remove sort if undesired
e) Like (d), but @in contains only small positive integers:

undef @ary;
@ary[@in] = @in;
@out = @ary;

44 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

How can | tell whether an array contains a certain element?

There are several ways to approach this. If you are going to make this query many times and the values are
arbitrary strings, the fastest way is probably to invert the original array and keep an associative array lying
about whose keys are the first array's values.

@blues = gw/azure cerulean teal turquoise lapis—lazuli/;
undef %is_blue;
for (@blues) { $is_blue{$_} =1}

Now you can check wheth&is_blue{$some_color}. It might have been a good idea to keep the
blues all in a hash in the first place.

If the values are all small integers, you could use a simple indexed array. This kind of an array will take up
less space:

@primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31);
undef @is_tiny_prime;
for (@primes) { $is_tiny_prime[$_] =1;}

Now you check whetheSis_tiny_prime[$some_number].

If the values in question are integers instead of strings, you can save quite a lot of space by using bit strings
instead:

@articles = (1..10, 150..2000, 2017);
undef $read;
grep (vec($read,$_,1) = 1, @articles);

Now check whethevec($read,$n,1) is true for somén.
Please do not use

$is_there = grep $_ eq $whatever, @array;
or worse yet

$is_there = grep /$whatever/, @array;

These are slow (checks every element even if the first matches), inefficient (same reason), and potentially
buggy (what if there are regexp character®dvitnatever?).

How do | compute the difference of two arrays? How do | compute the intersection of two arrays?

Use a hash. Here's code to do both and more. It assumes that each element is unique in a given array:

@union = @intersection = @difference = ();
%count = ();
foreach $element (@arrayl, @array2) { $count{$element}++ }
foreach $element (keys %count) {
push @union, $element;
push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;

}

How do I find the first array element for which a condition is true?
You can use this if you care about the index:

for ($i=0; $i < @array; $i++) {
if ($array[$i] eq "Waldo") {
$found_index = $i;
last;
}
}

23—-Mar-1997 Perl Version 5.004 BETA 45

perlfaq4 Perl Programmers Reference Guide perlfaq4

Now $found_index has what you want.

How do | handle linked lists?

In general, you usually don't need a linked list in Perl, since with regular arrays, you can push and pop or
shift and unshift at either end, or you can use splice to add and/or remove arbitrary number of elements at
arbitrary points.

If you really, really wanted, you could use structures as descrilggtloscor perltootand do just what the
algorithm book tells you to do.

How do | handle circular lists?
Circular lists could be handled in the traditional fashion with linked lists, or you could just do something like
this with an array:

unshift(@array, pop(@array)); # the last shall be first
push(@array, shift(@array)); # and vice versa
How do | shuffle an array randomly?

Here's a shuffling algorithm which works its way through the list, randomly picking another element to swap
the current element with:

srand;
@new = ();
@old =1 .. 10; # justademo
while (@old) {
push(@new, splice(@old, rand @old, 1));
}
For large arrays, this avoids a lot of the reshuffling:
srand;
@new = ();
@old =1 ..10000; # justa demo
for(@old){
my $r = rand @new+1;
push(@new,$new[$r]);
Snew[$r] =$_;
}

How do | process/modify each element of an array?
Usefor /fforeach

for (@lines) {
s/foo/bar/;
trla-z][A-Z];
}

Here's another; let's compute spherical volumes:

for (@radii) {

$_**=3;

$ *=(4/3) * 3.14159; # this will be constant folded
}

How do | select a random element from an array?
Use therand() function (seeand):
srand; # not needed for 5.004 and later

$index =rand @array;
$element = $array[$index];

46 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | permute N elements of a list?

Here's a little program that generates all permutations of all the words on each line of input. The algorithm
embodied in th@ermut() function should work on any list:

#1/usr/bin/perl —n
permute — tchrist@perl.com
permut([split], []);
sub permut {
my @head = @{ $_[0] };
my @tail = @{ $_[1] };
unless (@head) {
stop recursing when there are no elements in the head
print "@tail\n";
}else {
for all elements in @head, move one from @head to @tail
and call permut() on the new @head and @talil
my(@newhead, @newtail, $i);
foreach $i (0 .. $#head) {
@newhead = @head;
@newtail = @tall;
unshift(@newtail, splice(@newhead, $i, 1));
permut([@newhead], [@newtall]);

}

How do | sort an array by (anything)?
Supply a comparison function sort() (described irsort):

@list = sort { $a <=> $b } @list;

The default sort function is cmp, string comparison, which would(%p2, 10) into (1, 10, 2)
<=>, used above, is the numerical comparison operator.

If you have a complicated function needed to pull out the part you want to sort on, then don‘t do it inside the
sort function. Pull it out first, because the sort BLOCK can be called many times for the same element.
Here's an example of how to pull out the first word after the first number on each item, and then sort those
words case-insensitively.

@idx = ();
for (@data) {
(Bitem) = Ad+\s*(\S+)/;
push @idx, uc($item);
}
@sorted = @data[sort { $idx[$a] cmp $idx[$b] } O .. $#idx];

Which could also be written this way, using a trick that's come to be known as the Schwartzian Transform:
@sorted = map {$_->[0]}
sort { $a—>[1] cmp $b—>[1] }
map {[$_, uc((Nd+\s*(\S+))[0]] } @data;
If you need to sort on several fields, the following paradigm is useful.

@sorted = sort { field1($a) <=> field1($b) ||
field2($a) cmp field2($b) ||
field3($a) cmp field3($b)

} @data;

23—-Mar-1997 Perl Version 5.004 BETA 47

perlfaq4 Perl Programmers Reference Guide perlfaq4

This can be conveniently combined with precalculation of keys as given above.
See http://www.perl.com/CPAN/doc/FMTEYEWTK/sort.html for more about this approach.
See also the question below on sorting hashes.

How do | manipulate arrays of bits?
Usepack() andunpack() , orelsevec() and the bitwise operations.

For example, this sefvec to have bit N set i$ints[N] was set:

$vec =",
foreach(@ints) { vec($vec,$_,1) =1}

And here's how, given a vector §ivec, you can get those bits into your @ints array:

sub bitvec_to_list {
my $vec = shift;
my @ints;
Find null-byte density then select best algorithm
if ($vec =~ tr\0// / length $vec > 0.95) {
use integer;
my $i;
This method is faster with mostly null-bytes
while($vec =~ /[M0)/g) {
$i = -9 + 8 * pos $vec;
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
}
}else {
This method is a fast general algorithm
use integer;
my $bits = unpack "b*", $vec;
push @ints, 0 if $bits =~ s/*(\d)// && $1;
push @ints, pos $bits while($bits =~ /1/g);
}

return \@ints;

}

This method gets faster the more sparse the bit vector is. (Courtesy of Tim Bunce and Winfried Koenig.)

Why does defined() return true on empty arrays and hashes?
Seedefinedin the 5.004 release or later of Perl.

Data: Hashes (Associative Arrays)

How do | process an entire hash?
Use theeach() function (seeeach) if you don't care whether it's sorted:

while (($key,$value) = each %hash) {
print "$key = $value\n”;
}

If you want it sorted, you'll have to ugereach() on the result of sorting the keys as shown in an earlier

48 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

guestion.

What happens if | add or remove keys from a hash while iterating over it?
Don‘t do that.

How do | look up a hash element by value?
Create a reverse hash:

%by_value = reverse %by_key;,
$key = $by_value{$value};

That's not particularly efficient. It would be more space-efficient to use:

while (($key, $value) = each %by_key) {
$by_value{$value} = $key;
}

If your hash could have repeated values, the methods above will only find one of the associated keys. This
may or may not worry you.

How can | know how many entries are in a hash?
If you mean how many keys, then all you have to do is take the scalar senskegkthe function:

$num_keys = scalar keys %hash;
In void context it just resets the iterator, which is faster for tied hashes.

How do | sort a hash (optionally by value instead of key)?

Internally, hashes are stored in a way that prevents you from imposing an order on key-value pairs. Instead,
you have to sort a list of the keys or values:

@keys = sort keys %hash; # sorted by key
@keys = sort {
$hash{$a} cmp $hash{$b}
} keys %hash; # and by value

Here we'll do a reverse numeric sort by value, and if two keys are identical, sort by length of key, and if that
fails, by straight ASCIl comparison of the keys (well, possibly modified by your locale pesézale.

@keys = sort {
$hash{$b} <=> $hash{$a}

|
length($b) <=> length($a)

$a cmp $b
} keys %hash;

How can | always keep my hash sorted?

You can look into using the DB_File module atid() using the$DB_BTREEhash bindings as
documented imn Memory Databases in DB_File

What's the difference between "delete" and "undef" with hashes?

Hashes are pairs of scalars: the first is the key, the second is the value. The key will be coerced to a string,
although the value can be any kind of scalar: string, number, or reference. |Bkeleys present in the

array, exists($key) will return true. The value for a given key can bedef , in which case
$array{$key} will be undef while $exists{$key} will return true. This corresponds tBkey,

undef) being in the hash.

Pictures help... here's tliéary table:

keys values

1 1 Il
-+ - -

23—-Mar-1997 Perl Version 5.004 BETA 49

perlfaq4 Perl Programmers Reference Guide perlfaq4

® O X o
NONW

1 1
-+ -

And these conditions hold

Sary{’a’} is true

Sary{’'d’} is false

defined $ary{'d’} is true

defined $ary{’a’} is true

exists $ary{'a’} is true (perl5 only)

grep ($_eq’'a’, keys %ary) s true
If you now say

undef $ary{’a’}
your table now reads:

keys values

and these conditions now hold; changes in caps:

Sary{’a’} is FALSE

Sary{’'d’} is false

defined $ary{'d’} is true

defined $ary{’a’} is FALSE

exists $ary{'a’} is true (perl5 only)

grep ($_eq 'a’, keys %ary) s true
Notice the last two: you have an undef value, but a defined key!
Now, consider this:

delete $ary{'a’}
your table now reads:

keys values

and these conditions now hold; changes in caps:

Sary{’a’} is false

Sary{’'d’} is false

defined $ary{'d’} is true

defined $ary{’a’} is false

exists $ary{'a’} is FALSE (perl5 only)

grep ($_eq'a’, keys %ary) is FALSE

50 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

See, the whole entry is gone!

Why don‘t my tied hashes make the defined/exists distinction?

They may or may not implement tB&XISTS() andDEFINED() methods differently. For example, there
isn‘t the concept of undef with hashes that are tied to DBM* files. This means the true/false tables above will
give different results when used on such a hash. It also means that exists and defined do the same thing with
a DBM* file, and what they end up doing is not what they do with ordinary hashes.

How do | reset an each() operation part-way through?

Using keys %hash in a scalar context returns the number of keys in the hadhresets the iterator
associated with the hash. You may need to do this if yolasse to exit a loop early so that when you
re—enter it, the hash iterator has been reset.

How can | get the unique keys from two hashes?

First you extract the keys from the hashes into arrays, and then solve the uniquifying the array problem
described above. For example:

%seen = ();
for $element (keys(%foo), keys(%bar)) {
$seen{$Selement}++;
}
@uniq = keys %seen,;
Or more succinctly:
@uniq = keys %{{%fo0,%bar}};
Or if you really want to save space:

%seen = ();
while (defined ($key = each %fo0)) {
$seen{Skey}++;

while (defined ($key = each %bar)) {
$seen{Skey}++;
}
@uniq = keys %seen,;
How can | store a multidimensional array in a DBM file?

Either stringify the structure yourself (no fun), or else get the MLDBM (which uses Data::Dumper) module
from CPAN and layer it on top of either DB_File or GDBM_File.

How can | make my hash remember the order | put elements into it?
Use the Tie::IxHash from CPAN.

Why does passing a subroutine an undefined element in a hash create it?
If you say something like:

somefunc($hash{"nonesuch key here"});

Then that element "autovivifies"; that is, it springs into existence whether you store something there or not.
That's because functions get scalars passed in by referersmmdfunc() modifies$_[0], it has to be
ready to write it back into the caller‘s version.

This has been fixed as of perl5.004.

Normally, merely accessing a key's value for a nonexistent keyragesuse that key to be forever there.
This is different than awk's behavior.

23—-Mar-1997 Perl Version 5.004 BETA 51

perlfaq4 Perl Programmers Reference Guide perlfaq4

How can | make the Perl equivalent of a C structure/C++ class/hash
or array of hashes or arrays?
Use references (documented perlref). Examples of complex data structures are givepenidsc and
perllol. Examples of structures and object-oriented classes peglioot
How can | use a reference as a hash key?
You can‘t do this directly, but you could use the standard Tie::Refhash module distributed with perl.

Data: Misc

How do | handle binary data correctly?
Perl is binary clean, so this shouldn‘t be a problem. For example, this works fine (assuming the files are
found):
if (‘cat /Ivmunix' =~ /gzip/) {
print "Your kernel is GNU-zip enabled!\n";

}

On some systems, however, you have to play tedious games with "text" versus "binary" files. See
binmode in perlfunc

If you‘re concerned about 8-bit ASCII data, then gedlocale

If you want to deal with multi-byte characters, however, there are some gotchas. See the section on Regular
Expressions.
How do | determine whether a scalar is a number/whole/integer/float?

Assuming that you don'‘t care about IEEE notations like "NaN" or "Infinity", you probably just want to use a
regular expression.

warn "has nondigits" if AD/;

warn "not a whole number" unless /M\d+$/;

warn "not an integer" unless /"=?\d+$/; # reject +3
warn "not an integer" unless /A[+=]2\d+$/;

warn "not a decimal number" unless /*~-\d+\.2\d*$/; # rejects .2
warn "not a decimal number" unless /*=?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /M([+=1?)(?=\d\.\d)\d*(\.\d*) ?([Ee]([+-]?\d+))?$/;

Or you could check out http://mww.perl.com/CPAN/modules/by—module/String/String—Scanf-1.1.tar.gz
instead. The POSIX module (part of the standard Perl distribution) providsstdte andstrtod for
converting strings to double and longs, respectively.

How do | keep persistent data across program calls?
For some specific applications, you can use one of the DBM moduleangB8M_File More generically,
you should consult the FreezeThaw, Storable, or Class::Eroot modules from CPAN.

How do | print out or copy a recursive data structure?
The Data::Dumper module on CPAN is nice for printing out data structures, and FreezeThaw for copying
them. For example:

use FreezeThaw gw(freeze thaw);
$new = thaw freeze $old;

Where$old can be (a reference to) any kind of data structure you'd like. It will be deeply copied.

How do | define methods for every class/object?
Use the UNIVERSAL class (sé&NIVERSAIL.

52 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | verify a credit card checksum?
Get the Business::CreditCard module from CPAN.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pe3iaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 53

perlfaq5 Perl Programmers Reference Guide perlfaq5

NAME

perlfag5 — Files and Format$Revision: 1.19%)

DESCRIPTION

This section deals with I/O and the "f* issues: filehandles, flushing, formats, and footers.

How do | flush/unbuffer a filehandle? Why must | do this?

The C standard 1/O library (stdio) normally buffers characters sent to devices. This is done for efficiency
reasons, so that there isn‘t a system call for each byte. Any time yquinige or write() in Perl,
you go though this bufferingsyswrite() circumvents stdio and buffering.

In most stdio implementations, the type of buffering and the size of the buffer varies according to the type of
device. Disk files are block buffered, often with a buffer size of more than 2k. Pipes and sockets are often
buffered with a buffer size between 1/2 and 2k. Serial devices (e.g. modems, terminals) are normally
line—buffered, and stdio sends the entire line when it gets the newline.

Perl does not support truly unbuffered output (except insofar as yaysamnte(OUT, $char, 1)).

What it does instead support is "command buffering”, in which a physical write is performed after every
output command. This isn‘t as hard on your system as unbuffering, but does get the output where you want
it when you want it.

If you expect characters to get to your device when you print them there, you'll want to autoflush its handle,
as in the older:

use FileHandle;
open(DEV, "<+/dev/tty"); # ceci n'est pas une pipe
DEV—>autoflush(1);

or the newer 10::* modules:

use |0::Handle;
open(DEV, ">/dev/printer"); # but is this?
DEV—>autoflush(1);

or even this:

use 10::Socket; # this one is kinda a pipe?

$sock = 10::Socket::INET->new(PeerAddr => 'www.perl.com’,
PeerPort => 'http(80)’,
Proto =>'tcp’);

die "$!" unless $sock;

$sock—>autoflush();
$sock—>print("GET N015\012");
$document = join(”, $sock—>getlines());
print "DOC IS: $document\n”;

Note the hardcoded carriage return and newline in their octal equivalents. This is the ONLY way (currently)
to assure a proper flush on all platforms, including Macintosh.

You can useelect() and the$| variable to control autoflushing (sé¢ andselec):

$oldh = select(DEV);
$=1;
select($oldh);

You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);

54

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

How do | change one line in a file/delete a line in a file/insert a line in the middle of a file/append to
the beginning of a file?
Although humans have an easy time thinking of a text file as being a sequence of lines that operates much
like a stack of playing cards — or punch cards — computers usually see the text file as a sequence of bytes.
In general, there's no direct way for Perl to seek to a particular line of a file, insert text into a file, or remove
text from a file.

(There are exceptions in special circumstances. Replacing a sequence of bytes with another sequence of the
same length is one. Another is using 82B_RECNQCarray bindings as documented B_File. Yet
another is manipulating files with all lines the same length.)

The general solution is to create a temporary copy of the text file with the changes you want, then copy that
over the original.

$old = $file;

$new = "$file.tmp.$$";

$bak = "$file.bak";

open(OLD, "< $old") or die "can't open $old: $!";
open(NEW, "> $new") or die "can’t open $new: $!";

Correct typos, preserving case
while (<OLD>) {

s/\b(p)earl\b/${1}erl/i;

(print NEW $) or die "can't write to $new: $!";
}
close(OLD) or die "can’t close $old: $!";
close(NEW) or die "can't close $new: $!";
rename($old, $bak) or die "can't rename $old to $bak: $!";
rename($new, $old) or die "can’t rename $new to $old: $!";

Perl can do this sort of thing for you automatically with thecommand-line switch or the closely-related
$7 variable (se@erlrun for more details). Note thai may require a suffix on some non-Unix systems;
see the platform—specific documentation that came with your port.

Renumber a series of tests from the command line
perl —pi —e 's/(Ms+test\s+)\d+/ $1 . ++$count /e’ t/op/taint.t

form a script
local($"l, @ARGV) = (".bak’, glob("*.c"));

while (<>) {
if ($.==1){
print "This line should appear at the top of each file\n";
}
s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving case
print;
close ARGV if eof; # Reset $.

}

If you need to seek to an arbitrary line of a file that changes infrequently, you could build up an index of byte
positions of where the line ends are in the file. If the file is large, an index of every tenth or hundredth line
end would allow you to seek and read fairly efficiently. If the file is sorted, try the look.pl library (part of the
standard perl distribution).

In the unique case of deleting lines at the end of a file, you catell@e andtruncate() . The
following code snippet deletes the last line of a file without making a copy or reading the whole file into
memory:

23—-Mar-1997 Perl Version 5.004 BETA 55

perlfaq5 Perl Programmers Reference Guide perlfaq5

open (FH, "+< $file");
while (<FH>) { $addr = tell(FH) unless eof(FH) }
truncate(FH, $addr);

Error checking is left as an exercise for the reader.

How do | count the number of lines in a file?

One fairly efficient way is to count newlines in the file. The following program uses a feature of tr///, as
documented imperlop. If your text file doesn‘'t end with a newline, then it's not really a proper text file, so
this may report one fewer line than you expect.

$lines = 0;
open(FILE, $filename) or die "Can’t open ‘Sfilename’: $!";
while (sysread FILE, $buffer, 4096) {

$lines += ($buffer =~ trAn//);

}
close FILE;

How do | make a temporary file name?

Use the process ID and/or the current time—value. If you need to have many temporary files in one process,
use a counter:

BEGIN {
use |O::File;
use Fentl;
my $temp_dir = —=d '/tmp’ ? '/tmp’ : SENV{TMP} || SENV{TEMP};
my $base_name = sprintf("%s/%d-%d—-0000", $temp_dir, $$, time());
sub temp_file {
my $fh = undef;
my $count = 0;
until (defined($fh) || $count > 100) {
$base_name =~ s/-(\d+)$/"-" . (1 + $1)/e;
$th = 10::File->new($base_name, O_WRONLY|O_EXCL|O_CREAT, 0644)

}
if (defined($fh)) {

return ($fh, $base_name);
}else {

return ();

}
}
}

Or you could simply use 10::Handle::new_tmpfile.

How can | manipulate fixed-record-length files?

The most efficient way is usingack() andunpack() . This is faster than usimgubstr() . Hereis a
sample chunk of code to break up and put back together again some fixed—format input lines, in this case
from the output of a normal, Berkeley-style ps:

sample input line:
15158 p5 T 0:00 perl /home/tchrist/scripts/now—what
$PS_T ="A6 A4 A7 A5 A%
open(PS, "ps|");
$ = <PS>; print;
while (<PS>) {
($pid, $tt, $stat, $time, Scommand) = unpack($PS_T, $);
for $var (qw!pid tt stat time command!) {
print "$var: <$$var>\n";

56 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

}
print line=", pack($PS_T, $pid, $tt, $stat, $time, Scommand),

"\n";
}
How can | make a filehandle local to a subroutine? How do | pass filehandles between
subroutines? How do | make an array of filehandles?
You may have some success with typeglobs, as we always had to use in days of old:

local(*FH);

But while still supported, that isn‘t the best to go about getting local filehandles. Typeglobs have their
drawbacks. You may well want to use fhieeHandle = module, which creates new filehandles for you
(seeFileHandlg:

use FileHandle;
sub findme {
my $fh = FileHandle->new();
open($fh, "</etc/hosts") or die "no /etc/hosts: $!";
while (<$fh>) {
print if Ab127\.(0\.0\.)?1\b/;

}

$fh automatically closes/disappears here
}

Internally, Perl believes filehandles to be of class 10::Handle. You may use that module directly if you'd
like (seelO::Handle), or one of its more specific derived classes.

How can | set up a footer format to be used with write() ?

There's no built-in way to do this, bgerlform has a couple of techniques to make it possible for the
intrepid hacker.

How can | write() into a string?
Seeperlformfor answrite() function.

How can | output my numbers with commas added?
This one will do it for you:

sub commify {

local $_ = shift;
1 while s/A(-2\d+)(\d{3})/$1,$2/;
retun $_;

}

$n = 23659019423.2331;
print "GOT: ", commify($n), "\n";

GOT: 23,659,019,423.2331
You can't just:
s/N=?\d+)(\d{3})/$1,$2/g;
because you have to put the comma in and then recalculate your position.

How can | translate tildes (~) in a filename?

Use the <x(glob()) operator, documented perlfunc This requires that you have a shell installed that
groks tildes, meaning csh or tcsh or (some versions of) ksh, and thus may have portability problems. The
Glob::KGlob module (available from CPAN) gives more portable glob functionality.

Within Perl, you may use this directly:

23—-Mar-1997 Perl Version 5.004 BETA 57

IO::Handle

perlfaq5 Perl Programmers Reference Guide perlfaq5

$filename =~ s{

N~ # find a leading tilde
(# save this in $1
™ # a non-slash character

* #repeated O or more times (0 means me)

)
H
$1
? (getpwnam($1))[7]
: ($ENV{HOME} || $ENV{LOGDIR})
lex;
How come when | open the file read-write it wipes it out?
Because you're using something like this, which truncates the filthandives you read—write access:

open(FH, "+> /path/name"); # WRONG

Whoops. You should instead use this, which will fail if the file doesn't exist.
open(FH, "+< /path/name"); # open for update

If this is an issue, try:
sysopen(FH, "/path/name", O_RDWR|O_CREAT, 0644);

Error checking is left as an exercise for the reader.

Why do | sometimes get an "Argument list too long" when | use <*?

The<> operator performs a globbing operation (see above). By dgfablj forks csh(1) to do the actual

glob expansion, but csh can‘t handle more than 127 items and so gives the error Arggsagat list

too long . People who installed tcsh as csh won‘t have this problem, but their users may be surprised by
it.

To get around this, either do the glob yourself witimhandle s and patterns, or use a module like
Glob::KGlob, one that doesn't use the shell to do globbing.
Is there a leak/bug in glob() ?

Due to the current implementation on some operating systems, when you géebfhe function or its
angle-bracket alias in a scalar context, you may cause a leak and/or unpredictable behavior. It's best
therefore to usglob() only in list context.

How can | open a file with a leading ">" or trailing blanks?

Normally perl ignores trailing blanks in filenames, and interprets certain leading characters (or a trailing "|")
to mean something special. To avoid this, you might want to use a routine like this. It makes incomplete
pathnames into explicit relative ones, and tacks a trailing null byte on the name to make perl leave it alone:

sub safe_filename {

local $_ = shift;

return m#\/#
?"$_\0"
D "I$\0Y

}

$fn = safe_filename("<<<something really wicked ");
open(FH, "> $fn") or "couldn’t open $fn: $!";

You could also use thgysopen() function (seeysopeh

How can | reliably rename a file?

Well, usually you just use Perligname() function. But that may not work everywhere, in particular,
renaming files across file systems. If your operating system supports a mv(1l) program or its moral

58 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

equivalent, this works:
rename($old, $new) or system("mv", $old, $new);

It may be more compelling to use the File::Copy module instead. You just copy to the new file to the new
name (checking return values), then delete the old one. This isn‘t really the same semantics as a real
rename() , though, which preserves metainformation like permissions, timestamps, inode info, etc.

How can | lock a file?

Perl‘s built=in flock() function (seeperlfunc for details) will call flock(2) if that exists, fcntl(2) if it
doesn't (on perl version 5.004 and later), and lockf(3) if neither of the two previous system calls exists. On
some systems, it may even use a different form of native locking. Here are some gotchas with Perl's
flock()

1 Produces a fatal error if none of the three system calls (or their close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the filehandle be open for writing (or
appending, or read/writing).

3 Some versions dfock() can't lock files over a network (e.g. on NFS file systems), so you'd need
to force the use of fcntl(2) when you build Perl. See the flock enpgrtfing and thdNSTALL file
in the source distribution for information on building Perl to do this.

The CPAN module File::Lock offers similar functionality and (if you have dynamic loading) won't require
you to rebuild perl if youflock() ~ can't lock network files.

What can‘t | just open(FH, “file.lock™")?
A common bit of cod®&OT TO USE is this:

sleep(3) while —e "file.lock"; # PLEASE DO NOT USE
open(LCK, "> file.lock"); # THIS BROKEN CODE

This is a classic race condition: you take two steps to do something which must be done in one. That's why
computer hardware provides an atomic test-and—-set instruction. In theory, this "ought" to work:

sysopen(FH, "file.lock", O_WRONLY|O_EXCL|O_CREAT, 0644)
or die "can't open file.lock: $!":

except that lamentably, file creation (and deletion) is not atomic over NFS, so this won't work (at least, not
every time) over the net. Various schemes involving invollimg) have been suggested, but these tend
to involve busy—-wait, which is also subdesirable.

| still don‘t get locking. | just want to increment the number
in the file. How can | do this?

Didn‘t anyone ever tell you web—page hit counters were useless?

Anyway, this is what to do:

use Fentl;

sysopen(FH, "numfile”, O_RDWR|O_CREAT, 0644) or die "can’t open numfile: $!";
flock(FH, 2) or die "can't flock numfile: $!";
$num = <FH> || 0;

seek(FH, 0, 0) or die "can’t rewind numfile: $!";
truncate(FH, 0) or die "can't truncate numfile: $!";
(print FH $num+1, "\n") or die "can’t write numfile: $!";

DO NOT UNLOCK THIS UNTIL YOU CLOSE

close FH or die "can’t close numfile: $!";

Here's a much better web—page hit counter:
$hits = int((time() — 850_000_000) / rand(1_000));

23—-Mar-1997 Perl Version 5.004 BETA 59

perlfaq5 Perl Programmers Reference Guide perlfaq5

If the count doesn't impress your friends, then the code might. :-)

How do | randomly update a binary file?
If you're just trying to patch a binary, in many cases something as simple as this works:

perl —i —pe 's{window manager{window mangler}g’ /usr/bin/emacs
However, if you have fixed sized records, then you might do something more like this:

$RECSIZE = 220; # size of record, in bytes

$recno = 37; # which record to update

open(FH, "+<somewhere") || die "can’t update somewhere: $!";

seek(FH, $recno * $RECSIZE, 0);

read(FH, $record, $SRECSIZE) == $RECSIZE || die "can't read record $recno: $!";
munge the record

seek(FH, $recno * $RECSIZE, 0);

print FH $record,;

close FH;

Locking and error checking are left as an exercise for the reader. Don‘t forget them, or you'll be quite sorry.

Don't forget to sebinmode() under DOS-Ilike platforms when operating on files that have anything other
than straight text in them. See the doc®pen() and orbinmode() for more details.

How do | get a file's timestamp in perl?

If you want to retrieve the time at which the file was last read, written, or had its meta—data (owner, etc)
changed, you use theM, —A, or—C filetest operations as documentega@rlfunc These retrieve the age of

the file (measured against the start—time of your program) in days as a floating point number. To retrieve the
“raw" time in seconds since the epoch, you would call the stat function, thetoaademe()
gmtime() , or POSIX::strftime() to convert this into human-readable form.

Here's an example:

$write_secs = (stat($file))[9];
print "file $file updated at ", scalar(localtime($file)), "\n";

If you prefer something more legible, use the File::stat module (part of the standard distribution in version
5.004 and later):

use File::stat;

use Time::localtime;

$date_string = ctime(stat($file)->mtime);
print "file $file updated at $date_string\n";

Error checking is left as an exercise for the reader.

How do | set a file's timestamp in perl?

You use thaitime() function documented intime By way of example, here's a little program that copies
the read and write times from its first argument to all the rest of them.

if (@ARGV < 2) {
die "usage: cptimes timestamp_file other_files ...\n";

}

$timestamp = shift;
($atime, $mtime) = (stat($timestamp))[8,9];
utime $atime, $mtime, @ARGV;

Error checking is left as an exercise for the reader.

Note thatutime() currently doesn't work correctly with Win95/NT ports. A bug has been reported.
Check it carefully before using it on those platforms.

60 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

How do | print to more than one file at once?
If you only have to do this once, you can do this:

for $th (FH1, FH2, FH3) { print $fh "whatever\n" }

To connect up to one filehandle to several output filehandles, it's easiest to use the tee(1) program if you
have it, and let it take care of the multiplexing:

open (FH, "| tee filel file2 file3");

Otherwise you'll have to write your own multiplexing print function — or your own tee program — or use
Tom Christiansen's, at http://www.perl.com/CPAN/authors/id/TOMC/scripts/tct.gz, which is written in Perl.

In theory a 10::Tee class could be written, but to date we haven‘t seen such.

How can | read in a file by paragraphs?

Use the$\ variable (seeerlvar for details). You can either set it 1o to eliminate empty paragraphs
("abc\n\n\n\ndef" , for instance, gets treated as two paragraphs and not thrée)\ndr to accept
empty paragraphs.

How can | read a single character from a file? From the keyboard?

You can use the builtigetc() function for most filehandles, but it won't (easily) work on a terminal
device. For STDIN, either use the Term::ReadKey module from CPAN, or use the samplegside in

If your system supports POSIX, you can use the following code, which you'll note turns off echo processing
as well.

#l/usr/bin/perl -w
use strict;
$=1;
for (1..4) {
my $got;
print "gimme: ";
$got = getone();
print "—-—> $got\n";
} .
exit;
BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN);

$term = POSIX:: Termios—>new();
$term—>getattr($fd_stdin);
$oterm = $term—>getlflag();

$echo =ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term->setlflag($noecho);
$term->setcc(VTIME, 1);
$term—>setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term—>setlflag($oterm);
$term->setcc(VTIME, 0);

23—-Mar-1997 Perl Version 5.004 BETA 61

perlfaq5 Perl Programmers Reference Guide perlfaq5

$term—>setattr($fd_stdin, TCSANOW);
}

sub getone {
my $key = ";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}
END { cooked() }

The Term::ReadKey module from CPAN may be easier to use:

use Term::ReadKey;

open(TTY, "</dev/tty");

print "Gimme a char: ";

ReadMode "raw";

$key = ReadKey 0, *TTY;

ReadMode "normal*;

printf "\nYou said %s, char number %03d\n",
$key, ord $key;

For DOS systems, Dan Carson <dbc@tc.fluke.COM reports the following:

To put the PC in "raw" mode, use ioctl with some magic numbers gleaned from msdos.c (Perl source file)
and Ralf Brown's interrupt list (comes across the net every so often):

$old_ioctl = ioctl(STDIN,0,0); # Gets device info
$old_ioctl &= Oxff;
ioctl(STDIN,1,$old_ioctl | 32); # Writes it back, setting bit 5

Then to read a single character:
sysread(STDIN,$c,1); # Read a single character
And to put the PC back to "cooked" mode:
ioctl(STDIN,1,%old_ioctl); # Sets it back to cooked mode.

So now you havéc. If ord($c) == , you have a two byte code, which means you hit a special key.
Read another byte withysread(STDIN,$c,1), and that value tells you what combination it was
according to this table:

PC 2-byte keycodes = *@ + the following:

#HEX KEYS

—_ —_—

#0F SHF TAB

#10-19 ALT QWERTYUIOP
#1E-26 ALT ASDFGHJKL
#2C-32 ALT ZXCVBNM
#3B-44 F1-F10

#47-49 HOME,UP,PgUp
#4B LEFT

#4D RIGHT

4F-53 END,DOWN,PgDn,Ins,Del
#54-5D SHF F1-F10
#5E-67 CTR F1-F10

62

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

#68-71 ALT F1-F10

#73-77 CTR LEFT,RIGHT,END,PgDn,HOME
#78-83 ALT 1234567890-=

#84 CTR PgUp

This is all trial and error | did a long time ago, | hope I'm reading the file that worked.

How can | tell if there's a character waiting on a filehandle?
You should check out the Frequently Asked Questions list in comp.unix.* for things like this: the answer is
essentially the same. It's very system dependent. Here's one solution that works on BSD systems:

sub key_ready {
my($rin, $nfd);
vec($rin, fileno(STDIN), 1) = 1;
return $nfd = select($rin,undef,undef,0);

}
You should look into getting the Term::ReadKey extension from CPAN.

How do | open a file without blocking?
You need to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with
sysopen()

use Fentl;
sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT, 0644)
or die "can’t open /tmp/somefile: $!":
How do | create a file only if it doesn‘t exist?
You need to use the O_CREAT and O_EXCL flags from the Fcntl module in conjunction with
sysopen()

use Fentl;
sysopen(FH, "/tmp/somefile”, O_WRONLY|O_EXCL|O_CREAT, 0644)
or die "can't open /tmp/somefile: $!":

Be warned that neither creation nor deletion of files is guaranteed to be an atomic operation over NFS. That
is, two processes might both successful create or unlink the same file!

How do I do a tail —f in perl?
First try

seek(GWFILE, 0, 1);

The statemenseek(GWFILE, 0, 1) doesn't change the current position, but it does clear the
end-of-file condition on the handle, so that the next <GWFILE makes Perl try again to read something.

If that doesn't work (it relies on features of your stdio implementation), then you need something more like

this:
for (;;) {
for ($curpos = tell[GWFILE); <GWFILE>; $curpos = tel(GWFILE)) {
search for some stuff and put it into files
}
sleep for a while
seek(GWFILE, $curpos, 0); # seek to where we had been
}
If this still doesn‘t work, look into the POSIX module. POSIX definesdiearerr() method, which
can remove the end of file condition on a filehandle. The method: read until end déékeyr() , read

some more. Lather, rinse, repeat.

23—-Mar-1997 Perl Version 5.004 BETA 63

perlfaq5 Perl Programmers Reference Guide perlfaq5

How do | dup() a filehandle in Perl?
If you checkopen you'll see that several of the ways to @glen() should do the trick. For example:

open(LOG, ">>/tmp/logdfile");
open(STDERR, ">&LOG");

Or even with a literal numeric descriptor:

$fd = SENV{MHCONTEXTFD};
open(MHCONTEXT, "<&=%$fd"); # like fdopen(3S)

Error checking has been left as an exercise for the reader.

How do | close a file descriptor by number?

This should rarely be necessary, as the Blede() function is to be used for things that Perl opened
itself, even if it was a dup of a numeric descriptor, as with MHCONTEXT above. But if you really have to,
you may be able to do this:

require 'sys/syscall.ph’;
$rc = syscall(&SYS_close, $fd + 0); # must force numeric
die "can't sysclose $fd: $!" unless $rc == -1;

Why can‘t | use "C:\temp\foo" in DOS paths? What doesn‘t ‘C:\temp\foo.exe* work?

Whoops! You just put a tab and a formfeed into that filename! Remember that within double quoted strings
("like\this"), the backslash is an escape character. The full list of these is in

Quote and Quote-like Operatardnsurprisingly, you don‘t have a file called "c:(tab)emp(formfeed)oo" or
"c:(tab)emp(formfeed)oo.exe" on your DOS filesystem.

Either single—quote your strings, or (preferably) use forward slashes. Since all DOS and Windows versions
since something like MS-DOS 2.0 or so have treatatd\ the same in a path, you might as well use the

one that doesn‘t clash with Perl — or the POSIX shell, ANSI C and C++, awk, Tcl, Java, or Python, just to
mention a few.

Why doesn't glob("*.*") get all the files?
Because even on non-Unix ports, Perl‘'s glob function follows standard Unix globbing semantics. You'll
needglob("*") to get all (non—hidden) files.

Why does Perl let me delete read-only files? Why does —-i clobber protected files? Isn‘t this a
bug in Perl?
This is elaborately and painstakingly described in the "Far More Than You Every Wanted To Know" in
http://www.perl.com/CPAN/doc/FMTEYEWTK/file-dir-perms .

The executive summary: learn how your filesystem works. The permissions on a file say what can happen to
the data in that file. The permissions on a directory say what can happen to the list of files in that directory.
If you delete a file, you're removing its name from the directory (so the operation depends on the
permissions of the directory, not of the file). If you try to write to the file, the permissions of the file govern
whether you‘re allowed to.

How do | select a random line from a file?
Here's an algorithm from the Camel Book:

srand;
rand($.) < 1 && ($line = $_) while <>;

This has a significant advantage in space over reading the whole file in.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

64 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

NAME
perlfag6 — Regexp$Revision: 1.143%)
DESCRIPTION

This section is surprisingly small because the rest of the FAQ is littered with answers involving regular
expressions. For example, decoding a URL and checking whether something is a number are handled with
regular expressions, but those answers are found elsewhere in this document (in the section on Data and the
Networking one on networking, to be precise).

How can | hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regexp
Describe what you‘re doing and how you‘re doing it, using normal Perl comments.

turn the line into the first word, a colon, and the

number of characters on the rest of the line

s/M\w+)() Ie($1) . " . length($2) /ge;
Comments Inside the Regexp

The/x modifier causes whitespace to be ignored in a regexp pattern (except in a character class), and
also allows you to use normal comments there, too. As you can imagine, whitespace and comments
help a lot.

/x lets you turn this:

s{<(Z:[*>"T" 2" *?)+>H}gs;

into this:
s{< # opening angle bracket
(2 # Non-backreffing grouping paren
[>"* # 0 or more things that are neither > nor ' nor "
| # orelse
" # a section between double quotes (stingy match)
| # orelse
LY # a section between single quotes (stingy match)
)+ # all occurring one or more times
> # closing angle bracket
H}osx; # replace with nothing, i.e. delete

It's still not quite so clear as prose, but it is very useful for describing the meaning of each part of the
pattern.
Different Delimiters

While we normally think of patterns as being delimited witlcharacters, they can be delimited by
almost any charactemerlre describes this. For example, ¢ above uses braces as delimiters.
Selecting another delimiter can avoid quoting the delimiter within the pattern:

s/\lusrVlocal/\Nusr\/share/g; # bad delimiter choice
s#t/usr/local#/usr/share#g; # better

I'm having trouble matching over more than one line. What's wrong?
Either you don‘t have newlines in your string, or you aren‘t using the correct modifier(s) on your pattern.

There are many ways to get multiline data into a string. If you want it to happen automatically while reading
input, you'll want to se$/ (probably to “ for paragraphs emndef for the whole file) to allow you to read
more than one line at a time.

Readperlre to help you decide which d6 and/m (or both) you might want to usés allows dot to

23—-Mar-1997 Perl Version 5.004 BETA 65

perlfaq6 Perl Programmers Reference Guide perlfaq6

include newline, andm allows caret and dollar to match next to a newline, not just at the end of the string.
You do need to make sure that you‘ve actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not paragraph
ones). For this example, we don‘t néedbecause we aren‘t using dot in a regular expression that we want

to cross line boundaries. Neither do we needecause we aren't wanting caret or dollar to match at any
point inside the record next to newlines. But it's imperative #iabe set to something other than the
default, or else we won't actually ever have a multiline record read in.

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (Ab(WAS+)(\s+\1)+\b/gi) {
print "Duplicate $1 at paragraph $.\n";

}
}

Here's code that finds sentences that begin with "From " (which would be mangled by many mailers):

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (/AFrom /gm) { # /m makes * match next to \n
print "leading from in paragraph $.\n";
}
}

Here's code that finds everything between START and END in a paragraph:

undef $/; # read in whole file, not just one line or paragraph
while (<>) {
while (/START(.*?)END/sm) { # /s makes . cross line boundaries
print "$1\n";
}
}

How can | pull out lines between two patterns that are themselves on different lines?
You can use Perl's somewhat exatic operator (documented perlop):

perl —ne 'print if /[START/ .. /JEND/ filel file2 ...
If you wanted text and not lines, you would use
perl —0777 —pe ’print "$1\n" while /START(.*?)END/gs’ filel file2 ...

But if you want nested occurrencesFARTthroughEND you'll run up against the problem described in
the question in this section on matching balanced text.

| put a regular expression into $/ but it didn‘t work. What's wrong?
$/ must be a string, not a regular expression. Awk has to be better for something. :-)

Actually, you could do this if you don‘t mind reading the whole file into

undef $/;
@records = split /your_pattern/, <FH>;

How do | substitute case insensitively on the LHS, but preserving case on the RHS?

It depends on what you mean by "preserving case". The following script makes the substitution have the
same case, letter by letter, as the original. If the substitution has more characters than the string being
substituted, the case of the last character is used for the rest of the substitution.

Original by Nathan Torkington, massaged by Jeffrey Fried|
#
sub preserve_case($$)

66 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

my ($old, $new) = @_;

my ($state) = 0; # 0 = no change; 1 =Ic; 2 = uc

my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
my ($len) = $oldlen < $newlen ? $oldlen : $newlen;

for ($i = 0; $i < $len; $i++) {
if ($¢ = substr($old, $i, 1), $c =~ /NWA_]/) {

$state = 0;

} elsif (Ic $c eq $c¢) {
substr($new, $i, 1) = Ic(substr($new, $i, 1));
$state = 1;

}else {
substr($new, $i, 1) = uc(substr($new, $i, 1));
$state = 2;

}
}

finish up with any remaining new (for when new is longer than old)
if ($newlen > $oldlen) {
if ($state == 1) {
substr($new, $oldlen) = Ic(substr($new, $oldlen));
} elsif ($state == 2) {
substr($new, $oldlen) = uc(substr($new, $oldlen));

}
}

return $new;

}

$a = "this is a TEST case";
$a =~ s/(test)/preserve_case($1, "success")/gie;
print "$a\n";

This prints:
this is a SUCCESS case

How can | make \w match accented characters?
Seeperllocale

How can | match a locale-smart version of /[a-zA-Z])/ ?
One alphabetic character would 8W\d_]/ , ho matter what locale you're in. Non-alphabetics would
be/\WA\d_]/ (assuming you don‘t consider an underscore a letter).

How can | quote a variable to use in a regexp?

The Perl parser will expanéivariable and @variable references in regular expressions unless the
delimiter is a single quote. Remember, too, that the right-hand sidg//éf asubstitution is considered a
double—quoted string (sgeerlop for more details). Remember also that any regexp special characters will
be acted on unless you precede the substitution with \Q. Here's an example:

$string = "to die?";
$lhs = "die?";
$rhs = "sleep no more";

$string =~ s\Q$lhs/$rhs/;
$string is now "to sleep no more"

Without the \Q, the regexp would also spuriously match "di".

23—-Mar-1997 Perl Version 5.004 BETA 67

perlfaq6 Perl Programmers Reference Guide perlfaq6

What is /o really for?

Using a variable in a regular expression match forces a re—evaluation (and perhaps recompilation) each time
through. Thelo modifier locks in the regexp the first time it's used. This always happens in a constant
regular expression, and in fact, the pattern was compiled into the internal format at the same time your entire
program was.

Use of/o is irrelevant unless variable interpolation is used in the pattern, and if so, the regexp engine will
neither know nor care whether the variables change after the pattern is evaluasey fingttime.

/o is often used to gain an extra measure of efficiency by not performing subsequent evaluations when you
know it won‘t matter (because you know the variables won't change), or more rarely, when you don‘t want
the regexp to notice if they do.

For example, here's a "paragrep" program:
$/ ="; # paragraph mode
$pat = shift;
while (<>) {
print if /$pat/o;
}

How do | use a regular expression to strip C style comments from a file?

While this actually can be done, it's much harder than you‘d think. For example, this one-liner
perl —0777 —pe 's{*.*?*/}{}gs’ foo.c

will work in many but not all cases. You see, it's too simple-minded for certain kinds of C programs, in
particular, those with what appear to be comments in quoted strings. For that, you'd need something like
this, created by Jeffrey Fried!:

$/ = undef;

$_ =<

SN TV OLIWD OL N] [\)#$2
print;

This could, of course, be more legibly written with themodifier, adding whitespace and comments.

Can | use Perl regular expressions to match balanced text?

Although Perl regular expressions are more powerful than "mathematical" regular expressions, because they
feature conveniences like backreferendgsgnd its ilk), they still aren‘t powerful enough. You still need to

use non-regexp techniques to parse balanced text, such as the text enclosed between matching parentheses or
braces, for example.

An elaborate subroutine (for 7-bit ASCII only) to pull out balanced and possibly nested single chars, like
and’ ,{ and}, or(and) can be found in
http://www.perl.com/CPAN/authors/id/TOMC/scripts/pull_quotes.gz .

The C::Scan module from CPAN contains such subs for internal usage, but they are undocumented.

What does it mean that regexps are greedy? How can | get around it?

Most people mean that greedy regexps match as much as they can. Technically speaking, it's actually the
quantifiers ?, *, +, {}) that are greedy rather than the whole pattern; Perl prefers local greed and immediate
gratification to overall greed. To get non—greedy versions of the same quantifief®? use,+?, {}?).

An example:

$s1 = $s2 =" am very very cold";
$s1 =~s/ve*y/l; #lam cold
$s2 =~ s/ve.*?y //; #|am very cold

Notice how the second substitution stopped matching as soon as it encountered "y*? quemntifier

68

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

effectively tells the regular expression engine to find a match as quickly as possible and pass control on to
whatever is next in line, like you would if you were playing hot potato.

How do | process each word on each line?
Use the split function:

while (<>) {
foreach $word (split) {
do something with $word here

}
}

Note that this isn‘t really a word in the English sense; it's just chunks of consecutive non-whitespace
characters.

To work with only alphanumeric sequences, you might consider

while (<>) {
foreach $word (m/(\w+)/g) {
do something with $word here

}
}

How can | print out a word—frequency or line-frequency summary?
To do this, you have to parse out each word in the input stream. We'll pretend that by word you mean chunk
of alphabetics, hyphens, or apostrophes, rather than the non-whitespace chunk idea of a word given in the
previous question:

while (<>) {
while (/(\b["W_\d][\w'-]+\b)/g) { # misses "'sheep™
$seen{$1}++;
}
}

while (($word, $count) = each %seen) {
print "$count $word\n";

}

If you wanted to do the same thing for lines, you wouldn‘t need a regular expression:

while (<>) {
$seen{$_}++;

while (($line, $count) = each %seen) {
print "$count $line";

}

If you want these output in a sorted order, see the section on Hashes.

How can | do approximate matching?
See the module String::Approx available from CPAN.

How do | efficiently match many regular expressions at once?
The following is super—inefficient:

while (<FH>) {
foreach $pat (@patterns) {
if (/$pat/) {
do something
}
}

23—-Mar-1997 Perl Version 5.004 BETA 69

perlfaq6 Perl Programmers Reference Guide perlfaq6

}

Instead, you either need to use one of the experimental Regexp extension modules from CPAN (which might
well be overkill for your purposes), or else put together something like this, inspired from a routine in Jeffrey
Friedl's book:

sub _bm_build {
my $condition = shift;
my @regexp = @_; # this MUST not be local(); need my()
my $expr = join $condition => map { "mNSregexp[$_]/0" } (0..$#regexp);
my $match_func = eval "sub { $expr }";
die if $@; # propagate $@; this shouldn’t happen!
return $match_func;

}

sub bm_and { _bm_build(&&', @) }
sub bm_or {_bm_buildC|’, @_)}

$f1 = bm_and gw{

xterm
(?i)window
¥
$f2 = bm_or qw{
\b[Ff]ree\b
\bBSD\B
(?i)sys(tem)?\s*[V5]\b
¥

feed me /etc/termcap, prolly
while (<>) {
print"1: $_" if &$f1;
print"2: $_" if &$f2;
}

Why don‘t word-boundary searches with \b work for me?

Two common misconceptions are that is a synonym foks+ , and that it's the edge between whitespace
characters and non-whitespace characters. Neither is cdreds.the place between\a character and a
\W character (that isb is the edge of a "word"). It's a zero—width assertion, justtik8, and all the
other anchors, so it doesn‘t consume any charactpesire describes the behaviour of all the regexp
metacharacters.

Here are examples of the incorrect applicatiobafwith fixes:

"two words" =~ /(\w+)\b(\w+)/; # WRONG

"two words" =~ /(\w+)\s+(\w+)/; # right

" =matchless= text" =~ \b=(\w+)=\b/; # WRONG

" =matchless= text" =~ /=(\w+)=/; # right
Although they may not do what you thought they tid,and\B can still be quite useful. For an example of
the correct use db , see the example of matching duplicate words over multiple lines.

An example of usindB is the patteriBis\B . This will find occurrences of "is" on the insides of words
only, as in "thistle”, but not "this" or "island".

Why does using $&, $, or $ slow my program down?

Because once Perl sees that you need one of these variables anywhere in the program, it has to provide them
on each and every pattern match. The same mechanism that handles these provides for $ie &2 of

etc., so you pay the same price for each regexp that contains capturing parentheses. But if you$&ver use

etc., in your script, then regexpsthout capturing parentheses won'‘t be penalized. So #&jd$’, and

70 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

$' if you can, but if you can‘t (and some algorithms really appreciate them), once you‘ve used them once,
use them at will, because you‘ve already paid the price.

What good is \G in a regular expression?

The notation\G is used in a match or substitution in conjunction/themodifier (and ignored if there‘s no

/g) to anchor the regular expression to the point just past where the last match occurredpag() the
point.

For example, suppose you had a line of text quoted in standard mail and Usenet notation, (that is, with
leading> characters), and you want change each leasliimjo a corresponding. You could do so in this

way:
s/N(>+)I"" x length($1)/gem;

Or, using\G, the much simpler (and faster):
sNG>/:/g;

A more sophisticated use might involve a tokenizer. The following lex—like example is courtesy of Jeffrey
Friedl. It did not work in 5.003 due to bugs in that release, but does work in 5.004 or better:

while (<>) {
chomp;
PARSER: {
m/\G(\d+\b)/gx && do { print "number: $1\n"; redo; };
m/\G(\w+)lgx && do { print "word: $1\n"; redo; };
m/\G(\s+)/gx &&do{print "space: $1\n"; redo; };
m/\G(["W\d]+)/gx && do { print "other: $1\n"; redo; };

}
}
Of course, that could have been written as
while (<>) {
chomp;
PARSER: {
if (N\G(\d+\b)/gx {
print "number: $1\n";
redo PARSER,;
}
if (NG(\Ww+)lgx {
print "word: $1\n";
redo PARSER,;
}
if (NG(\s+)gx {
print "space: $1\n";
redo PARSER,;
}
if (AG([MwAd]+)/gx {
print "other: $1\n";
redo PARSER,;
}
}
}

But then you lose the vertical alignment of the regular expressions.

23—-Mar-1997 Perl Version 5.004 BETA 71

perlfaq6 Perl Programmers Reference Guide perlfaq6

Are Perl regexps DFAs or NFAs? Are they POSIX compliant?

While it's true that Perl's regular expressions resemble the DFAs (deterministic finite automata) of the
egrep(1l) program, they are in fact implemented as NFAs (non—-deterministic finite automata) to allow
backtracking and backreferencing. And they aren‘t POSIX-style either, because those guarantee worst-case
behavior for all cases. (It seems that some people prefer guarantees of consistency, even when what's
guaranteed is slowness.) See the book "Mastering Regular Expressions” (from O‘Reilly) by Jeffrey Fried|
for all the details you could ever hope to know on these matters (a full citation appeaitagD).

What's wrong with using grep or map in a void context?

Strictly speaking, nothing. Stylistically speaking, it's not a good way to write maintainable code. That's
because you‘re using these constructs not for their return values but rather for their side—effects, and
side—effects can be mystifying. There's no vgrep() that's not better written as #@r (well,

foreach , technically) loop.

How can | match strings with multi-byte characters?

This is hard, and there's no good way. Perl does not directly support wide characters. It pretends that a byte
and a character are synonymous. The following set of approaches was offered by Jeffrey Friedl, whose
article in issue #5 of The Perl Journal talks about this very matter.

Let's suppose you have some weird Martian encoding where pairs of ASCIl uppercase letters encode single
Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG", "VS", "XX",
etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters ‘I, ’ *, ‘a‘, ‘m‘, '/,
tCVi’ KSGt’ KXXL, 1!1.

Now, say you want to search for the single chard€®f . Perl doesn't know about Martian, so it'll find the
two bytes "GX" in the "l am CVSGXX!" string, even though that character isn‘t there: it just looks like it is
because "SG" is next to "XX", but there's no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

$martian =~ s/([A-Z][A-Z])/ $1 /g; # Make sure adjacent “maritan” bytes
are no longer adjacent.
print "found GX\n" if $martian =~ /GX/;

Or like this:

@chars = $martian =~ m/([A-Z][A-Z]|[*A-Z])/g;
above is conceptually similar to: ~ @chars = $text =~ m/(.)/g;
#
foreach $char (@chars) {
print "found GX\n", last if $char eq 'GX’;

}
Or like this:

while ($martian =~ mAG([A-Z][A-Z]|.)/gs) { # \G probably unneeded
print "found GX\n", last if $1 eq 'GX’;
}

Or like this:
die "sorry, Perl doesn't (yet) have Martian support)—:\n";

In addition, a sample program which converts half-width to full-width katakana (in Shift-JIS or EUC
encoding) is available from CPAN as

=for Tom make it so

There are many double- (and multi-) byte encodings commonly used these days. Some versions of these

72

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

have 1-, 2-, 3-, and 4-byte characters, all mixed.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. peskaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 73

perlfaq7 Perl Programmers Reference Guide perlfaq7

NAME
perlfaq7 — Perl Language Issu&Rgevision: 1.15%)

DESCRIPTION
This section deals with general Perl language issues that don‘t clearly fit into any of the other sections.

Can | get a BNF/yacc/RE for the Perl language?

No, in the words of Chaim Frenkel: "Perl's grammar can not be reduced to BNF. The work of parsing perl is
distributed between yacc, the lexer, smoke and mirrors."

What are all these $@%*punctuation signs, and how do | know when to use them?
They are type specifiers, as detaileghé@nldata

$ for scalar values (number, string or reference)

@ for arrays

% for hashes (associative arrays)

* for all types of that symbol name. In version 4 you used them like
pointers, but in modern perls you can just use references.

While there are a few places where you don‘t actually need these type specifiers, you should always use
them.

A couple of others that you're likely to encounter that aren‘t really type specifiers are:

<> are used for inputting a record from a filehandle.
\ takes a reference to something.

Note that <FILE> isneitherthe type specifier for files nor the name of the handle. It istheperator
applied to the handle FILE. It reads one line (well, record -$6¢é&om the handle FILE in scalar context,
or all lines in list context. When performing open, close, or any other operation besidedfiles, or even
talking about the handle, dwt use the brackets. These are correof(FH) , seek(FH, 0, 2) and
"copying from STDIN to FILE".

Do | always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn‘t need to be quoted, but in most cases probably should be (and must be under
use strict). But a hash key consisting of a simple word (that isn‘t the name of a defined subroutine)
and the left-hand operand to the operator both count as though they were quoted:

This is like this
$foofline} $foof"line"}
bar => stuff "bar" => stuff

The final semicolon in a block is optional, as is the final comma in a list. Good styleeftsgle says to
put them in except for one-liners:

if ($whoops) { exit 1}
@nums = (1, 2, 3);

if ($whoops) {
exit 1;
}
@lines = (
"There Beren came from mountains cold",
"And lost he wandered under leaves",

74 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

How do | skip some return values?
One way is to treat the return values as a list and index into it:
$dir = (getpwnam($user))[7];
Another way is to use undef as an element on the left—-hand-side:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
How do | temporarily block warnings?
The$"Wvariable (documented jmerlvar) controls runtime warnings for a block:

{

local $"W = 0; # temporarily turn off warnings
$a = $b + $c; # | know these might be undef

}

Note that like all the punctuation variables, you cannot currentlynyée on$"W, only local()

A newuse warnings pragma is in the works to provide finer control over all this. The curious should
check the perl5—porters mailing list archives for details.

What's an extension?
A way of calling compiled C code from Perl. Readipgrixstutis a good place to learn more about
extensions.

Why do Perl operators have different precedence than C operators?

Actually, they don‘t. All C operators that Perl copies have the same precedence in Perl as they do in C. The
problem is with operators that C doesn‘'t have, especially functions that give a list context to everything on
their right, eg print, chmod, exec, and so on. Such functions are called "list operators" and appear as such in
the precedence table rerlop.

A common mistake is to write:
unlink $file || die "snafu";
This gets interpreted as:
unlink ($file || die "snafu");
To avoid this problem, either put in extra parentheses or use the super low preocedepertor:

(unlink $file) || die "snafu";
unlink $file or die "snafu";

The "English" operatorsa@d, or, xor , andnot) deliberately have precedence lower than that of list
operators for just such situations as the one above.

Another operator with surprising precedence is exponentiation. It binds more tightly even than unary minus,
making—2**2 product a negative not a positive four. It is also right—associating, meani2y*®t4p is
two raised to the ninth power, not eight squared.

How do | declare/create a structure?

In general, you don'‘t "declare" a structure. Just use a (probably anonymous) hash referepedretared
perldscfor details. Here's an example:

$person = {}; # new anonymous hash
$person->{AGE} = 24; # set field AGE to 24
$person->{NAME} = "Nat"; # set field NAME to "Nat"

If you‘re looking for something a bit more rigorous, prgritoot

23—-Mar-1997 Perl Version 5.004 BETA 75

perlfaq7 Perl Programmers Reference Guide perlfaq7

How do | create a module?

A module is a package that lives in a file of the same name. For example, the Hello::There module would
live in Hello/There.pm. For details, repdrimod You'll also find Exporterhelpful. If you‘re writing a C
or mixed-language module with both C and Perl, then you should stubkgtut

Here's a convenient template you might wish you use when starting your own module. Make sure to change
the names appropriately.

package Some::Module; # assumes Some/Module.pm
use strict;

BEGIN {
use Exporter ();
use vars gw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

set the version for version checking; uncomment to use
$VERSION =1.00;

if using RCS/CVS, this next line may be preferred,
but beware two—digit versions.
$VERSION = do{my@r=g$Revision: 1.15 $=~N\d+/g;sprintf '%d."."%02d'x$#r,@r};

@ISA = gw(Exporter);
@EXPORT = qgw(&funcl &func2 &func3);
Y%EXPORT_TAGS =(); # eg: TAG =>[gw!namel name?2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = qgw($Varl %Hashit);

}
use vars @EXPORT_OK;

non—exported package globals go here
usevars qw(@more $stuff);

initialize package globals, first exported ones
$Varl ="
%Hashit = ();

then the others (which are still accessible as $Some::Module::stuff)
$stuff =",
@more =();

all file—scoped lexicals must be created before
the functions below that use them.

file—private lexicals go here
my $priv_var =";
my %secret_hash = ();

here’s a file—private function as a closure,
callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {
stuff goes here.
¥
make all your functions, whether exported or not;
remember to put something interesting in the {} stubs
sub funcl {} # no prototype
sub func2() {} # proto’d void

76 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

sub func3($$) {} # proto’d to 2 scalars

this one isn't exported, but could be called!
sub func4(\%) {} # proto’d to 1 hash ref

END {} # module clean—up code here (global destructor)
1; # modules must return true

How do | create a class?
Seeperltootfor an introduction to classes and objects, as wglkdsbjandperlbot

How can | tell if a variable is tainted?

Seelaundering and Detecting Tainted Data in perlsadere's an example (which doesn‘t use any system
calls, because thell() is given no processes to signal):

sub is_tainted {
return ! eval { join(",@_), kill 0; 1; };

}

This is not-w clean, however. There is rov clean way to detect taintedness — take this as a hint that you
should untaint all possibly—-tainted data.

What's a closure?
Closures are documentedgarlref.

Closureis a computer science term with a precise but hard-to—explain meaning. Closures are implemented
in Perl as anonymous subroutines with lasting references to lexical variables outside their own scopes. These
lexicals magically refer to the variables that were around when the subroutine was defined (deep binding).

Closures make sense in any programming language where you can have the return value of a function be
itself a function, as you can in Perl. Note that some languages provide anonymous functions but are not
capable of providing proper closures; the Python language, for example. For more information on closures,

check out any textbook on functional programming. Scheme is a language that not only supports but

encourages closures.

Here's a classic function—generating function:

sub add_function_generator {
return sub { shift + shift };

}
$add_sub = add_function_generator();
$sum = &$add_sub(4,5); # $sum is 9 now.

The closure works as fanction templatenith some customization slots left out to be filled later. The
anonymous subroutine returned &gyd_function_generator() isn‘t technically a closure because it
refers to no lexicals outside its own scope.

Contrast this with the followingnake_adder() function, in which the returned anonymous function
contains a reference to a lexical variable outside the scope of that function itself. Such a reference requires
that Perl return a proper closure, thus locking in for all time the value that the lexical had when the function
was created.

sub make_adder {

my $addpiece = shift;

return sub { shift + $addpiece };
}

$f1 = make_adder(20);
$f2 = make_adder(555);

23—-Mar-1997 Perl Version 5.004 BETA 77

perlfaq7 Perl Programmers Reference Guide perlfaq7

Now &$f1($n) is always 20 plus whatevén you pass in, wherea&$f2($n) is always 555 plus
whatever$n you pass in. Th8addpiece in the closure sticks around.

Closures are often used for less esoteric purposes. For example, when you want to pass in a bit of code into

a function:

my $line;

timeout(30, sub { $line = <STDIN> });
If the code to execute had been passed in as a sgimg, = <STDIN>’ , there would have been no
way for the hypotheticalimeout() function to access the lexical varialitne back in its caller's
scope.

How can | pass/return a {Function, FileHandle, Array, Hash, Method, Regexp}?

With the exception of regexps, you need to pass references to these objects. See
Pass by Reference in perlsidr this particular question, ameriref for information on references.

Passing Variables and Functions

Regular variables and functions are quite easy: just pass in a reference to an existing or anonymous
variable or function:

func(\$some_scalar);

func(\$some_array);
func([1..10]);

func(\%some_hash);
func({ this => 10, that=>20});

func(\&some_func);
func(sub {$_[0]1**$ _[1]});

Passing Filehandles

To create filehandles you can pass to subroutines, you caifridser *FH notation ("typeglobs" —
seeperldatafor more information), or create filehandles dynamically using the old FileHandle or the
new lO::File modules, both part of the standard Perl distribution.

use Fentl;

use |O::File;

my $fh = new 10::File $filename, O_WRONLY|O_APPEND;
or die "Can't append to $filename: $!";

func($fh);

Passing Regexps
To pass regexps around, you'll need to either use one of the highly experimental regular expression
modules from CPAN (Nick Ing—Simmons's Regexp or llya Zakharevich's Devel::Regexp), pass

around strings and use an exception—trapping eval, or else be be very, very clever. Here's an example
of how to pass in a string to be regexp compared:

sub compare($$) {
my ($vall, $regexp) = @_;
my $retval = eval { $val =~ /$regexp/ };
die if $@;
return $retval;

}
$match = compare("old McDonald", g/d.*D/);

Make sure you never say something like this:

return eval "\$val =~ /$regexp/"; # WRONG

78 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

or someone can sneak shell escapes into the regexp due to the double interpolation of the eval and the
double—quoted string. For example:

$pattern_of_evil = 'danger ${ system("rm —rf * &") } danger’;
eval "\$string =~ /$pattern_of_evil/";

Those preferring to be very, very clever might see the O'Reilly Hdaktering Regular Expressions
by Jeffrey Friedl. Page 273Build_MatchMany_Function() is particularly interesting. A
complete citation of this book is givenperlfaq2

Passing Methods
To pass an object method into a subroutine, you can do this:

call_a_lot(10, $some_obj, "methname")
sub call_a_lot {
my ($count, $widget, $trick) = @_;
for (my $i = 0; $i < $count; $i++) {
$widget—>S$trick();
}
}

or you can use a closure to bundle up the object and its method call and arguments:

my $whatnot = sub { $some_obj—>obfuscate(@args) };
func($whatnot);
sub func {
my $code = shift;
&S$code();
}

You could also investigate thman() method in the UNIVERSAL class (part of the standard perl
distribution).

How do | create a static variable?

As with most things in Perl, TMTOWTDI. What is a "static variable" in other languages could be either a
function—private variable (visible only within a single function, retaining its value between calls to that
function), or a file—private variable (visible only to functions within the file it was declared in) in Perl.

Here's code to implement a function—private variable:

BEGIN {
my $counter = 42;
sub prev_counter { return ——$counter }
sub next_counter { return $counter++ }

}

Now prev_counter() andnext_counter() share a private variabfounter that was initialized
at compile time.

To declare a file—private variable, you'll still userg() , putting it at the outer scope level at the top of the
file. Assume this is in file Pax.pm:

package Pax;
my $started = scalar(localtime(time()));

sub begun { return $started }

When use Pax or require Pax loads this module, the variable will be initialized. It won't get
garbage—collected the way most variables going out of scope do, becalisguh@ function cares about

it, but no one else can get it. It is not cakhx::started because its scope is unrelated to the package.

It's scoped to the file. You could conceivably have several packages in that same file all accessing the same

23—-Mar-1997 Perl Version 5.004 BETA 79

perlfaq7 Perl Programmers Reference Guide perlfaq7

private variable, but another file with the same package couldn‘t get to it.

What's the difference between dynamic and lexical (static) scoping? Between local() and

my() ?

local($x) saves away the old value of the global varidbie and assigns a new value for the duration
of the subroutinewhich is visible in other functions called from that subroutifiénis is done at run—time,

so is called dynamic scopindocal() always affects global variables, also called package variables or
dynamic variables.

my($x) creates a new variable that is only visible in the current subroutine. This is done at compile—time,
so is called lexical or static scopingay() always affects private variables, also called lexical variables or
(improperly) static(ly scoped) variables.

For instance:

sub visible {
print "var has value $var\n";
}
sub dynamic {
local $var ="local’; # new temporary value for the still-global
visible(); # variable called $var
}
sub lexical {
my $var = 'private’; # new private variable, $var
visible(); # (invisible outside of sub scope)
}
$var = 'global’;
visible(); # prints global
dynamic(); # prints local
lexical(); # prints global

Notice how at no point does the value "private" get printed. That's be$aaseonly has that value within
the block of thdexical() function, and it is hidden from called subroutine.

In summarylocal() doesn't make what you think of as private, local variables. It gives a global variable
a temporary valuemy() is what you‘re looking for if you want private variables.

See als@erlsub which explains this all in more detail.

How can | access a dynamic variable while a similarly named lexical is in scope?

You can do this via symbolic references, provided you haventissestrict "refs" . So instead of
var, use{var}.

local $var = "global";
my $var = "lexical";

print "lexical is $var\n”;

no strict 'refs’;
print "global is ${'var’}\n";

If you know your package, you can just mention it explicitly, a$Some_Pack::var. Note that the
notation$::var is not the dynamicbvar in the current package, but rather the one imiben package,
as though you had writtemain::var. Specifying the package directly makes you hard—code its name,

but it executes faster and avoids running afowisef strict "refs"

80

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

What's the difference between deep and shallow binding?

In deep binding, lexical variables mentioned in anonymous subroutines are the same ones that were in scope
when the subroutine was created. In shallow binding, they are whichever variables with the same names
happen to be in scope when the subroutine is called. Perl always uses deep binding of lexical variables (i.e.,
those created withmy()). However, dynamic variables (aka global, local, or package variables) are
effectively shallowly bound. Consider this just one more reason not to use them. See the answer to
"What's a closure?"

Why doesn‘t "local($foo) = <FILE;" work right?

local() gives list context to the right hand side=of The <FH> read operation, like so many of Perl's
functions and operators, can tell which context it was called in and behaves appropriately. In general, the
scalar() function can help. This function does nothing to the data itself (contrary to popular myth) but
rather tells its argument to behave in whatever its scalar fashion is. If that function doesn‘t have a defined
scalar behavior, this of course doesn‘t help you (such aswaitf)).

To enforce scalar context in this particular case, however, you need merely omit the parentheses:

local($foo) = <FILE>; # WRONG
local($foo) = scalar(<FILE>); # ok
local $foo = <FILE>; # right

You should probably be using lexical variables anyway, although the issue is the same here:

my($foo) = <FILE>; # WRONG
my $foo = <FILE>; # right

How do | redefine a built—in function, operator, or method?
Why do you want to do that? :-)

If you want to override a predefined function, suclopan() , then you'll have to import the new definition
from a different module. Se®verriding Builtin Functions in perlsub There's also an example in
Class::Template in perltoot

If you want to overload a Perl operator, such+asr ** | then you'll want to use thase overload
pragma, documented averload

If you're talking about obscuring method calls in parent classe§)waeidden Methods in perltoot

What's the difference between calling a function as &foo and foo() 7

When you call a function a&foo, you allow that function access to your current @_ values, and you
by—pass prototypes. That means that the function doesn‘t get an empty @_, it gets yours! While not strictly
speaking a bug (it's documented that waypérlsulj, it would be hard to consider this a feature in most
cases.

When you call your function a&foo() , then you do get a new @_, but prototyping is still circumvented.

Normally, you want to call a function usirigo() . You may only omit the parentheses if the function is
already known to the compiler because it already saw the definitgm put notrequire), or via a
forward reference anse subs declaration. Even in this case, you get a clean @_ without any of the old
values leaking through where they don‘t belong.

How do | create a switch or case statement?

This is explained in more depth in therlsyn Briefly, there's no official case statement, because of the
variety of tests possible in Perl (humeric comparison, string comparison, glob comparison, regexp matching,
overloaded comparisons, ...). Larry couldn‘t decide how best to do this, so he left it out, even though it's
been on the wish list since perl1.

Here's a simple example of a switch based on pattern matching. We'll do a multi-way conditional based on
the type of reference stored$whatchamacallit:

23—-Mar-1997 Perl Version 5.004 BETA 81

perlfaq7 Perl Programmers Reference Guide perlfaq7

SWITCH:
for (ref $whatchamacallit) {
"$/ && die "not a reference”;
/SCALAR/ && do {
print_scalar($$ref);
last SWITCH,;
%
/ARRAY/ && do {
print_array(@$ref);
last SWITCH,;
%
/HASH/ && do {
print_hash(%$ref);
last SWITCH,;
%
/CODE/ && do {
warn "can't print function ref";
last SWITCH,;
%

DEFAULT
warn "User defined type skipped";

}

How can | catch accesses to undefined variables/functions/methods?

The AUTOLOAD method, discussed Autoloading in perlsufand
AUTOLOAD: Proxy Methods in perltadets you capture calls to undefined functions and methods.

When it comes to undefined variables that would trigger a warning wgjgrou can use a handler to trap
the pseudo-signal WARN__like this:

$SIG{ _ WARN__}=sub{
for ($_[0]){

/Use of uninitialized value/ && do {
promote warning to a fatal
die $_;

¥

other warning cases to catch could go here;

warn $_;
}
¥
Why can‘t a method included in this same file be found?
Some possible reasons: your inheritance is getting confused, you've misspelled the method name, or the

object is of the wrong type. Check operltoot for details on these. You may also ysent
ref($object) to find out the clas$object was blessed into.

Another possible reason for problems is because you‘ve used the indirect object syrftad (@gru

"Samy") on a class name before Perl has seen that such a package exists. It's wisest to make sure your
packages are all defined before you start using them, which will be taken care of if you use the
statement instead oéquire . If not, make sure to use arrow notation @gyu- find("Samy")) instead.

82 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

Object notation is explained perlobj.

How can | find out my current package?
If you'‘re just a random program, you can do this to find out what the currently compiled package is:

my $packname = ref bless [];

But if you‘'re a method and you want to print an error message that includes the kind of object you were
called on (which is not necessarily the same as the one in which you were compiled):

sub amethod {
my $self = shift;
my $class = ref($self) || $self;
warn "called me from a $class object";

}
AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 83

perlfaq8 Perl Programmers Reference Guide perlfaq8

NAME
perlfag8 — System InteractioBRevision: 1.15%)

DESCRIPTION

This section of the Perl FAQ covers questions involving operating system interaction. This involves
interprocess communication (IPC), control over the user—interface (keyboard, screen and pointing devices),
and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your operating systgrerliegs
perlplang ...). These should contain more detailed information on the vagaries of your perl.

How do | find out which operating system I'm running under?
The $"0O variable $§OSTYPEIf you use English) contains the operating system that your perl binary was
built for.

How come exec() doesn'treturn?
Because that's what it does: it replaces your currently running program with a different one. If you want to
keep going (as is probably the case if you're asking this questiosysisen() instead.

How do | do fancy stuff with the keyboard/screen/mouse?

How you access/control keyboards, screens, and pointing devices ("mice") is system—-dependent. Try the
following modules:

Keyboard
Term::Cap Standard perl distribution
Term::ReadKey CPAN
Term::ReadLine::Gnu CPAN
Term::ReadLine::Perl CPAN
Term::Screen CPAN

Screen
Term::Cap Standard perl distribution
Curses CPAN
Term::ANSIColor CPAN

Mouse
Tk CPAN

How do | ask the user for a password?
(This question has nothing to do with the web. See a different FAQ for that.)
There's an example of this igrypt). First, you put the terminal into "no echo" mode, then just read the

password normally. You may do this with an old—sigietl() function, POSIX terminal control (see
POSIX and Chapter 7 of the Camel), or a call togtte program, with varying degrees of portability.

You can also do this for most systems using the Term::ReadKey module from CPAN, which is easier to use
and in theory more portable.
How do | read and write the serial port?

This depends on which operating system your program is running on. In the case of Unix, the serial ports
will be accessible through files in /dev; on other systems, the devices names will doubtless differ. Several
problem areas common to all device interaction are the following

lockfiles

Your system may use lockfiles to control multiple access. Make sure you follow the correct protocol.
Unpredictable behaviour can result from multiple processes reading from one device.

84 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

open mode

If you expect to use both read and write operations on the device, you'll have to open it for update (see
open in perlfundor details). You may wish to open it without running the risk of blocking by using
sysopen() andO_RDWR|O_NDELAY|O_NOCTTMm the Fcntl module (part of the standard perl
distribution). Seasysopen in perlfunfor more on this approach.

end of line

Some devices will be expecting a "\r" at the end of each line rather than a "\n". In some ports of perl,
“\r'" and "\n" are different from their usual (Unix) ASCII values of "\012" and "\015". You may have

to give the numeric values you want directly, using octal ("\015"), hex ("OxOD"), or as a
control-character specification ("\cM").

print DEV "atv1\012"; # wrong, for some devices
print DEV "atv1\015"; # right, for some devices

Even though with normal text files, a "\n" will do the trick, there is still no unified scheme for
terminating a line that is portable between Unix, DOS/Win, and Macintosh, except to terAlihate

line ends with "\015\012", and strip what you don‘t need from the output. This applies especially to
socket 1/0 and autoflushing, discussed next.

flushing output

If you expect characters to get to your device whenproni() them, you'll want to autoflush that
filehandle, as in the older

use FileHandle;
DEV->autoflush(1);

and the newer

use 10::Handle;
DEV->autoflush(1);

You can useelect() and the$| variable to control autoflushing (sé¢ andselec):

$oldh = select(DEV);
$=1;
select($oldh);
You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);

As mentioned in the previous item, this still doesn‘'t work when using socket 1/0 between Unix and
Macintosh. You'll need to hardcode your line terminators, in that case.

non-blocking input
If you are doing a blockingead() orsysread() , you'll have to arrange for an alarm handler to
provide a timeout (sealarm). If you have a non-blocking open, you'll likely have a non-blocking
read, which means you may have to use a 4s@art() to determine whether 1/O is ready on that
device (seeselect in perlfunc

How do | decode encrypted password files?
You spend lots and lots of money on dedicated hardware, but this is bound to get you talked about.
Seriously, you can'‘t if they are Unix password files — the Unix password system employs one-way

encryption. Programs like Crack can forcibly (and intelligently) try to guess passwords, but don't (can't)
guarantee quick success.

If you‘re worried about users selecting bad passwords, you should proactively check when they try to change
their password (by modifying passwd(1), for example).

23—-Mar-1997 Perl Version 5.004 BETA 85

perlfaq8 Perl Programmers Reference Guide perlfaq8

How do | start a process in the background?

You could use
system("cmd &")

or you could use fork as documenteddrk in perlfung with further examples iperlipc. Some things to be
aware of, if you're on a Unix-like system:

STDIN, STDOUT and STDERR are shared

Both the main process and the backgrounded one (the "child" process) share the same STDIN,
STDOUT and STDERR filehandles. If both try to access them at once, strange things can happen.
You may want to close or reopen these for the child. You can get around thigpesiting a pipe
(seeopen in perlfungbut on some systems this means that the child process cannot outlive the parent.

Signals
You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too. SIGCHLD is sent when the
backgrounded process finishes. SIGPIPE is sent when you write to a filehandle whose child process
has closed (an untrapped SIGPIPE can cause your program to silently die). This is not an issue with
system("cmd&”).

Zombies
You have to be prepared to "reap" the child process when it finishes

$SIG{CHLD} = sub { wait };

See Signals in perlipcfor other examples of code to do this. Zombies are not an issue with
system("prog &").

How do | trap control characters/signals?

You don't actually "trap" a control character. Instead, that character generates a signal, which you then trap.
Signals are documented $ignals in perlipand chapter 6 of the Camel.

Be warned that very few C libraries are re—entrant. Therefore, if you atteymnt(@ in a handler that
got invoked during another stdio operation your internal structures will likely be in an inconsistent state, and
your program will dump core. You can sometimes avoid this by sgs\grite() instead oprint()

Unless you're exceedingly careful, the only safe things to do inside a signal handler are: set a variable and
exit. And in the first case, you should only set a variable in such a wandhiat() is not called (eg, by
setting a variable that already has a value).

For example:

$interrupted = 0; # to ensure it has a value
$SIG{INT} = sub {
$interrupted++;
syswrite(STDERR, "ouch\n", 5);

}

However, because syscalls restart by default, you'll find that if you're in a "slow" call, such as <FH>,
read() ,connect() ,orwait() ,thatthe only way to terminate them is by "longjumping" out; that is, by
raising an exception. See the time—out handler for a blodkioky) in Signals in perlipor chapter 6 of

the Camel.

How do | modify the shadow password file on a Unix system?

If perl was installed correctly, trgetpw*() functions described iperlfuncprovide (read—only) access to

the shadow password file. To change the file, make a new shadow password file (the format varies from
system to system — sgmsswd(5)for specifics) and use pwd_mkdb(8) to install it (peed_mkdb(5)or

more details).

86

Perl Version 5.004 BETA 23—-Mar-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

How do | set the time and date?

Assuming you're running under sufficient permissions, you should be able to set the system-wide date and
time by running the date(1) program. (There is no way to set the time and date on a per—process basis.) This
mechanism will work for Unix, MS—-DOS, Windows, and NT; the VMS equivalesgtisime

However, if all you want to do is change your timezone, you can probably get away with setting an
environment variable:

$ENV{TZ} = "MST7MDT"; # unixish
$ENV{'SYSSTIMEZONE_DIFFERENTIAL"}="-5" # vms
system "trn comp.lang.perl”;
How can | sleep() or alarm() for under a second?
If you want finer granularity than the 1 second thatsleep() function provides, the easiest way is to use
the select() function as documented gelect in perlfunc If your system has itimers amsgscall()
support, you can check out the old example in
http://www.perl.com/CPAN/doc/misc/ancient/tutorial/eg/itimers.pl .
How can | measure time under a second?
In general, you may not be able to. The Time::HiRes module (available from CPAN) provides this
functionality for some systems.

In general, you may not be able to. But if you system supports bottyshall() function in Perl as
well as a system call like gettimeofday(2), then you may be able to do something like this:

require 'sys/syscall.ph’;
$TIMEVAL_T ="LL";
$done = $start = pack($TIMEVAL_T, ());

syscall(&SYS_gettimeofday, $start, 0)) |= -1
or die "gettimeofday: $!";

BHHHHHHH
DO YOUR OPERATION HERE
BHHHHHHH

syscall(&SYS_gettimeofday, $done, 0) = -1
or die "gettimeofday: $!";

@start = unpack($TIMEVAL_T, $start);

@done = unpack($TIMEVAL_T, $done);

fix microseconds
for ($done[1], $start[1]) { $_ /= 1_000_000 }

$delta_time = sprintf "%.4f", ($done[0] + $done[1])

($start[0] + $start[1]);

How can | do an atexit() or setjmp()/longjmp() ? (Exception handling)
Release 5 of Perl added the END block, which can be used to siraigzitf) . Each package's END
block is called when the program or thread ends &eknod manpage for more details). It isn't called
when untrapped signals kill the program, though, so if you use END blocks you should also use

use sigtrap qw(die normal-signals);

Perl's exception—handling mechanism iset&l() operator. You can usval() as setjmp andie()
as longjmp. For details of this, see the section on signals, especially the time—out handler for a blocking
flock() in Signals in perlipand chapter 6 of the Camel.

23—-Mar-1997 Perl Version 5.004 BETA 87

perlfaq8 Perl Programmers Reference Guide perlfaq8

If exception handling is all you‘re interested in, try the exceptions.pl library (part of the standard perl
distribution).

If you want theatexit() syntax (and ammexit() as well), try the AtExit module available from
CPAN.

Why doesn‘t my sockets program work under System V (Solaris)? What does the error message

"Protocol not supported” mean?

Some Sys-V based systems, notably Solaris 2.X, redefined some of the standard socket constants. Since
these were constant across all architectures, they were often hardwired into perl code. The proper way to
deal with this is to "use Socket" to get the correct values.

Note that even though SunOS and Solaris are binary compatible, these values are different. Go figure.

How can | call my system's unique C functions from Perl?

In most cases, you write an external module to do it — see the answer to "Where can | learn about linking C
with Perl? [h2xs, xsubpp]". However, if the function is a system call, and your system supports
syscall() , you can use the syscall function (documentgukeitfung.

Remember to check the modules that came with your distribution, and CPAN as well - someone may
already have written a module to do it.

Where do | get the include files to do ioctl() or syscall() ?

Historically, these would be generated by the h2ph tool, part of the standard perl distribution. This program
converts cpp(1l) directives in C header files to files containing subroutine definitions, like

&SYS_getitimer, which you can use as arguments to your functions. It doesn't work perfectly, but it
usually gets most of the job done. Simple files Ekeo.h, syscall.h andsocket.hwere fine, but the hard

ones likeioctl.h nearly always need to hand—edited. Here's how to install the *.ph files:

1. become super-user
2. cd /usr/include
3. h2ph *.h */*.h

If your system supports dynamic loading, for reasons of portability and sanity you probably ought to use
h2xs (also part of the standard perl distribution). This tool converts C header files to Perl extensions. See
perlxstutfor how to get started with h2xs.

If your system doesn‘t support dynamic loading, you still probably ought to use h2xperBestutand
ExtUtils::MakeMakerfor more information (in brief, just usaake perl instead of a plaimake to rebuild
perl with a new static extension).

Why do setuid perl scripts complain about kernel problems?

Some operating systems have bugs in the kernel that make setuid scripts inherently insecure. Perl gives you
a number of options (describedgarlseg to work around such systems.

How can | open a pipe both to and from a command?

The IPC::Open2 module (part of the standard perl distribution) is an easy-to—use approach that internally
usespipe() , fork() , andexec() to do the job. Make sure you read the deadlock warnings in its
documentation, though (séeC::Open2).

How can | capture STDERR from an external command?

There are three basic ways of running external commands:

system $cmd,; # using system()
$output = ‘$cmd’; # using backticks (*)
open (PIPE, "cmd |"); # using open()

With system() , both STDOUT and STDERR will go the same place as the script's versions of these,
unless the command redirects them. Backticksogea() readonly the STDOUT of your command.

88

Perl Version 5.004 BETA 23—-Mar-1997

ExtUtils::MakeMaker
IPC::Open2

perlfaq8 Perl Programmers Reference Guide perlfaq8

With any of these, you can change file descriptors before the call:

open(STDOUT, ">logfile");
system("Is");

or you can use Bourne shell file—descriptor redirection:

$output = ‘$cmd 2>some_file’;
open (PIPE, "cmd 2>some_file |");

You can also use file—descriptor redirection to make STDERR a duplicate of STDOUT:

$output = ‘$cmd 2>&1";
open (PIPE, "cmd 2>&1 |");

Note that yowcannotsimply open STDERR to be a dup of STDOUT in your Perl program and avoid calling
the shell to do the redirection. This doesn‘t work:

open(STDERR, ">&STDOUT");
$alloutput = ‘cmd args'; # stderr still escapes

This fails because thepen() makes STDERR go to where STDOUT was going at the time of the
open() . The backticks then make STDOUT go to a string, but don‘t change STDERR (which still goes to
the old STDOUT).

Note that youmustuse Bourne shell (sh(1)) redirection syntax in backticks, not csh(1)! Details on why
Perl'ssystem() and backtick and pipe opens all use the Bourne shell are in
http://www.perl.com/CPAN/doc/FMTEYEWTK/versus/csh.whynot .

You may also use the IPC::Open3 module (part of the standard perl distribution), but be warned that it has a
different order of arguments from IPC::Open2 (§&@::Open3.

Why doesn‘t open() return an error when a pipe open fails?

It does, but probably not how you expect it to. On systems that follow the stdaddjtexec()

paradigm (eg, Unix), it works like thispen() causes &ork() . Inthe parentppen() returns with the
process ID of the child. The chilekec() s the command to be piped to/from. The parent can‘'t know
whether theexec() was successful or not - all it can return is whethefdHg€) succeeded or not. To
find out if the command succeeded, you have to catch SIGCHLWait@ to get the exit status.

On systems that follow thgpawn() paradigm,open() mightdo what you expect — unless perl uses a
shell to start your command. In this caseftr&()/exec() description still applies.

What's wrong with using backticks in a void context?

Strictly speaking, nothing. Stylistically speaking, it's not a good way to write maintainable code because
backticks have a (potentially humungous) return value, and you‘re ignoring it. It's may also not be very
efficient, because you have to read in all the lines of output, allocate memory for them, and then throw it
away. Too often people are lulled to writing:

‘cp file file.bak’;

And now they think "Hey, Il just always use backticks to run programs." Bad idea: backticks are for
capturing a program's output; tegstem() function is for running programs.

Consider this line:
‘cat /etc/termcap’;

You haven'‘t assigned the output anywhere, so it just wastes memory (for a little while). Plus you forgot to
check$? to see whether the program even ran correctly. Even if you wrote

print ‘cat /etc/termcap’;

In most cases, this could and probably should be written as

23—-Mar-1997 Perl Version 5.004 BETA 89

IPC::Open3

perlfaq8 Perl Programmers Reference Guide perlfaq8

system(“cat /etc/termcap") == 0
or die "cat program failed!";

Which will get the output quickly (as its generated, instead of only at the end) and also check the return
value.

system() also provides direct control over whether shell wildcard processing may take place, whereas
backticks do not.

How can | call backticks without shell processing?
This is a bit tricky. Instead of writing

@ok = ‘grep @opts '$search_string’ @filenames';
You have to do this:

my @ok = ();
if (open(GREP, "-|") {
while (<GREP>) {
chomp;
push(@ok, $);

}
close GREP;

}else {
exec 'grep’, @opts, $search_string, @filenames;

}

Just as witlsystem() , no shell escapes happen when grec() a list.

Why can‘t my script read from STDIN after | gave it EOF (“D on Unix, ~Z on MSDOS)?
Because some stdio‘s set error and eof flags that need clearing. The POSIX modulelgefies$)
that you can use. That is the technically correct way to do it. Here are some less reliable workarounds:
1 Try keeping around the seekpointer and go there, like this:

$where = tell(LOG);
seek(LOG, $where, 0);

2 If that doesn't work, try seeking to a different part of the file and then back.

3 If that doesn‘t work, try seeking to a different part of the file, reading something, and then seeking
back.

4 If that doesn't work, give up on your stdio package and use sysread.

How can | convert my shell script to perl?
Learn Perl and rewrite it. Seriously, there's no simple converter. Things that are awkward to do in the shell
are easy to do in Perl, and this very awkwardness is what would make a shell-perl converter nigh—on
impossible to write. By rewriting it, you'll think about what you‘re really trying to do, and hopefully will
escape the shell's pipeline datastream paradigm, which while convenient for some matters, causes many
inefficiencies.

Can | use perl to run a telnet or ftp session?
Try the Net::FTP and TCP::Client modules (available from CPAN).
http://www.perl.com/CPAN/scripts/netstuff/telnet.emul.shar will also help for emulating the telnet protocol.
How can | write expect in Perl?

Once upon a time, there was a library called chat2.pl (part of the standard perl distribution), which never
really got finished. These days, your best bet is to look at the Comm.pl library available from CPAN.

90 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

Is there a way to hide perl's command line from programs such as "ps"?
First of all note that if you‘re doing this for security reasons (to avoid people seeing passwords, for example)
then you should rewrite your program so that critical information is never given as an argument. Hiding the
arguments won'‘t make your program completely secure.

To actually alter the visible command line, you can assign to the va¥i@lde documented iperlvar. This
won't work on all operating systems, though. Daemon programs like sendmail place their state there, as in:
$0 = "orcus [accepting connections]";
I {changed directory, modified my environment} in a perl script. How come the change
disappeared when | exited the script? How do | get my changes to be visible?

Unix
In the strictest sense, it can‘t be done — the script executes as a different process from the shell it was
started from. Changes to a process are not reflected in its parent, only in its own children created after
the change. There is shell magic that may allow you to fakeevalf) ing the script's output in
your shell; check out the comp.unix.questions FAQ for details.

VMS
Change to %ENV persist after Perl exits, but directory changes do not.

How do I close a process's filehandle without waiting for it to complete?

Assuming your system supports such things, just send an appropriate signal to the process (see
kill in perlfunc It's common to first send a TERM signal, wait a little bit, and then send a KILL signal to

finish it off.

How do | fork a daemon process?
If by daemon process you mean one that's detached (disassociated from its tty), then the following process is
reported to work on most Unixish systems. Non-Unix users should check their Your_OS::Process module

for other solutions.
° Open /dev/tty and use the the TIOCNOTTY ioctl on it. ®gd) for details.
° Change directory to /
° Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.
° Background yourself like this:
fork && exit;

How do | make my program run with sh and csh?
See theeg/nih script (part of the perl source distribution).

How do | keep my own module/library directory?
When you build modules, use the PREFIX option when generating Makefiles:

perl Makefile.PL PREFIX=/u/mydir/perl

then either set the PERL5LIB environment variable before you run scripts that use the modules/libraries (see
perlrun) or say

use lib 'fu/mydir/perl’;
See Perl'dib for more information.

How do I find out if I'm running interactively or not?
Good question. SometimesSTDIN and-t STDOUT can give clues, sometimes not.

if (-t STDIN && -t STDOUT) {
print "Now what? ";

23—-Mar-1997 Perl Version 5.004 BETA 91

perlfaq8 Perl Programmers Reference Guide perlfaq8

}

On POSIX systems, you can test whether your own process group matches the current process group of your
controlling terminal as follows:
use POSIX qw/getpgrp tcgetpgrp/;
open(TTY, "/dev/tty") or die $!;
$tpgrp = tcgetpgrp(TTY);
$pgrp = getpgrp();
if ($tpgrp == $pgrp) {
print "foreground\n®;
}else {
print "background\n®;

}
How do | timeout a slow event?
Use thealarm() function, probably in conjunction with a signal handler, as docum&iggtils in perlipc
and chapter 6 of the Camel. You may instead use the more flexible Sys::AlarmCall module available from
CPAN.
How do | set CPU limits?
Use the BSD::Resource module from CPAN.

How do | avoid zombies on a Unix system?
Use the reaper code fro8ignals in perlipdo callwait() when a SIGCHLD is received, or else use the
double—fork technique describedfork.

How do | use an SQL database?
There are a number of excellent interfaces to SQL databases. See the DBD::* modules available from
http://www.perl.com/CPAN/modules/dbperl/DBD .

How do | make a system() exit on control-C?
You can‘t. You need to imitate tteystem() call (seeperlipc for sample code) and then have a signal
handler for the INT signal that passes the signal on to the subprocess.

How do | open a file without blocking?
If you're lucky enough to be using a system that supports non—blocking reads (most Unixish systems do),
you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with
sysopen()

use Fcentl;

sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT, 0644)
or die "can’t open /tmp/somefile: $!":

How do | install a CPAN module?

The easiest way is to have the CPAN module do it for you. This module comes with perl version 5.004 and
later. To manually install the CPAN module, or any well-behaved CPAN module for that matter, follow
these steps:

1 Unpack the source into a temporary area.

2

perl Makefile.PL
3

make
4

make test

92 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

make install

If your version of perl is compiled without dynamic loading, then you just need to replace steiel (
with make perl and you will get a neywerl binary with your extension linked in.

SeeExtUtils::MakeMakerfor more details on building extensions.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 93

ExtUtils::MakeMaker

perlfaq9 Perl Programmers Reference Guide perlfaq9

NAME
perlfaq9 — Networking§Revision: 1.13%)

DESCRIPTION
This section deals with questions related to networking, the internet, and a few on the web.

My CGI script runs from the command line but not the browser. Can you help me fix it?
Sure, but you probably can't afford our contracting rates :-)

Seriously, if you can demonstrate that you've read the following FAQs and that your problem isn‘t
something simple that can be easily answered, you'll probably receive a courteous and useful reply to your
guestion if you post it on comp.infosystems.www.authoring.cgi (if it's something to do with HTTP, HTML,

or the CGI protocols). Questions that appear to be Perl questions but are really CGI ones that are posted to
comp.lang.perl.misc may not be so well received.

The useful FAQs are:

http://www.perl.com/perl/fag/idiots—guide.html
http://www3.pair.com/webthing/docs/cgi/faqs/cgifag.shtml
http://www.perl.com/perl/fag/perl-cgi—faqg.html
http://www-genome.wi.mit.edu/WWW/fags/www-security—faqg.html
http://www.boutell.com/faq/

How do | remove HTML from a string?

The most correct way (albeit not the fastest) is to use HTML::Parse from CPAN (part of the libwww-perl
distribution, which is a must—-have module for all web hackers).

Many folks attempt a simple—minded regular expression approacls/dike>//g , but that fails in many
cases because the tags may continue over line breaks, they may contain quoted angle—brackets, or HTML
comment may be present. Plus folks forget to convert entitie®llike for example.

Here's one "simple—-minded" approach, that works for most files:

#l/usr/bin/perl —p0777
sI<(?2:[*>"TFI("D-*?2\1)*>/gs

If you want a more complete solution, see the 3—stage striphtml program in
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/striphtml.gz .

How do | extract URLS?
A quick but imperfect approach is

#1/usr/bin/perl -n00
qxurl — tchrist@perl.com
print "$2\n" while m{
<\s*
A\s+ HREF \s* =\s* ([""]) (.*?) \1
\s* >
}asix;

This version does not adjust relative URLs, understand alternate bases, deal with HTML comments, or
accept URLs themselves as arguments. It also runs about 100x faster than a more "complete” solution using
the LWP suite of modules, such as the http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/xurl.gz
program.

How do | download a file from the user's machine? How do | open a file on another machine?

In the context of an HTML form, you can use what's knownmastipart/form—data encoding. The
CGl.pm module (available from CPAN) supports this ingtagt_multipart_form() method, which
isn‘t the same as thetartform() method.

94 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | make a pop—up menu in HTML?
Use the<SELECT> and <OPTION> tags. The CGl.pm module (available from CPAN) supports this
widget, as well as many others, including some that it cleverly synthesizes on its own.

How do | fetch an HTML file?

Use the LWP::Simple module available from CPAN, part of the excellent libwww-perl (LWP) package. On
the other hand, and if you have the lynx text—-based HTML browser installed on your system, this isn't too
bad:

$html_code = ‘lynx —source $url’;
$text_data = ‘lynx —dump $url’;
how do | decode or create those %—-encodings on the web?
Here's an example of decoding:

$string = "http://altavista.digital.com/cgi—bin/query?pg=q&what=news&fmt=.&q=%2Bcg
$string =~ s/%([a—fA-F0-9]{2})/chr(hex($1))/ge;

Encoding is a bit harder, because you can't just blindly change all the non-alphanumunder chidfacter (
into their hex escapes. It's important that characters with special meaning dikd? not be translated.
Probably the easiest way to get this right is to avoid reinventing the wheel and just use the URI::Escape
module, which is part of the libwww—-perl package (LWP) available from CPAN.

How do | redirect to another page?
Instead of sending backGontent-Type as the headers of your reply, send batleation: header.
Officially this should be &RI: header, so the CGl.pm module (available from CPAN) sends back both:

Location: http://www.domain.com/newpage
URI: http://www.domain.com/newpage

Note that relative URLSs in these headers can cause strange effects because of "optimizations" that servers do.

How do | put a password on my web pages?

That depends. You'll need to read the documentation for your web server, or perhaps check some of the
other FAQs referenced above.

How do | edit my .htpasswd and .htgroup files with Perl?
The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a consistent OO interface to these
files, regardless of how they‘re stored. Databases may be text, dom, Berkley DB or any database with a DBI
compatible driver. HTTPD::UserAdmin supports files used by the ‘Basic’ and ‘Digest’ authentication
schemes. Here's an example:

use HTTPD::UserAdmin ();
HTTPD::UserAdmin
—>new(DB => "/foo/.htpasswd")
—>add($username => $password);

How do | parse an email header?
For a quick—and—dirty solution, try this solution derived from page 222 of the 2nd edition of "Programming

Perl":
$/=",
$header = <MSG>;
$header =~ s\n\s+/ /g; # merge continuation lines

%head = (UNIX_FROM_LINE, split /*([-\w]+):\s*/m, $header);

That solution doesn‘'t do well if, for example, you‘re trying to maintain all the Received lines. A more
complete approach is to use the Mail::Header module from CPAN (part of the MailTools package).

23—-Mar-1997 Perl Version 5.004 BETA 95

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | decode a CGI form?

A lot of people are tempted to code this up themselves, so you've probably all seen a lot of code involving
$ENV{CONTENT_LENGTH&and$ENV{QUERY_STRING]}. It's true that this can work, but there are also
a lot of versions of this floating around that are quite simply broken!

Please do not be tempted to reinvent the wheel. Instead, use the CGl.pm or CGI_Lite.pm (available from
CPAN), or if you're trapped in the module—free land of perll .. perl4, you might look into cgi-lib.pl
(available from http://www.bio.cam.ac.uk/web/form.html).

How do | check a valid email address?
You can't.

Without sending mail to the address and seeing whether it bounces (and even then you face the halting
problem), you cannot determine whether an email address is valid. Even if you apply the email header
standard, you can have problems, because there are deliverable addresses that aren't RFC-822 (the mail
header standard) compliant, and addresses that aren‘t deliverable which are compliant.

Many are tempted to try to eliminate many frequently—invalid email addresses with a simple regexp, such as
MNw.=1H@ (=) +Hw+$/. However, this also throws out many valid ones, and says nothing
about potential deliverability, so is not suggested. Instead, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/ckaddr.gz , which actually checks against the
full RFC spec (except for nested comments), looks for addresses you may not wish to accept email to (say,
Bill Clinton or your postmaster), and then makes sure that the hostname given can be looked up in DNS. It's
not fast, but it works.

How do | decode a MIME/BASEG64 string?

The MIME-tools package (available from CPAN) handles this and a lot more. Decoding BASE64 becomes
as simple as:

use MIME::base64;
$decoded = decode_base64($encoded);

A more direct approach is to use thgpack() function's "u" format after minor transliterations:

tr#A-Za—z0-9+/##cd; # remove non-base64 chars
tr#tA-Za—-z0-9+/# — #; # convert to uuencoded format
$len = pack('c", 32 + 0.75*length); # compute length byte

print unpack("u", $len . $_); # uudecode and print

How do | return the user‘'s email address?

On systems that support getpwuid, B variable and the Sys::Hostname module (which is part of the
standard perl distribution), you can probably try using something like this:

use Sys::Hostname;
$address = sprintf('%s@%s’, getpwuid($<), hostname);

Company policies on email address can mean that this generates addresses that the company‘s email system
will not accept, so you should ask for users’ email addresses when this matters. Furthermore, not all systems
on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) providesadaddress() function

that tries to guess the mail address of the user. It makes a more intelligent guess than the code above, using
information given when the module was installed, but it could still be incorrect. Again, the best way is often
just to ask the user.

How do | send/read mail?

Sending mail: the Mail::Mailer module from CPAN (part of the MailTools package) is UNIX—-centric, while
Mail::Internet uses Net::SMTP which is hot UNIX-centric. Reading mail: use the Mail::Folder module from
CPAN (part of the MailFolder package) or the Mail::Internet module from CPAN (also part of the MailTools
package).

96 Perl Version 5.004 BETA 23—-Mar-1997

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | find out my hosthname/domainname/IP address?
A lot of code has historically cavalierly called thestname® program. While sometimes expedient, this
isn‘t very portable. It's one of those tradeoffs of convenience versus portability.

The Sys::Hostname module (part of the standard perl distribution) will give you the hostname after which
you can find out the IP address (assuming you have working DNS) gétnastbyname() call.

use Socket;

use Sys::Hostname;

my $host = hostname();

my $addr = inet_ntoa(scalar(gethostbyname($name)) || 'localhost’);

Probably the simplest way to learn your DNS domain name is to grok it out of /etc/resolv.conf, at least under
Unix. Of course, this assumes several things about your resolv.conf configuration, including that it exists.

(We still need a good DNS domain name—learning method for non—Unix systems.)

How do | fetch a news article or the active newsgroups?
Use the Net::NNTP or News::NNTPClient modules, both available from CPAN. This can make tasks like
fetching the newsgroup list as simple as:
perl -MNews::NNTPClient
—e 'print News::NNTPClient—>new->list("newsgroups")’
How do | fetch/put an FTP file?
LWP::Simple (available from CPAN) can fetch but not put. Net::FTP (also available from CPAN) is more
complex but can put as well as fetch.
How can | do RPC in Perl?
A DCE:RPC module is being developed (but is not yet available), and will be released as part of the
DCE-Perl package (available from CPAN). No ONC::RPC module is known.
AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pe3iaq for
distribution information.

23—-Mar-1997 Perl Version 5.004 BETA 97

README Perl Programmers Reference Guide README

NAME
Perl Kit, Version 5.0

Perl Kit, Version 5.0

Copyright 1989-1997, Larry Wall
All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of either:

a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or

b) the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
the GNU General Public License or the Artistic License for more details.

You should have received a copy of the Artistic License with this
Kit, in the file named "Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

For those of you that choose to use the GNU General Public License,
my interpretation of the GNU General Public License is that no Perl
script falls under the terms of the GPL unless you explicitly put

said script under the terms of the GPL yourself. Furthermore, any
object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions

of subroutines and variables, and does not otherwise impair the
resulting interpreter from executing any standard Perl script. |
consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You
may sell such an object file as proprietary provided that you provide
or offer to provide the Perl source, as specified by the GNU General
Public License. (This is merely an alternate way of specifying input
to the program.) You may also sell a binary produced by the dumping of
a running Perl script that belongs to you, provided that you provide or
offer to provide the Perl source as specified by the GPL. (The

fact that a Perl interpreter and your code are in the same binary file
is, in this case, a form of mere aggregation.) This is my interpretation
of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License
spells all this out for your protection, so you may prefer to use that.

Perl is a language that combines some of the features of C, sed, awk and shell. See the manual page for more
hype. There are also two Nutshell Handbooks published by O‘Reillgsoc. See pod/perlbook.pod for
more information.

Please read all the directions below before you proceed any further, and then follow them carefully.

After you have unpacked your kit, you should have all the files listed in MANIFEST.

98 Perl Version 5.004 BETA 23—-Mar-1997

README Perl Programmers Reference Guide README

Installation

1) Detailed instructions are in the file INSTALL. In brief, the following should work on most systems:
rm —f config.sh
sh Configure
make
make test
make install
For most systems, it should be safe to accept all the Configure defaults.

2) Read the manual entries before running perl.

3) IMPORTANT! Help save the world! Communicate any problems and suggested patches to me,
larry@wall.org (Larry Wall), so we can keep the world in sync. If you have a problem, there's someone else
out there who either has had or will have the same problem. It's usually helpful if you send the output of the
"myconfig" script in the main perl directory.

If you‘ve succeeded in compiling perl, the perlbug script in the utils/ subdirectory can be used to help mail in
a bug report.

If possible, send in patches such that the patch program will apply them. Context diffs are the best, then
normal diffs. Don't send ed scripts— I‘'ve probably changed my copy since the version you have.

Watch for perl patches in comp.lang.perl.announce. Patches will generally be in a form usable by the patch
program. If you are just now bringing up perl and aren‘t sure how many patches there are, write to me and
Ill send any you don‘t have. Your current patch level is shown in patchlevel.h.

Just a personal note: | want you to know that | create nice things like this because it pleases the Author of
my story. If this bothers you, then your notion of Authorship needs some revision. But you can use perl

anyway. :-)
The author.

23—-Mar-1997 Perl Version 5.004 BETA 99

README-amiga Perl Programmers Reference Guide README-amiga

NAME
perlamiga — Perl under Amiga OS

SYNOPSIS
One can read this document in the following formats:

man perlamiga
multiview perlamiga.guide

to list some (not all may be available simultaneously), or it may beaeedeither aREADME.amiga, or
pod/perlamiga.pod

DESCRIPTION
Prerequisites

Unix emulation for AmigaOS: ixemul.library

You need the Unix emulation for AmigaOS, whose most important paensul.library . For a
minimum setup, get the following archives from ftp://ftp.ninemoons.com/pub/ade/current or a
mirror:

ixemul-45.1-bin.Iha ixemul-45.1-env-bin.lha pdksh-4.9-bin.lha ADE-misc—bin.lha
Note that there might be newer versions available by the time you read this.

Note also that this is a minimum setup; you might want to add other packaf§§yp& qthe Amiga
Developers Environment

Version of Amiga OS
You need at the very least AmigaOS version 2.0. Recommended is version 3.1.

Starting Perl programs under AmigaOS
Start your Perl prograrioo with argumentsrgl arg2 arg3 the same way as on any other platform, by

perl foo argl arg2 arg3
If you want to specify perl optionamy_opts to the perl itself (as opposed to to your program), use
perl —-my_opts foo argl arg2 arg3

Alternately, you can try to get a replacement for the systdfxscute command that honors the
#l/usr/bin/perl syntax in scripts and set the s—Bit of your scripts. Then you can invoke your scripts like under
UNIX with

foo argl arg2 arg3

(Note that having *nixish full path to pefdisr/bin/perl is not necessaryerl would be enough, but having
full path would make it easier to use your script under *nix.)

Shortcomings of Perl under AmigaOS
Perl under AmigaOS lacks some features of perl under UNIX because of deficiencies in the
UNIX-emulation, most notably:

fork()

some features of the UNIX filesystem regarding link count and file dates
inplace operation (the —i switch) without backup file

umask() works, but the correct permissions are only set when the file is

finally close()d

INSTALLATION
Change to the installation directory (most probably ADE:), and extract the binary distribution:

100 Perl Version 5.004 BETA 23—-Mar-1997

README-amiga Perl Programmers Reference Guide README-amiga

Iha —-mraxe x perl-5.003-bin.lha
or
tar xvzpf perl-5.003-bin.tgz
(Of course you need lha or tar and gunzip for this.)
For installation of the Unix emulation, read the appropriate docs.
Accessing documentation
Manpages
If you havemaninstalled on your system, and you installed perl manpages, use something like this:

man perlfunc
man less
man ExtUtils.MakeMaker

to access documentation for different components of Perl. Start with
man perl

Note: You have to modify your man.conf file to search for manpages in the /ade/lib/perl5/man/man3
directory, or the man pages for the perl library will not be found.

Note that dot.] is used as a package separator for documentation for packages, and as usual, sometimes you
need to give the section3-above — to avoid shadowing by tess(1) manpage

HTML

If you have some WWW browser available, you can bdildML docs. Cd to directory wittpodfiles, and
do like this

cd /ade/lib/perl5/pod
pod2html

After this you can direct your browser the filerl.html in this directory, and go ahead with reading docs.
Alternatively you may be able to get these docs prebuilt £BAN

GNU info files

Users ofEmacs would appreciate it very much, especially witRerl mode loaded. You need to get latest
pod2info from CPAN or, alternately, prebuilt info pages.

LaTeX docs
can be constructed usipgd?2latex

BUILD
Here we discuss how to build Perl under AmigaOS.

Prerequisites

You need to have the lateSDE (Amiga Developers Environment) from
ftp://ftp.ninemoons.com/pub/ade/current. Also, you need a lot of free memory, probably at least 8MB.

Getting the perl source
You can either get the latest perl-for-amiga source from Ninemoons and extract it with:

tar xvzpf perl-5.004-src.tgz
or get the official source from CPAN:
http://www.perl.com/CPAN/src/5.0
Extract it like this

23—-Mar-1997 Perl Version 5.004 BETA 101

README-amiga Perl Programmers Reference Guide README-amiga

tar xvzpf perl5.004.tar.gz

You will see a message about errors while extrad@ingfigure. This is normal and expected. (There is a
conflict with a similarly—named fileonfigure, but it causes no harm.)

Making
sh configure.gnu ——prefix=/ade

Now
make

Testing
Now run

make test
Some tests will be skipped because they neefbtk@ function:
io/pipe.t op/fork.t, lib/filehand.t, lib/open2.t lib/open3.t lib/io_pipe.t lib/io_sock.t
Installing the built perl
Run
make installl
AUTHOR
Norbert Pueschel, pueschel@imsdd.meb.uni-bonn.de
SEE ALSO
perl(1).

102 Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

NAME
perlos2 — Perl under OS/2, DOS, Win0.3*, Win0.95 and WinNT.

SYNOPSIS
One can read this document in the following formats:
man perlos2
view perl perlos2

explorer perlos2.html
info perlos2

to list some (not all may be available simultaneously), or it may beazéasl either asREADME.os2, or
pod/perlos2.pod

To read thelINF version of documentatiorvéry recommended) outside of OS/2, one needs an IBM's
reader (may be available on IBM ftp sites (?) (URL anyone?)) or shipped with PC DOS 7.0 and IBM's
Visual Age C++ 3.5.

A copy of a Win* viewer is contained in the "Just add OS/2 Warp" package
ftp://ftp.software.ibm.com/ps/products/os2/tools/jaow/jaow.zip

in 2\JUST_ADD\view.exeThis gives one an access to EMXINF docs as well (text form is available in
/emx/docin EMX's distribution).

Note that if you havéynx.exeinstalled, you can follow WWW links from this documentliNF format. If
you have EMX docs installed correctly, you can follow library links (you need to\hemeemxbook
working by settingcEMXBOOKnvironment variable as it is described in EMX docs).

DESCRIPTION

Target

The target is to make OS/2 the best supported platform for using/building/developing Pdrkerand
applications as well as make Perl the best language to use under OS/2. The secondary target is to try to
make this work under DOS and Win* as well (but toat hard).

The current state is quite close to this target. Known limitations:

° Some *nix programs uséork() a lot, but currentlyfork() is not supported aftenseng
dynamically loaded extensions.

° You need a separate perl executgi#d__.exe(seeperl__.exg to use PM code in your application
(like the forthcoming Perl/Tk).

° There is no simple way to access WPS objects. The only way | know@S#aREXX extension
(see OS2::REXX, and we do not have access to convenience methods of Object-REXX. (Is it
possible at all? | know of no Object—-REXX API.)

Please keep this list up—to—date by informing me about other items.

Other OSes

Since OS/2 port of perl uses a remarkable EMX environment, it can run (and build extensions, and -
possibly — be build itself) under any environment which can run EMX. The current list is DOS,
DOS-inside-0S/2, Win0.3*, Win0.95 and WinNT. Out of many perl flavors, only one works, see
"perl_.exe"

Note that not all features of Perl are available under these environments. This depends on the features the
extender- most probably RSX — decided to implement.

Cf. Prerequisites

23—-Mar-1997 Perl Version 5.004 BETA 103

OS2::REXX

README-0s2 Perl Programmers Reference Guide README-0s2

Prerequisites

EMX EMX runtime is required (may be substituted by RSX). Note that it is possible topadkeexeto
run under DOS without any external support by bindingk.exérsx.exeto it, seeemxbind Note
that under DOS for best results one should use RSX runtime, which has much more functions
working (likefork , popen and so on). In fact RSX is required if there is no VCPI present. Note
the RSX requires DPMI.

Only the latest runtime is supported, curre®9c . Perl may run under earlier versions of EMX,
but this is not tested.

One can get different parts of EMX from, say

ftp://ftp.cdrom.com/pub/os2/emx09c/
ftp://hobbes.nmsu.edu/os2/unix/emx09c/

The runtime component should have the namart.zip

NOTE. It is enough to havemx.exésx.exeon your path. One does not need to specify them
explicitly (though this

emx perl_.exe —de 0
will work as well.)

RSX To run Perl on DPMI platforms one needs RSX runtime. This is needed under DOS-inside-0S/2,
Win0.3*, Win0.95 and WIinNT (seé€Other OSes). RSX would not work with VCPI only, as EMX
would, it requires DMPI.

Having RSX and the latesh.exeone gets a fully functionahix —ish environment under DOS, say,
fork ,* and pipeepen work. In fact, MakeMaker works (for static build), so one can have Perl
development environment under DOS.

One can get RSX from, say

ftp://ftp.cdrom.com/pub/os2/emx09c/contrib
ftp://ftp.uni—-bielefeld.de/pub/systems/msdos/misc
ftp://ftp.leo.org/pub/comp/os/os2/leo/devtools/emx+gcc/contrib

Contact the author arainer@mathematik.uni—bielefeld.de
The latessh.exewith DOS hooks is available at
ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/sh_dos.zip

HPFS Perl does not care about file systems, but to install the whole perl library intact one needs a file
system which supports long file names.

Note that if you do not plan to build the perl itself, it may be possible to fool EMX to truncate file
names. This is not supported, read EMX docs to see how to do it.

pdksh To start external programs with complicated command lines (like with pipes in between, and/or
quoting of arguments), Perl uses an external shell. With EMX port such shell should be named
<sh.exe, and located either in the wired—-in—during—compile locations (usediin), or in
configurable location (sé®ERL_SH_DIR).

For best results use EMX pdksh. The soon-to—be-available standard binary (5.2.12?) runs under
DOS (withRSX as well, meanwhile use the binary from

ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/sh_dos.zip

Starting Perl programs under OS/2 (and DOS and...)

Start your Perl prograrioo.pl with argumentsargl arg2 arg3 the same way as on any other platform,
by

104 Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

perl foo.pl argl arg2 arg3
If you want to specify perl optionamy_opts to the perl itself (as opposed to to your program), use
perl —-my_opts foo.pl argl arg2 arg3
Alternately, if you use OS/2-ish shell, like CMD or 40s2, put the following at the start of your perl script:
extproc perl =S -my_opts
rename your program foo.cmd and start it by typing
foo argl arg2 arg3

Note that because of stupid OS/2 limitations the full path of the perl script is not available when you use
extproc , thus you are forced to usé& perl switch, and your script should be on path. As a plus side, if
you know a full path to your script, you may still start it with

perl ../../blah/foo.cmd argl arg2 arg3

(note that the argumerimy_opts is taken care of by thextproc line in your script, seextproc on
the first ling.

To understand what the abowegicdoes, read perl docs abot® switch — segerlrun, and cmdref about
extproc

view perl perlrun
man perlrun

view cmdref extproc
help extproc

or whatever method you prefer.

There are also endless possibilities to esecutable extensiord 40s2,associationsof WPS and so on...
However, if you use *nixish shell (likeh.exesupplied in the binary distribution), you need to follow the
syntax specified iBwitches in perlrun

Starting OS/2 (and DOS) programs under Perl
This is whatsystem() (seesysterp “ (seel/O Operators in perlop andopen pipe(seeopen are for.
(Avoid exec() (seeexeg unless you know what you do).

Note however that to use some of these operators you need to have a sh—syntax shell inst&ddsgee
"Frequently asked questionsand perl should be able to find it (S&&ERL_SH_DIR).

The only cases when the shell is not used is the multi-argsysteim() (seesystem)/exec() (see
exeg, and one-argument version thereof without redirection and shell meta—characters.

Frequently asked questions
| cannot run external programs
Did you run your programs withw switch? See? (and DOS) programs under Perl

Do you try to runinternal shell commands, likkcopy a b (internal forcmd.ex¢, or ‘glob
a*b' (internal for ksh)? You need to specify your shell explicitly, ligkwad /c copy a b’ ,
since Perl cannot deduce which commands are internal to your shell.
| cannot embed perl into my program, or use perl.dll from my
program.

Is your program EMX-compiled with —Zmt —Zcrtdll ?

If not, you need to build a stand—-alone DLL for perl. Contact me, | did it once. Sockets would not
work, as a lot of other stuff.

23—-Mar-1997 Perl Version 5.004 BETA 105

README-0s2 Perl Programmers Reference Guide README-0s2

Did you use ExtUtils::Embed?
| had reports it does not work. Somebody would need to fix it.

and pipe- open do not work under DOS.

This may a variant of just cannot run external programstr a deeper problem. Basically: ypaedRSX
(see"Prerequisites) for these commands to work, and you may need a paft.ekewhich understands
command arguments. One of such ports is listé®iarequisites"under RSX. Do not forget to set variable
"PERL_SH_DIR" as well.

DPMI is required for RSX.

Cannot start find.exe "pattern” file

Use one of
system 'cmd’, '/c’, 'find "pattern” file’;
‘cmd /c 'find "pattern” file™
This would starfind.exe via cmd.exevia sh.exe viaperl.exe , but this is a price to pay if you want to

use non—conforming program. In fdatd.exe cannot be started at all using C library API only. Otherwise
the following command-lines were equivalent:

find "pattern” file
find pattern file

INSTALLATION

Automatic binary installation

The most convenient way of installing perl is via perl instafistall.exe Just follow the instructions, and
99% of the installation blues would go away.

Note however, that you need to hawezip.exeon your path, and EMX environmeninning The latter
means that if you just installed EMX, and made all the needed chan@mtig.sys you may need to
reboot in between. Check EMX runtime by running

emxrev
A folder is created on your desktop which contains some useful objects.
Things not taken care of by automatic binary installation:

PERL_BADLANG may be needed if you change your codepsftgr perl installation, and the new value
is not supported by EMX. SEEERL_BADLANG!

PERL_BADFREE see"PERL_BADFREE"

Config.pm This file resides somewhere deep in the location you installed your perl library, find it
out by
perl -MConfig —le "print $INC{'Config.pm'}"

While most important values in this fire updated by the binary installer, some of
them may need to be hand-edited. | know no such data, please keep me informed if
you find one.

NOTE. Because of a typo the binary installer of 5.00305 would install a vafdtiRl_SHPATHnNto
Config.sys Please remove this variable and PERL_SH_DIRinstead.

Manual binary installation

As of version 5.00305, OS/2 perl binary distribution comes split into 11 components. Unfortunately, to
enable configurable binary installation, the file paths in the zip files are not absolute, but relative to some
directory.

Note that the extraction with the stored paths is still necessary (default with unzip, spketifpkunzip).

106

Perl Version 5.004 BETA 23—-Mar-1997

ExtUtils::Embed

README-0s2 Perl Programmers Reference Guide README-0s2

However, you need to know where to extract the files. You need also to manually change entries in
Config.systo reflect where did you put the files. Note that if you have some primitive unzipper (like
pkunzip), you may get a lot of warnings/errors during unzipping. Upgra@@uozip

Below is the sample of what to do to reproduce the configuration on my machine:

Perl VIO and PM executables (dynamically linked)

unzip perl_exc.zip *.exe *.ico —d f:/lemx.add/bin
unzip perl_exc.zip *.dll —d f:/emx.add/dll

(have the directories withexe on PATH, and.dll on LIBPATH);

Perl_ VIO executable (statically linked)
unzip perl_aou.zip —d f:/emx.add/bin

(have the directory on PATH);

Executables for Perl utilities
unzip perl_utl.zip —d f:/emx.add/bin

(have the directory on PATH);

Main Perl library
unzip perl_mlb.zip —d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if it is
changed, you need set PERLLIB_PREFIX in Config.sys see'PERLLIB_PREFIX"

Additional Perl modules
unzip perl_ste.zip —d f:/perllib/lib/site_perl

If you do not change this directory, do nothing. Otherwise put this directory and subdiréus@in
PERLLIB or PERL5LIB variable. Do not usd’ERL5LIB unless you have it set already. See
ENVIRONMENT in perl

Tools to compile Perl modules
unzip perl_blb.zip —d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if it is
changed, you need set PERLLIB_PREFIX in Config.sys se€'PERLLIB_PREFIX"

Manpages for Perl and utilities
unzip perl_man.zip —d f:/perllib/man

This directory should better be 8ANPATHYou need to have a working man to access these files.

Manpages for Perl modules
unzip perl_mam.zip —d f:/perllib/man

This directory should better be 8ANPATHYou need to have a working man to access these files.

Source for Perl documentation
unzip perl_pod.zip —d f:/perllib/lib

This is used by bperldoc program (seeerldog, and may be used to generate HTML documentation
usable by WWW browsers, and documentation in zillions of other forméats:, LaTeX, Acrobat
FrameMaker and so on.
Perl manual in .INF format
unzip perl_inf.zip —d d:/os2/book

This directory should better be @DOKSHELF

23—-Mar-1997 Perl Version 5.004 BETA 107

README-0s2 Perl Programmers Reference Guide README-0s2

Pdksh
unzip perl_sh.zip —d f:/bin

This is used by perl to run external commands which explicitly require shell, like the commands using
redirectionandshell metacharacterdt is also used instead of explifin/sh.

SetPERL_SH_DIR(see'PERL_SH_DIRY if you movesh.exefrom the above location.
Note. It may be possible to use some other sh—compatible slo¢liestedl

After you installed the components you needed and update@athiég.syscorrespondingly, you need to
hand-editConfig.pm This file resides somewhere deep in the location you installed your perl library, find it
out by

perl -MConfig —le "print $INC{'Config.pm'}"
You need to correct all the entries which look like file paths (they currently startivith

Warning

The automatic and manual perl installation leave precompiled paths inside perl executables. While these
paths are overwriteable (s&RERLLIB_PREFIX; "PERL_SH_DIR), one may get better results by binary
editing of paths inside the executables/DLLs.

Accessing documentation

Depending on how you built/installed perl you may have (otherwise identical) Perl documentation in the
following formats:

0OS/2 .INF file
Most probably the most convenient form. Under OS/2 view it as

view perl

view perl perlfunc

view perl less

view perl ExtUtils::MakeMaker

(currently the last two may hit a wrong location, but this may improve soon). Under WitB¥ROPSIS"
If you want to build the docs yourself, and h&®/2 toolkit run
pod2ipf > perl.ipf
in /perllib/lib/pod directory, then
ipfc /inf perl.ipf
(Expect a lot of errors during the both steps.) Now move it on your BOOKSHELF path.

Plain text

If you have perl documentation in the source form, perl utilities installed, and GNU groff installed, you may
use

perldoc perlfunc
perldoc less
perldoc ExtUtils::MakeMaker

to access the perl documentation in the text form (note that you may get better results using perl manpages).
Alternately, try running pod2text apodfiles.

Manpages
If you have man installed on your system, and you installed perl manpages, use something like this:

man perlfunc
man 3 less

108 Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

man ExtUtils.MakeMaker
to access documentation for different components of Perl. Start with
man perl

Note that dot.] is used as a package separator for documentation for packages, and as usual, sometimes you
need to give the section3-above — to avoid shadowing by tess(1) manpage

Make sure that the directoapovethe directory with manpages is on &MANPATHIke this
set MANPATH=c:/man;f:/perllib/man

HTML

If you have some WWW browser available, installed the Perl documentation in the source form, and Perl
utilities, you can build HTML docs. Cd to directory wittodfiles, and do like this

cd f:/perllib/lib/pod
pod2html

After this you can direct your browser the fierl.html in this directory, and go ahead with reading docs,
like this:

explore file:///f:/perllib/lib/pod/perl.html
Alternatively you may be able to get these docs prebuilt from CPAN.

GNU info files

Users of Emacs would appreciate it very much, especially@®arl mode loaded. You need to get latest
pod2info from CPAN or, alternately, prebuilt info pages.

.PDF files

for Acrobat are available on CPAN (for slightly old version of perl).
LaTeX docs

can be constructed usipgd?2latex

BUILD

Here we discuss how to build Perl under OS/2. There is an alternative (but maybe older) view on
http://www.shadow.net/~troc/os2perl.html

Prerequisites

You need to have the latest EMX development environment, the full GNU tool suite (gawk renamed to awk,
and GNUfind.exeearlier on path than the OSifd.exe same withsort.exe to check use

find ——version
sort ——version

). You need the latest versionmdkshinstalled ash.exe
Possible locations to get this from are

ftp://hobbes.nmsu.edu/os2/unix/
ftp://ftp.cdrom.com/pub/os2/unix/
ftp://ftp.cdrom.com/pub/os2/dev32/
ftp://ftp.cdrom.com/pub/os2/emx09c/

Make sure that no copies or perl are currently running. Later steps of the build may fail since an older
version of perl.dll loaded into memory may be found.

Also make sure that you havinp directory on the current drive, andlirectory in yourLIBPATH. One
may try to correct the latter condition by

set BEGINLIBPATH .

23—-Mar-1997 Perl Version 5.004 BETA 109

http://www.shadow.net/~troc/os2perl.html

README-0s2 Perl Programmers Reference Guide README-0s2

if you use something likEMD.EXE or latest versions afos2.exe
Make sure your gcc is good feZzomf linking: runomflibs script in/femx/lib directory.

Check that you have link386 installed. It comes standard with OS/2, but may be not installed due to
customization. If typing

link386

shows you do not have it, ®elective installand choosé&ink object modules in Optional system
utilities/More If you get into link386, presstrl-C .

Getting perl source

You need to fetch the latest perl source (including developers releases). With some probability it is located in

http://www.perl.com/CPAN/src/5.0
http://www.perl.com/CPAN/src/5.0/unsupported

If not, you may need to dig in the indices to find it in the directory of the current maintainer.
Quick cycle of developers release may break the OS/2 build time to time, looking into
http://www.perl.com/CPAN/ports/os2/ilyaz/

may indicate the latest release which was publicly released by the maintainer. Note that the release may
include some additional patches to apply to the current source of perl.

Extract it like this
tar vzxf perl5.00409.tar.gz

You may see a message about errors while extraGmmgigure. This is because there is a conflict with a
similarly—-named fileconfigure.

Change to the directory of extraction.

Application of the patches

You need to apply the patches/fos2/diff.* and./0os2/POSIX.mkfifolike this:

gnupatch —p0 < 0s2\POSIX.mkfifo
gnupatch —p0 < os2\diff.configure

You may also need to apply the patches supplied with the binary distribution of perl.

Note also that thelb.lib anddb.afrom the EMX distribution are not suitable for multi-threaded compile
(note that currently perl is not multithread—safe, but is compiled as multithreaded for compatibility with
XFree86-0S/2). Get a corrected one from

ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/db_mt.zip

Hand-editing

You may look into the file/hints/os2.shand correct anything wrong you find there. | do not expect it is
needed anywhere.

Making

sh Configure —des -D prefix=f:/perllib

prefix ~means: where to install the resulting perl library. Giving correct prefix you may avoid the need to
specifyPERLLIB_PREFIX, se€'PERLLIB_PREFIX"

Ignore the message about missing, and about-c¢ option to tr In fact if you can trace where the latter
spurious warning comes from, please inform me.

Now

110

Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

make

At some moment the built may die, reportingeaision mismatclor unable to rurperl. This means that most

of the build has been finished, and it is the time to move the constperatll to someabsolutelocation in
LIBPATH. After this is done the build should finish without a lot of fuSse can avoid the interruption if
one has the correct prebuilt versionpsrl.dll on LIBPATH, but probably this is not needed anymore, since
miniperl.exeis linked statically now.

Warnings which are safe to ignorekfifo() redefined insidePOSIX.c

Testing
Now run

make test

Some tests (4..6) should fail. Some perl invocations should end in a segfault (syste®&Y88ar5). To
get finer error reports,

cdt
perl harness

The report you get may look like

Failed Test Status Wstat Total Fail Failed List of failed
ioffs.t 26 11 42.31% 2-5,7-11, 18, 25

lib/io_pipet 3 768 6 ?7? % ?7?

lib/lio_sockt 3 768 5 ?? % ??

op/stat.t 56 5 8.93% 3-4, 20, 35, 39

Failed 4/140 test scripts, 97.14% okay. 27/2937 subtests failed, 99.08% okay.

Note that using ‘make test’ target two more tests may daflexec:1 because of (mis)feature of pdksh,
and lib/posix:15 , which checks that the buffers are not flushed exrit (this is a bug in the test
which assumes that tty output is buffered).

| submitted a patch to EMX which makes it possibléots() with EMX dynamic libraries loaded, which
makedib/io* tests pass. This means that soon the number of failing tests may decrease yet more.

However, the teslib/io_udp.t is disabled, since it never terminates, | do not know why. Comments/fixes
welcome.

The reasons for failed tests are:
io/fs.t Checkdfile systenoperations. Tests:
2-5,7-11 Checklink() andinode count - nonesuch under OS/2.
18 Checksatime andmtime ofstat() - I could not understand this test.

25 Checkstruncate() on a filehandle just opened for write — | do not know why
this should or should not work.

lib/io_pipe.t
CheckslO::Pipe module. Some feature of EMX - tefstrk() s with dynamic extension
loaded — unsupported now.

lib/io_sock.t
CheckslO::Socket module. Some feature of EMX — tdetk() s with dynamic extension
loaded — unsupported now.

op/statt Checksstat() . Tests:

23—-Mar-1997 Perl Version 5.004 BETA 111

README-0s2 Perl Programmers Reference Guide README-0s2

Checksnode count - nonesuch under OS/2.
4 Checksmtime andctime ofstat() - | could not understand this test.
20 Checks-x — determined by the file extension only under OS/2.
35 Needdusr/bin.
39 Checks-t of /dev/null. Should not fail!
In addition to errors, you should get a lot of warnings.

A lot of ‘bad free’

in databases related to Berkeley DB. This is a confirmed bug of DB. You may disable this warnings,
see"PERL_BADFREE"

Process terminated by SIGTERM/SIGINT

This is a standard message issued by OS/2 applications. *nix applications die in silence. It is
considered a feature. One can easily disable this by appropriate sighandlers.

However the test engine bleeds these message to screen in unexpected moments. Two messages of this
kind shouldbe present during testing.

*/sh.exe: In: not found
Is : /dev: No such file or directory

The last two should be self-explanatory. The test suite discovers that the system it runs dmats not
much*nixish.

A lot of ‘bad free'... in databases, bug in DB confirmed on other platforms. You may disable it by setting
PERL_BADFREE environment variable to 1.

Installing the built perl
Run

make install

It would put the generated files into needed locations. Manuallggsuexe perl__.exeandperl____.exdo a
location on your PATHperl.dll to a location on your LIBPATH.

Run
make cmdscripts INSTALLCMDDIR=d:/ir/on/path

to convert perl utilities tacmd files and put them on PATH. You need to pEXE-utilities on path
manually. They are installed ifiprefix/bin, here $prefix is what you gave t&Configure, see
Making

a.out -style build
Proceed as above, but maler|_.exe(see'perl_.exe) by

make perl_
test and install by

make aout_test
make aout_install

Manually putperl_.exeto a location on your PATH.

Since perl_ has the extensions prebuilt, it does not suffer from dynr@gamic extensions +ork()
syndrome, thus the failing tests look like

Failed Test Status Wstat Total Fail Failed List of failed

io/fs.t 26 11 42.31% 2-5,7-11, 18, 25

112 Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

op/stat.t 56 5 8.93% 3-4, 20, 35, 39
Failed 2/118 test scripts, 98.31% okay. 16/2445 subtests failed, 99.35% okay.

Note. The build process fguerl_ does not knovabout all the dependencies, so you should make sure that
anything is up—to—date, say, by doing
make perl.dll
first.
Build FAQ

Some / became \ in pdksh.
You have a very old pdksh. SBeerequisites

‘errno’ - unresolved external
You do not have MT-safeb.lib. SeePrerequisites

Problems with tr
reported with very old version of tr.

Some problem (forget which ;-)
You have an older version pérl.dll on your LIBPATH, which broke the build of extensions.

Library ... not found
You did not ruromflibs . SeePrerequisites

Segfault in make
You use an old version of GNU make. $®erequisites

Specific (mis)features of OS/2 port

setpriority , getpriority
Note that these functions are compatible with *nix, not with the older ports of ‘94 — 95. The priorities are
absolute, go from 32 to —95, lower is quicker. O is the default priority.

system()
Multi—argument form okystem() allows an additional numeric argument. The meaning of this argument
is described I©S2::Process

extproc on the first line
If the first chars of a script afextproc ", this line is treated & -line, thus all the switches on this line
are processed (twice if script was started via cmd.exe).

Additional modules:

0S2::ProcessOS2::REXX 0S2::PrfDB OS2::ExtAttr This modules provide access to additional numeric
argument forsystem , to DLLs having functions with REXX signature and to REXX runtime, to OS/2
databases in thé&NI format, and to Extended Attributes.

Two additional extensions by Andreas Kais&®$2::UPM, and OS2::FTP , are included into my ftp
directory, mirrored on CPAN.

Prebuilt methods:
File::Copy::syscopy
used byFile::Copy::copy , seeFile::Copy.

Dynaloader::mod2fname
used byDynalLoader for DLL name mangling.

23—-Mar-1997 Perl Version 5.004 BETA 113

OS2::Process
OS2::Process
OS2::REXX
OS2::PrfDB
OS2::ExtAttr
File::Copy

README-0s2 Perl Programmers Reference Guide README-0s2

Cwd::current_drive()
Self explanatory.

Cwd::sys_chdir(name)

leaves drive as it is.
Cwd::change_drive(hame)
Cwd::sys_is_absolute(name)

means has drive letter and is_rooted.
Cwd::sys_is_rooted(name)

means has leadirj§\] (maybe after a drive—letter:).
Cwd::sys_is_relative(name)

means changes with current dir.
Cwad::sys_cwd(name)

Interface to cwd from EMX. Used lywd::cwd .
Cwd::sys_abspath(name, dir)

Really really odious function to implement. Returns absolute name of file which wouldh&aoeeif
CWD weredir . Dir defaults to the current dir.

Cwd::extLibpath([type])

Get current value of extended library search pathtyffe is present andrue, works with
END_LIBPATH, otherwise witBEGIN_LIBPATH.

Cwd::extLibpath_set(path [, type])

Set current value of extended library search pathtypie is present andrue, works with
END_LIBPATH, otherwise witBEGIN_LIBPATH.

(Note that some of these may be moved to different libraries — eventually).
Misfeatures

Sinceflock(3) is present in EMX, but is not functional, the same is true for perl. Here is the list of
things which may be "broken" on EMX (from EMX docs):

° The functiongecvmsg(3)sendmsg(3)andsocketpair(3)are not implemented.
° sock_init(3)is not required and not implemented.

° flock(3)is not yet implemented (dummy function).

° kill(3): Special treatment of PID=0, PID=1 and PID=-1 is not implemented.
° waitpid(3)

WUNTRACED
Not implemented.
waitpid() is not implemented for negative values of PID.

Note thatkill -9 does not work with the current version of EMX.
Sincesh.exeis used for globing (segob), the bugs ofh.exeplague perl as well.
In particular, uppercase letters do not work ifi —patterns with the current pdksh.

Modifications
Perl modifies some standard C library calls in the following ways:

114 Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

popen my_popen usessh.exeif shell is required, cf:PERL_SH_DIR"

tmpnam is created usingMPor TEMPenvironment variable, viegmpnam.

tmpfile If the current directory is not writable, file is created using modifiggham, so there may be
a race condition.
ctermid a dummy implementation.
stat 0s2_stat special-caseslev/ttyand/dev/con
Perl flavors

Because of idiosyncrasies of OS/2 one cannot have all the eggs in the same basket (though EMX
environment tries hard to overcome this limitations, so the situation may somehow improve). There are 4
executables for Perl provided by the distribution:

perl.exe

The main workhorse. This is a chimera executable: it is compiled asoah -style executable, but is
linked with omf-style dynamic libraryperl.dll, and with dynamic CRT DLL. This executable is a VIO
application.

It can load perl dynamic extensions, and it frak() . Unfortunately, with the current version of EMX it
cannotfork() with dynamic extensions loaded (may be fixed by patches to EMX).

Note.Keep in mind thatork() is needed to open a pipe to yourself.

perl_.exe

This is a statically linked.out —style executable. It caork() , but cannot load dynamic Perl extensions.

The supplied executable has a lot of extensions prebuilt, thus there are situations when it can perform tasks
not possible usingerl.exe like fork() ing when having some standard extension loaded. This executable

is a VIO application.

Note. A better behaviour could be obtained frperl.exe if it were statically linked with standat@er!
extensionsbut dynamically linked with thBerl DLL and CRT DLL. Then it would be ablefark() with
standard extensionandwould be able to dynamically load arbitrary extensions. Some changes to Makefiles
and hint files should be necessary to achieve this.

This is also the only executable with does not require OBi&. friends locked intoM$ world would
appreciate the fact that this executable runs under DOS, Win0.3*, Win0.95 and WinNT with an appropriate
extender. Se&Other OSes”

perl__.exe
This is the same executablepes]___.exebut it is a PM application.
Note. Usually STDIN, STDERR, and STDOUT of a PM application are redirectedlto However, it is
possible to see them if you staperl__.exe from a PM program which emulates a console window, like

Shell modeof Emacs or EPM. Thus i$ possibleto use Perl debugger (sperldebug to debug your PM
application.

This flavor is required if you load extensions which use PM, like the forthcorargrk

perl___.exe

This is anomf-style executable which is dynamically linked perl.dll and CRT DLL. | know no
advantages of this executable operl.exe , but it cannofork() at all. Well, one advantage is that the
build process is not so convoluted as vgighl.exe

Itis a VIO application.

Why strange names?

Since Perl processes the-line (cf. DESCRIPTIONSwitchesNot a perl script in perldiag
No Perl script found in input in perldidgit should know when a prograis a Perl There is some naming

23—-Mar-1997 Perl Version 5.004 BETA 115

README-0s2 Perl Programmers Reference Guide README-0s2

convention which allows Perl to distinguish correct lines from wrong ones. The above names are almost the
only names allowed by this convention which do not contain digits (which have absolutely different
semantics).

Why dynamic linking?

Well, having several executables dynamically linked to the same huge library has its advantages, but this
would not substantiate the additional work to make it compile. The reason is stupid—but-quick "hard"
dynamic linking used by OS/2.

The address tables of DLLs are patched only once, when they are loaded. The addresses of entry points into
DLLs are guaranteed to be the same for all programs which use the same DLL, which reduces the amount of
runtime patching — once DLL is loaded, its code is read-only.

While this allows some performance advantages, this makes life terrible for developers, since the above
scheme makes it impossible for a DLL to be resolved to a symbol in the .EXE file, since this would need a
DLL to have different relocations tables for the executables which use it.

However, a Perl extension is forced to use some symbols from the perl executable, say to know how to find
the arguments provided on the perl internal evaluation stack. The solution is that the main code of interpreter
should be contained in a DLL, and thEXE file just loads this DLL into memory and supplies
command-arguments.

This greatly increases the load time for the application (as well as the number of problems during
compilation). Since interpreter is in a DLL, the CRT is basically forced to reside in a DLL as well (otherwise
extensions would not be able to use CRT).

Why chimera build?

Current EMX environment does not allow DLLs compiled using Unigislut format to export symbols
for data. This forceemf-style compile operl.dIl.

Current EMX environment does not allo&®XE files compiled inomf format tofork() . fork() is
needed for exactly three Perl operations:
explicit fork()
in the script, and
open FH, "[-"
open FH, "-|"
opening pipes to itself.

While these operations are not questions of life and death, a lot of useful scripts use them. This forces
a.out -style compile operl.exe

ENVIRONMENT

Here we list environment variables with are either OS/2- and DOS- and Win*-specific, or are more
important under OS/2 than under other OSes.

PERLLIB_PREFIX

Specific for EMX port. Should have the form
pathl;path2
or
pathl path2
If the beginning of some prebuilt path matcpaghl, it is substituted witlpath2

Should be used if the perl library is moved from the default location in prefereRERIo(5)LIB , since
this would not leave wrong entries in <@INC.

116

Perl Version 5.004 BETA 23—-Mar-1997

README-0s2 Perl Programmers Reference Guide README-0s2

PERL_BADLANG
If 1, perl ignoressetlocale() failing. May be useful with some stranigpeales.

PERL_BADFREE

If 1, perl would not warn of in case of unwarranfexe() . May be useful in conjunction with the module
DB_File, since Berkeley DB memory handling code is buggy.

PERL_SH_DIR
Specific for EMX port. Gives the directory part of the locationstoiexe

TMPor TEMP
Specific for EMX port. Used as storage place for temporary files, most netalggripts.

Evolution
Here we list major changes which could make you by surprise.

Priorities
setpriority and getpriority are not compatible with earlier ports by Andreas Kaiser. See
"setpriority, getpriority"

DLL name mangling

With the release 5.003_01 the dynamically loadable libraries should be rebuilt. In particular, DLLs are now
created with the names which contain a checksum, thus allowing workaround for OS/2 scheme of caching
DLLs.

Threading

As of release 5.003_01 perl is linked to multithreaded CRT DLL. Perl itself is not multithread—safe, as is not
perlmalloc() . However, extensions may use multiple thread on their own risk.

Needed to compil®erl/Tk for XFree86—0S/2 out-of-the-box.

Calls to external programs

Due to a popular demand the perl external program calling has been changed wrt Andreas Kaiséf's port.
perl needs to call an external prograia shel| thef:/bin/sh.exewill be called, or whatever is the override,
see"PERL_SH_DIR!

Thus means that you need to get some copysbfexeas well (I use one from pdksh). The drive F: above is
set up automatically during the build to a correct value on the builder machine, but is overridable at runtime,

Reasons:a consensus operl5—porters was that perl should use one non-overridable shell per
platform. The obvious choices for OS/2 amd.exe and sh.exe Having perl build itself would be
impossible withcmd.exeas a shell, thus | picked sp.exe . Thus assures almost 100% compatibility with

the scripts coming from *nix. As an added benefit this works as well under DOS if you use DOS-enabled
port of pdksh (se&rerequisites).

Disadvantages:currently sh.exeof pdksh calls external programs Jak()/exec() , and there is0
functioningexec() on OS/2exec() is emulated by EMX by asyncroneous call while the caller waits for
child completion (to pretend that tipgd did not change). This means tha¢xtra copy ofsh.exeis made
active viafork()/exec() , which may lead to some resources taken from the system (even if we do not
count extra work needed ftork() ing).

Note that this a lesser issue now when we do not sphwereunless needed (metachars found).
One can always stactnd.exeexplicitly via
system 'cmd’, '/c’, 'mycmd’, "argl’, ‘arg?’, ...

If you need to usemd.exe and do not want to hand-edit thousands of your scripts, the long—term solution
proposed on p5-p is to have a directive

23—-Mar-1997 Perl Version 5.004 BETA 117

README-0s2 Perl Programmers Reference Guide README-0s2

use 0S2::Cmd,;
which will overridesystem() , exec() ," , andopen(,’...]") . With current perl you may override
only system() ,readpipe() - the explicit version of , and maybexec() . The code will substitute

the one—argument call Bystem() by CORE::system(‘cmd.exe’, ‘/c', shift)

If you have some working code f@xS2::Cmd, please send it to me, | will include it into distribution. | have
no need for such a module, so cannot test it.

Memory allocation

Perl uses its owmalloc() under OS/2 - interpreters are usually malloc-bound for speed, but perl is not,
since its malloc is lightning—fast. Unfortunately, it is also quite frivolous with memory usage as well.

Since kitchen-top machines are usually low on memory, perl is compiled with all the possible
memory-saving options. This probably makes pertialloc() as greedy with memory as the neighbor's
malloc() , but still much quickier. Note that this is true only for a "typical" usage, it is possible that the
perl malloc will be worse for some very special usage.

Combination of perl'smalloc() and rigid DLL name resolution creates a special problem with library
functions which expect their return value to foee() d by system'dree() . To facilitate extensions
which need to call such functions, system memory-allocation functions are still available with the prefix
emx_ added. (Currently only DLL perl has this, it should propagapeib .exeshortly.)

AUTHOR
llya Zakharevich, ilya@math.ohio—state.edu
SEE ALSO
perl(1).
118 Perl Version 5.004 BETA 23—-Mar-1997

README-win32 Perl Programmers Reference Guide README-win32

NAME

perlwin32 — Perl under WindowsNT [XXX and perhaps under Windows95]

SYNOPSIS

These are instructions for building Perl under WindowsNT (versions 3.51 or 4.0), using Visual C++.

DESCRIPTION

Before you start, you should glance through the README file found found in the top-level directory where
the Perl distribution was extracted. Make sure you read and understand the terms under which this software
is being distributed.

Make sure you read tiBUGS AND CAVEATSection below for the known limitations of this port.

The INSTALL file in the perl top-level has much information that is only relevant to people building Perl on
Unix-like systems. In particular, you can safely ignore any information that talks about "Configure".

You should probably also read the README.os2 file, which gives a different set of rules to build a Perl that
will work on Win32 platforms. That method will probably enable you to build a more Unix—compatible
perl, but you will also need to download and use various other support software described in that file.

This set of instructions is meant to describe a so—called "native" port of Perl to Win32 platforms. The
resulting Perl requires no additional software to run (other than what came with your operating system).
Currently, this port is only capable of using Microsoft's Visual C++ compiler. The ultimate goal is to
support the other major compilers that can be used on the platforms.

Setting Up

° Use the default "cmd" shell that comes with NT. In particular, do *not* use the 4DOS/NT shell. The
Makefile has commands that are not compatible with that shell.

° Run the VCVARS32.BAT file usually found somewhere like C:\MSDEV4.2\BIN. This will set your
build environment.

° Depending on how you extracted the distribution, you have to make sure all the files are writable by
you. The easiest way to make sure of this is to execute:

attrib -R *.* /S

from the perl toplevel directory. You dortiaveto do this if you used the right tools to extract the
files in the standard distribution, but it doesn‘t hurt to do so.

Building and Installation

. The "win32" directory contains *.mak files for use with the NMAKE that comes with Visual C++ ver.
4.0 and above. If you wish to build perl using Visual C++ versions between 2.0 and 4.0, do the
following three additional steps (these three steps are not required if you are using Visual C++ versions
4.0 and above):

1. Overwrite the *.mak files in the win32 subdirectory with the versions in the win32\VC-2.0
directory. (The only difference in those makefiles is in how$iidCLUDE) variable is
handled—VC 2.0 NMAKE does not grok a path lis${tiNCLUDE)).

2. Reset your INCLUDE environment variable to the MSVC include directory. For example:
set INCLUDE=E:\MSVC20\INCLUDE

This must have only one directory (a list of directories will not work). VCVARS32.BAT
may put multiple locations in there, which is why this step is required.

3. Apply the patch found in win32\VC-2.0\vc2.patch, like so:

cd win32
patch —p2 =N < VC-2.0\vc2.patch

23—-Mar-1997 Perl Version 5.004 BETA 119

README-win32 Perl Programmers Reference Guide README-win32

Testing

Type "nmake test". This will run most of the tests from the testsuite (many tests will be skipped, and some
tests will fail). Most failures are due to UNIXisms in the standard perl testsuite.

You may have to edit win32\win32.c manually if you don‘t have GNU patch.
Make sure you are in the "win32" subdirectory under the perl toplevel.

Type "nmake" while in the "win32" subdirectory. This should build everything. Specifically, it will
create perl.exe, perl.dll, and perlglob.exe at the perl toplevel, and various other extension dll's under
the lib\auto directory. If the make fails for any reason, make sure you have done the previous steps
correctly.

Type "nmake install". This will put the newly built perl and the libraries under C:\PERL. If you want
to alter this location, to say, D:\FOO\PERL, you will have to say:

nmake install INST_TOP=D:\FOO\PERL

instead. To use the Perl you just installed, make sure you set your PATH environment variable to
C:\PERL\BIN (or D:\FOO\PERL\BIN).

To get a more detailed breakdown of the tests that failed, say:

cd ..\t
A\perl harness

This should produce a summary very similar to the following:

Failed Test Status Wstat Total Fail Failed List of failed

io/fs.t 26 16 61.54% 1-5, 7-11, 16-18, 23-25

io/tell.t 13 1 7.69% 10

lib/anydbm.t 12 1 8.33% 2

lib/findbin.t 1 1100.00% 1

lib/sdbm.t 12 1 8.33% 2

op/mkdir.t 7 2 2857% 3,7

op/runlevel.t 8 1 12.50% 4

op/stat.t 56 3 5.36% 3-4,20

op/taint.t 98 20 20.41% 1-6, 14, 16, 19-21, 24, 26, 35-3
pragma/locale.t 98 40 40.82% 1, 13-14, 21-27, 33, 39, 45-53,

Failed 10/149 test scripts, 93.29% okay. 86/3506 subtests failed, 97.55% okay.

Check if any additional tests other than the ones shown here failed. The standard testsuite will ultimately be
modified so that the testsuite avoids running irrelevant tests on Win32.

BUGS AND CAVEATS

This is still very much an experimental port, and should be considered alpha quality software. You can
expect changes in virtually all of these areas: build process, installation structure, supported
utilities/modules, and supported perl functionality. Specifically, functionality that supports the Win32
environment may be ultimately be supported as either core modules or extensions.

Many tests from the standard testsuite either fail or produce different results under this port. Most of the
problems fall under one of these categories

stat() andlstat() functions may not behave as documented. They may return values that
bear no resemblance to those reported on Unix platforms, and some fields may be completely
bogus.

The following functions are currently unavailablerk() , exec() , dump() , kill() ,
chown() ,link() ,symlink() ,chroot() ,setpgrp() ,getpgrp()

setpriority() , getpriority() , syscall) , fentl) , flock() . This list is
possibly incomplete.

120

Perl Version 5.004 BETA 23—-Mar-1997

README-win32 Perl Programmers Reference Guide README-win32

° Varioussocket() related calls are supported, but they may not behave as on Unix platforms.

° The four—-argumergelect() call is only supported on sockets.

° The behavior ofsystem() or theqgx[] operator (a.k.a. "backticks"), when used to call
interactive commands, is ill-defined.

° $! doesn't work reliably yet.

° Building modules available on CPAN is mostly supported, but this hasn‘t been tested much yet.
Expect strange problems, and be prepared to deal with the consequences.

° utime() , times() and process-related functions may not behave as described in the
documentation, and some of the returned values or effects may be bogus.

° Signal handling may not behave as on Unix platforms.

° File globbing may not behave as on Unix platforms.

° Not all of the utilities that come with the Perl distribution are supported yet.

Please send detailed descriptions of any problems and solutions that you may fieddog@perl.com
along with the output produced pgrl -V

AUTHORS

Gary Ng <71564.1743@CompuServe.COM
Gurusamy Sarathy <gsar@umich.edu
Nick Ing—Simmons <nick@ni-s.u—net.com

SEE ALSO
perl

HISTORY

This port was originally contributed by Gary Ng around 5.003 24, and borrowed from the Hip
Communications port that was available at the time.

Nick Ing—Simmons and Gurusamy Sarathy have made numerous and sundry hacks since then.
Last updated: 19 March 1997

23—-Mar-1997 Perl Version 5.004 BETA 121

INSTALL Perl Programmers Reference Guide INSTALL

NAME

Install — Build and Installation guide for perl5.

SYNOPSIS

The basic steps to build and install perl5 on a Unix system are:

rm —f config.sh
sh Configure
make

make test
make install

You may also wish to add these:

(cd /usr/include && h2ph *.h sys/*.h)

(cd pod && make html && mv *.html <www home dir>)
(cd pod && make tex && <process the latex files>)

Each of these is explained in further detail below.

For information on non—Unix systems, see the sectiotPorting information"below.

DESCRIPTION

You should probably at least skim through this entire document before proceeding. Special notes specific to
this release are identified INOTE.

This document is written in pod format as an easy way to indicate its structure. The pod format is described
in pod/perlpod.pod, but you can read it as is with any pager or editor.

If you're building Perl on a non-Unix system, you should also read the README file specific to your
operating system, since this may provide additional or different instructions for building Perl.

Space Requirements

The complete perl5 source tree takes up about 7 MB of disk space. The complete tree after conadeting
takes roughly 15 MB, though the actual total is likely to be quite system-dependent. The installation
directories need something on the order of 7 MB, though again that value is system—-dependent.

Start with a Fresh Distribution

If you have built perl before, you should clean out the build directory with the command

make realclean

The results of a Configure run are stored in the config.sh file. If you are upgrading from a previous version
of perl, or if you change systems or compilers or make other significant changes, or if you are experiencing
difficulties building perl, you should probabhot re—use your old config.sh. Simply remove it or rename it,

e.g.

mv config.sh config.sh.old

If you wish to use your old config.sh, be especially attentive to the version and architecture-specific
guestions and answers. For example, the default directory for architecture—dependent library modules
includes the version name. By default, Configure will reuse your old name (e.g.
/opt/perl/lib/i86pc—solaris/5.003) even if you‘re running Configure for a different version, e.g. 5.004. Yes,
Configure should probably check and correct for this, but it doesn‘t, presently. Similarly, if you used a
shared libperl.so (see below) with version numbers, you will probably want to adjust them as well.

Also, be careful to check your architecture name. Some Linux systems call themselves i486, while others
use i586. If you pick up a precompiled binary, it might not use the same name.

In short, if you wish to use your old config.sh, | recommend running Configure interactively rather than
blindly accepting the defaults.

122

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

Run Configure

Configure will figure out various things about your system. Some things Configure will figure out for itself,
other things it will ask you about. To accept the default, just REJ8JRN The default is almost always
ok.

After it runs, Configure will perform variable substitution on all th8H files and offer to rummake
depend

Configure supports a number of useful options. Ranfigure —h to get a listing. To compile with gcc, for
example, you can run

sh Configure —Dcc=gcc

This is the preferred way to specify gcc (or another alternative compiler) so that the hints files can set
appropriate defaults.

If you want to use your old config.sh but override some of the items with command line options, you need to
useConfigure —-O.

If you are willing to accept all the defaults, and you want terse output, you can run
sh Configure —des

By default, for most systems, perl will be installed in /usr/local/{bin, lib, man}. You can specify a different
‘prefix’ for the default installation directory, when Configure prompts you or by using the Configure
command line option —Dprefix="/some/directory’, e.g.

sh Configure —Dprefix=/opt/perl

If your prefix contains the string "perl”, then the directories are simplified. For example, if you use
prefix=/opt/perl, then Configure will suggest /opt/perl/lib instead of /opt/perl/lib/perl5/.

By default, Configure will compile perl to use dynamic loading if your system supports it. If you want to
force perl to be compiled statically, you can either choose this when Configure prompts you or you can use
the Configure command line option —UusedlI.
GNU-style configure
If you prefer the GNU-styleconfigure command line interface, you can use the suppliedfigure
command, e.g.
CC=gcc ./configure
The configure script emulates a few of the more common configure options. Try
.Jconfigure ——help
for a listing.
Cross compiling is not supported.

For systems that do not distinguish the files "Configure" and "configure", Perl includes a capyigfire
namedconfigure.gnu.

Extensions

By default, Configure will offer to build every extension which appears to be supported. For example,
Configure will offer to build GDBM_File only if it is able to find the gdbm library. (See examples below.)
Dynaloader, Fcntl, and 1O are always built by default. Configure does not contain code to test for POSIX
compliance, so POSIX is always built by default as well. If you wish to skip POSIX, you can set the
Configure variable useposix=false either in a hint file or from the Configure command line. Similarly, the
Opcode extension is always built by default, but you can skip it by setting the Configure variable
useopcode=false either in a hint file for from the command line.

Even if you do not have dynamic loading, you must still build the DynalLoader extension; you should just

23—-Mar-1997 Perl Version 5.004 BETA 123

INSTALL Perl Programmers Reference Guide INSTALL

build the stub dI_none.xs version. (Configure will suggest this as the default.)

In summary, here are the Configure command-line variables you can set to turn off each extension:

DB_File i_db

Dynal.oader (Must always be included as a static extension)
Fentl (Always included by default)
GDBM _File i_gdbm

10 (Always included by default)
NDBM_File i_ndbm

ODBM _File i_dbm

POSIX useposix

SDBM_File (Always included by default)
Opcode useopcode

Socket d_socket

Thus to skip the NDBM_File extension, you can use
sh Configure —Ui_ndbm
Again, this is taken care of automatically if you don‘t have the ndbm library.
Of course, you may always run Configure interactively and select only the extensions you want.

Finally, if you have dynamic loading (most modern Unix systems do) remember that these extensions do not
increase the size of your perl executable, nor do they impact start—up time, so you probably might as well
build all the ones that will work on your system.

Including locally-installed libraries

Perl5 comes with interfaces to number of database extensions, including dom, ndbm, gdbm, and Berkeley
db. For each extension, if Configure can find the appropriate header files and libraries, it will automatically
include that extension. The gdbm and db librariesxaténcluded with perl. See the library documentation

for how to obtain the libraries.

Note: If your database header (.h) files are not in a directory normally searched by your C compiler, then
you will need to include the appropriatéyour/directory option when prompted by Configure. If your
database library (.a) files are not in a directory normally searched by your C compiler and linker, then you
will need to include the appropriatel/your/directory option when prompted by Configure. See the
examples below.

Examples

gdbm in /usr/local

Suppose you have gdbm and want Configure to find it and build the GDBM_File extension. This
examples assumes you haygbm.hinstalled in/usr/local/include/gdbm.handlibgdbm.ainstalled in
/usr/local/lib/libgdbm.a Configure should figure all the necessary steps out automatically.

Specifically, when Configure prompts you for flags for your C compiler, you should include
—l/usr/local/include

When Configure prompts you for linker flags, you should inckddiisr/local/lib

If you are using dynamic loading, then when Configure prompts you for linker flags for dynamic
loading, you should again inclueé/usr/local/lib

Again, this should all happen automatically. If you want to accept the defaults for all the questions and
have Configure print out only terse messages, then you can just run

sh Configure —des
and Configure should include the GDBM_File extension automatically.

This should actually work if you have gdbm installed in any of (/usr/local, /opt/local, /usr/gnu,

124

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

/opt/gnu, /usr/GNU, or /opt/GNU).

gdbm in /usr/you
Suppose you have gdbm installed in some place other than /usr/local/, but you still want Configure to
find it. To be specific, assume you hausr/you/include/gdbm.hand/usr/youl/lib/libgdbm.a You
still have to add-1/usr/you/include to cc flags, but you have to take an extra step to help Configure
find libgdbm.a Specifically, when Configure prompts you for library directories, you have to add
/usrlyoul/lib to the list.

It is possible to specify this from the command line too (all on one line):

sh Configure —des \
—Dlocincpth="/usr/you/include" \
—Dloclibpth="/usr/you/lib"

locincpth is a space—separated list of include directories to search. Configure will automatically
add the appropriatel directives.

loclibpth is a space—separated list of library directories to search. Configure will automatically add
the appropriate-L directives. If you have some libraries undlesr/local/ and others undeusr/you,
then you have to include both, namely

sh Configure —des \
—Dlocincpth="/usr/you/include /usr/local/include" \
—Dloclibpth="/usr/you/lib /usr/local/lib"

Installation Directories

The installation directories can all be changed by answering the appropriate questions in Configure. For
convenience, all the installation questions are near the beginning of Configure.

By default, Configure uses the following directories for library files (archname is a string like sun4-sunos,
determined by Configure)

/usr/local/lib/perl5/archname/5.004
/usr/local/lib/perl5/
/usr/local/lib/perl5/site_perl/archname
/usr/local/lib/perl5/site_perl

and the following directories for manual pages:

/usr/local/man/manil
/usr/local/lib/perl5/man/man3

(Actually, Configure recognizes the SVR3-style /usr/local/man/l_man/manl directories, if present, and uses
those instead.) The module man pages are stuck in that strange spot so that they don‘t collide with other man
pages stored in /usr/local/man/man3, and so that Perl's man pages don‘t hide system man pages. On some
systemsman lesswould end up calling up Perl's less.pm module man page, rather thasgheogram.

If you specify a prefix that contains the string "perl”, then the directory structure is simplified. For example,
if you Configure with —Dprefix=/opt/perl, then the defaults are

/opt/perl/lib/archname/5.004
/opt/perl/lib
/opt/perl/lib/site_perl/archname
lopt/perl/lib/site_perl

/opt/perl/man/manl
/opt/perl/man/man3

The perl executable will search the libraries in the order given above.

The directories site_perl and site_perl/archname are empty, but are intended to be used for installing local or
site-wide extensions. Perl will automatically look in these directories. Previously, most sites just put their

23—-Mar-1997 Perl Version 5.004 BETA 125

INSTALL Perl Programmers Reference Guide INSTALL

local extensions in with the standard distribution.

In order to support using things like #!/usr/local/bin/perl5.004 after a later version is released,
architecture—dependent libraries are stored in a version—specific directory, such as
/usr/local/lib/perl5/archname/5.004/. In Perl 5.000 and 5.001, these files were just stored in
/usr/local/lib/perl5/archname/. If you will not be using 5.001 binaries, you can delete the standard extensions
from the /usr/local/lib/perl5/archname/ directory. Locally—added extensions can be moved to the site_perl
and site_perl/archname directories.

Again, these are just the defaults, and can be changed as you run Configure.

Changing the installation directory

Configure distinguishes between the directory in which perl (and its associated files) should be installed and
the directory in which it will eventually reside. For most sites, these two are the same; for sites that use AFS,
this distinction is handled automatically. However, sites that use software sdepcd$o manage software
packages may also wish to install perl into a different directory and use that management software to move
perl to its final destination. This section describes how to do this. Someday, Configure may support an
option —Dinstallprefix=/foo to simplify this.

Suppose you want to install perl under thep/perl5directory. You can editonfig.sh and change all the
install* variables to point téémp/perl5instead ofusr/local/wherever You could also set them all from the
Configure command line. Or, you can automate this process by placing the following lines in a file
config.overbefore you run Configure (replace /tmp/perl5 by a directory of your choice):

installprefix=/tmp/perl5

test —d $installprefix || mkdir $installprefix

test —d Sinstallprefix/bin || mkdir $installprefix/bin
installarchlib="echo S$installarchlib | sed "s!$prefix!$installprefix!"
installbin="echo S$installbin | sed "s!$prefix!$installprefix!™
installmanldir="echo $installmanldir | sed "s!$prefix!$installprefix!"
installman3dir="echo $installman3dir | sed "s!$prefix!$installprefix!"
installprivlib="echo $installprivlib | sed "s!$prefix!$installprefix!™
installscript="echo $installscript | sed "s!$prefix!$installprefix!"
installsitelib="echo $installsitelib | sed "s!$prefix!$installprefix!"
installsitearch="'echo $installsitearch | sed "s!$prefix!$installprefix!™

Then, you can Configure and install in the usual way:

sh Configure —des
make

make test

make install

Creating an installable tar archive

If you need to install perl on many identical systems, it is convenient to compile it once and create an archive
that can be installed on multiple systems. Here's one way to do that:

Set up config.over to install perl into a different directory,
e.g. /tmp/perl5 (see previous part).

sh Configure —des

make

make test

make install

cd /tmp/perl5

tar cvf ../perl5—archive.tar .

Then, on each machine where you want to install perl,
cd /usr/local # Or wherever you specified as $prefix

tar xvf perl5-archive.tar

126

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

Configure-time Options
There are several different ways to Configure and build perl for your system. For most users, the defaults are
sensible and will work. Some users, however, may wish to further customize perl. Here are some of the
main things you can change.

Binary Compatibility With Earlier Versions of Perl 5

If you have dynamically loaded extensions that you built under perl 5.003 and that you wish to continue to
use with perl 5.004, then you need to ensure that 5.004 remains binary compatible with 5.003.

Starting with Perl 5.003, all functions in the Perl C source code have been protected by default by the prefix
Perl_ (or perl_) so that you may link with third—party libraries without fear of namespace collisions. This
change broke compatibility with version 5.002, so installing 5.003 or 5.004 over 5.002 or earlier will force
you to re-build and install all of your dynamically loadable extensions. (The standard extensions supplied
with Perl are handled automatically). You can turn off this namespace protection by adding -DNO_EMBED
to your ccflags variable in config.sh.

Perl 5.003's namespace protection was incomplete, but this has been fixed in 5.004. However, some sites
may need to maintain complete binary compatibility with Perl 5.003. If you are building Perl for such a site,

then wherConfigure asks if you want binary compatibility, answer "y".
On the other hand, if you are embedding perl into another application and want the maximum namespace
protection, then you probably ought to answer "n" w@enfigure asks if you want binary compatibility.

The default answer of "y" to maintain binary compatibility is probably appropriate for almost everyone.

Selecting File 10 mechanisms

Previous versions of perl used the standard IO mechanisms as defined in <stdio.h. Versions 5.003_02 and
later of perl allow alternate IO mechanisms via a "PerllO" abstraction, but the stdio mechanism is still the
default and is the only supported mechanism.

This PerllO abstraction can be enabled either on the Configure command line with
sh Configure —Duseperlio
or interactively at the appropriate Configure prompt.

If you choose to use the PerllO abstraction layer, there are two (experimental) possibilities for the underlying
IO calls. These have been tested to some extent on some platforms, but are not guaranteed to work
everywhere.

1. AT&T's "sfio". This has superior performance to <stdio.h in many cases, and is extensible by the use
of "discipline" modules. Sfio currently only builds on a subset of the UNIX platforms perl supports.
Because the data structures are completely different from stdio, perl extension modules or external
libraries may not work. This configuration exists to allow these issues to be worked on.

This option requires the ‘sfio’ package to have been built and installed. A (fairly old) version of sfio is
in CPAN, and work is in progress to make it more easily buildable by adding Configure support.

You select this option by
sh Configure —Duseperlio —Dusesfio

If you have already selected —Duseperlio, and if Configure detects that you have sfio, then sfio will be
the default suggested by Configure.

Note: On some systems, sfiolffe configuration script fails to detect that you have aaexit
function (or equivalent). Apparently, this is a problem at least for some versions of Linux and SunOS
4.

You can test if you have this problem by trying the following shell script. (You may have to add some
extra cflags and libraries. A portable version of this may eventually make its way into Configure.)

23—-Mar-1997 Perl Version 5.004 BETA 127

INSTALL Perl Programmers Reference Guide INSTALL

#1/bin/sh
cat > try.c <<’EOCP’
#include <stdio.h>
main() { printf("42\n"); }
EOCP
cc —o try try.c —lsfio
val="./try*
if test X$val = X42; then
echo "Your sfio looks ok"
else
echo "Your sfio has the exit problem.”
fi

If you have this problem, the fix is to go back to your sfio sources and correct iffe's guess about atexit
(or whatever is appropriate for your platform.)

There also might be a more recent release of Sfio that fixes your problem.

2. Normal stdio 10, but with all 10 going through calls to the PerllO abstraction layer. This configuration
can be used to check that perl and extension modules have been correctly converted to use the PerllO
abstraction.

This configuration should work on all platforms (but might not).
You select this option via:
sh Configure —Duseperlio —Uusesfio

If you have already selected —Duseperlio, and if Configure does not detect sfio, then this will be the
default suggested by Configure.

Building a shared libperl.so Perl library

Currently, for most systems, the main perl executable is built by linking the "perl library" libperl.a with
perlmain.o, your static extensions (usually just Dynal.oader.a) and various extra libraries, such as —Im.

On some systems that support dynamic loading, it may be possible to replace libperl.a with a shared
libperl.so. If you anticipate building several different perl binaries (e.g. by embedding libperl into different
programs, or by using the optional compiler extension), then you might wish to build a shared libperl.so so
that all your binaries can share the same library.

The disadvantages are that there may be a significant performance penalty associated with the shared
libperl.so, and that the overall mechanism is still rather fragile with respect to different versions and
upgrades.

In terms of performance, on my test system (Solaris 2.5 x86) the perl test suite took roughly 15% longer to
run with the shared libperl.so. Your system and typical applications may well give quite different results.

The default name for the shared library is typically something like libperl.s0.3.2 (for Perl 5.003_02) or
libperl.s0.302 or simply libperl.so. Configure tries to guess a sensible naming convention based on your C
library name. Since the library gets installed in a version—specific architecture—dependent directory, the
exact name isn‘t very important anyway, as long as your linker is happy.

For some systems (mostly SVR4), building a shared libperl is required for dynamic loading to work, and
hence is already the default.

You can elect to build a shared libperl by
sh Configure —Duseshrplib

To actually build perl, you must add the current working directory to your LD_LIBRARY_PATH
environment variable before running make. You can do this with

128

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

LD_LIBRARY_PATH='pwd":$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
for Bourne—-style shells, or
setenv LD_LIBRARY_PATH ‘pwd’

for Csh-style shells. You *MUST* do this before running make. Folks running NeXT OPENSTEP must
substitute DYLD_LIBRARY_PATH for LD_LIBRARY_PATH above.

There is also an potential problem with the shared perl library if you want to have more than one "flavor" of
the same version of perl (e.g. with and without —-DDEBUGGING). For example, suppose you build and
install a standard Perl 5.004 with a shared library. Then, suppose you try to build Perl 5.004 with
—-DDEBUGGING enabled, but everything else the same, including all the installation directories. How can
you ensure that your newly built perl will link with your newly built libperl.so.4 rather with the installed
libperl.so.4? The answer is that you might not be able to. The installation directory is encoded in the perl
binary with the LD_RUN_PATH environment variable (or equivalent [d command-line option). On Solaris,
you can override that with LD_LIBRARY_PATH; on Linux you can't.

The only reliable answer is that you should specify a different directory for the architecture—dependent
library for your -DDEBUGGING version of perl. You can do this with by changing all the *archlib*
variables in config.sh, namely archlib, archlib_exp, and installarchlib, to point to your new
architecture—dependent library.

Malloc Issues
Perl relies heavily on malloc(3) to grow data structures as needed, so perl‘'s performance can be noticeably
affected by the performance of the malloc function on your system.

The perl source is shipped with a version of malloc that is very fast but somewhat wasteful of space. On the
other hand, your systemfsalloc() function is probably a bit slower but also a bit more frugal.

For many uses, speed is probably the most important consideration, so the default behavior (for most
systems) is to use the malloc supplied with perl. However, if you will be running very large applications
(e.g. Tk or PDL) or if your system already has an excellent malloc, or if you are experiencing difficulties
with extensions that use third—party libraries that call malloc, then you might wish to use your system's
malloc. (Or, you might wish to explore the experimental malloc flags discussed below.)

To build without perl‘s malloc, you can use the Configure command
sh Configure —Uusemymalloc
or you can answer ‘n’ at the appropriate interactive Configure prompt.

Malloc Performance Flags

If you are using Perl's malloc, you may add one or more of the following items tecffags config.sh
variable to change its behavior in potentially useful ways. You can find out more about these flags by
reading thamalloc.csource. In a future version of perl, these might be enabled by default.

—-DDEBUGGING_MSTATS

If DEBUGGING_MSTATIS defined, you can extract malloc statistics from the Perl interpreter. The
overhead this imposes is not large (perl just twiddles integers at malloc/free/sbrk time). When you run
perl with the environment variabRERL_DEBUG_MSTAT&et to either 1 or 2, the interpreter will
dump statistics to stderr at exit time and (with a value of 2) after compilation. If you install the
Devel::Peek module you can get the statistics whenever you like by invokingt&g) function.

-DEMERGENCY_SBRK
If EMERGENCY_SBR&Kdefined, running out of memory need not be a fatal error: a memory pool can
allocated by assigning to the special vari@i®l. Seeperlvar for more details.

-DPACK_MALLOC

If PACK_MALLOGs defined, malloc.c uses a slightly different algorithm for small allocations (up to
64 bytes long). Such small allocations are quite common in typical Perl scripts.

23—-Mar-1997 Perl Version 5.004 BETA 129

INSTALL Perl Programmers Reference Guide INSTALL

The expected memory savings (with 8-byte alignmeatignbytes) is about 20% for typical Perl
usage. The expected slowdown due to the additional malloc overhead is in fractions of a percent. (Itis
hard to measure because of the effect of the saved memory on speed).

-DTWO_POT_OPTIMIZE

If TWO_POT_OPTIMIZEs defined, malloc.c uses a slightly different algorithm for large allocations
that are close to a power of two (starting with 16K). Such allocations are typical for big hashes and
special—-purpose scripts, especially image processing. If you will be manipulating very large blocks
with sizes close to powers of two, it might be wise to define this macro.

The expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks). The expected slowdown is negligible.

Building a debugging perl

You can run perl scripts under the perl debugger at any timepe#th-d. If, however, you want to debug
perl itself, you probably want to do
sh Configure —Doptimize="-g’

This will do two things: First, it will force compilation to use —g so that you can use your system's
debugger on the executable. Second, it will addDBEBUGGINGo your ccflags variable inonfig.sh so
that you can usperl —D to access perl's internal state.

If you are using a shared libperl, see the warnings about multiple versions of perl under
Building a shared libperl.so Perl library

Other Compiler Flags

For most users, all of the Configure defaults are fine. However, you can change a number of factors in the
way perl is built by adding appropriat® directives to your ccflags variable in config.sh.

For example, you can replace ttamd() andsrand() functions in the perl source by any other random
number generator by a trick such as the following:

sh Configure —Dccflags="-Drand=random —Dsrand=srandom’

or by adding-Drand=random and-Dsrandom=srandom to your ccflags at the appropriate Configure
prompt. (You may also have to adjust Configure's guess for ‘randbits’ as well.)

What if it doesn‘t work?

Running Configure Interactively
If Configure runs into trouble, remember that you can always run Configure interactively so that you
can check (and correct) its guesses.

All the installation questions have been moved to the top, so you don‘t have to wait for them. Once
you'‘ve handled them (and your C compiler and flags) you can&ypleat the next Configure prompt
and Configure will use the defaults from then on.

If you find yourself trying obscure command line incantations and config.over tricks, | recommend you
run Configure interactively instead. You'll probably save yourself time in the long run.

Hint files
The perl distribution includes a number of system—specific hints files in the hints/ directory. If one of
them matches your system, Configure will offer to use that hint file.

Several of the hint files contain additional important information. If you have any problems, it is a
good idea to read the relevant hint file for further information. H8&s/solaris_2.shfor an extensive
example.

o* WHOA THERE!!! ***

Occasionally, Configure makes a wrong guess. For example, on SunOS 4.1.3, Configure incorrectly
concludes that tzname][] is in the standard C library. The hint file is set up to correct for this. You will

130

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

See a message:

*** \WWHOA THERE!! ***
The recommended value for $d_tzname on this machine was "undef"!
Keep the recommended value? [y]

You should always keep the recommended value unless, after reading the relevant section of the hint
file, you are sure you want to try overriding it.

If you are re-using an old config.sh, the word "previous" will be used instead of "recommended".
Again, you will almost always want to keep the previous value, unless you have changed something on
your system.

For example, suppose you have added libgdbm.a to your system and you decide to reconfigure perl to
use GDBM_File. When you run Configure again, you will need to add —lgdbm to the list of libraries.
Now, Configure will find your gdbm library and will issue a message:

** WHOA THERE!! ***
The previous value for $i_gdbm on this machine was "undef"!
Keep the previous value? [y]

In this case, you doot want to keep the previous value, so you should answer ‘n’. (You'll also have
to manually add GDBM_File to the list of dynamic extensions to build.)

Changing Compilers
If you change compilers or make other significant changes, you should prolmid-use your old
config.sh. Simply remove it or rename it, e.g. mv config.sh config.sh.old. Then rerun Configure with
the options you want to use.

This is a common source of problems. If you change frono gcg you should almost always
remove your old config.sh.

Propagating your changes to config.sh

If you make any changes tonfig.sh you should propagate them to all the .SH files by runrshg
Configure —=S. You will then have to rebuild by running

make depend
make

config.over
You can also supply a shell script config.over to over-ride Configure's guesses. It will get loaded up
at the very end, just before config.sh is created. You have to be careful with this, however, as
Configure does no checking that your changes make sense. See the section on
"Changing the installation directoryfor an example.

config.h

Many of the system dependencies are containednfig.h. Configure buildsconfig.h by running the
config_h.SHscript. The values for the variables are taken fconfig.sh

If there are any problems, you can edinfig.h directly. Beware, though, that the next time you run
Configure, your changes will be lost.

cflags
If you have any additional changes to make to the C compiler command line, they can be made in
cflags.SH For instance, to turn off the optimizer toke.G find the line in the switch structure for
toke.cand put the commaraptimize="-g’ before the; . You can also editflags directly, but
beware that your changes will be lost the next time yolCanfigure.

To change the C flags for all the files, edhinfig.shand change eithéiccflags or $optimize,
and then re-rursh Configure —S ; make depend

23—-Mar-1997 Perl Version 5.004 BETA 131

INSTALL Perl Programmers Reference Guide INSTALL

No sh
If you don't have sh, you'll have to copy the sample file config_H to config.h and edit the config.h to
reflect your system's peculiarities. You'll probably also have to extensively modify the extension
building mechanism.

Porting information
Specific information for the OS/2, Plan9, VMS and Win32 ports is in the corresponding subdirectories.
Additional information, including a glossary of all those config.sh variables, is in the Porting
subdirectory.

Ports for other systems may also be available. You should chepkrtsitfor current information on
ports to various other operating systems.

make depend
This will look for all the includes. The output is storednakefile The only difference betweéviakefile
andmakefile is the dependencies at the bottonmakefile If you have to make any changes, you should
edit makefile, notMakefile since the Unixmake command readsakefilefirst. (On non-Unix systems, the
output may be stored in a different file. Check the valu8fiestmakefile in your config.sh if in
doubt.)

Configure will offer to do this step for you, so it isn‘t listed explicitly above.

make
This will attempt to make perl in the current directory.

If you can‘t compile successfully, try some of the following ideas. If none of them help, and careful reading

of the error message and the relevant manual pages on your system doesn'‘t help, you can send a message to
either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem. Se&Reporting Problemsbelow.

° If you used a hint file, try reading the comments in the hint file for further tips and information.
° If you can successfully builchiniperl, but the process crashes during the building of extensions, you
should run

make minitest
to test your version of miniperl.

locale
If you have any locale-related environment variables set, try unsetting them. | have some reports that
some versions of IRIX hang while runninigniniperl configpm with locales other than the C locale.
See the discussion undeake tesbelow about locales.

° If you get duplicates upon linking for malloc et al, add -DHIDEMYMALLOC or
-DEMBEDMYMALLOC to your ccflags variable in config.sh.

varargs

If you get varargs problems with gcc, be sure that gcc is installed correctly. When using gcc, you
should probably have i_stdarg="define’ and i_varargs=‘undef’ in config.sh. The problem is usually
solved by running fixincludes correctly. If you do change config.sh, don‘t forget to propagate your
changes (se#ropagating your changes to config.diélow). See also tHesprintf" item below.

° If you get error messages such as the following (the exact line numbers will vary in different versions
of perl):

util.c: In function ‘Perl_croak’:
util.c:962: number of arguments doesn’t match prototype
proto.h:45: prototype declaration

132 Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

it might well be a symptom of the gcc "varargs problem”. See the préviaasgs" item.

Solaris and SunOS dynamic loading

If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are using GNU as
and GNU Id, you may need to add/bin/ (for SunOS) or-B/usr/ccs/bin/ (for Solaris) to your
$ccflags, $ldflags, and $lddIflags so that the system's versions of as and Id are used.
Alternatively, you can use the GCC_EXEC_PREFIX environment variable to ensure that Sun‘s as and
Id are used. Consult your gcc documentation for further information or-Bheption and the
GCC_EXEC_PREFIX variable.

Id.so.1: ./perl: fatal: relocation error:
If you get this message on SunOS or Solaris, and you're using gcc, it's probably the GNU as or GNU
Id problem in the previous itei$olaris and SunOS dynamic loading"”

° If you run into dynamic loading problems, check your setting of the LD_LIBRARY_PATH
environment variable. If you're creating a static Perl library (libperl.a rather than libperl.so) it should
build fine with LD_LIBRARY_PATH unset, though that may depend on details of your local set-up.

dlopen: stub interception failed
The primary cause of the ‘dlopen: stub interception failed’ message is that the LD_LIBRARY_PATH
environment variable includes a directory which is a symlink to /usr/lib (such as /lib).

The reason this causes a problem is quite subtle. The file libdl.so.1.0 actually *only* contains
functions which generate ‘stub interception failed’ errors! The runtime linker intercepts links to
"fusr/lib/libdl.s0.1.0" and links in internal implementation of those functions instead. [Thanks to Tim
Bunce for this explanation.]

nm extraction

If Configure seems to be having trouble finding library functions, try not using nm extraction. You
can do this from the command line with

sh Configure —Uusenm

or by answering the nm extraction question interactively. If you have previously run Configure, you
shouldnot reuse your old config.sh.

vsprintf
If you run into problems with vsprintf in compiling util.c, the problem is probably that Configure failed
to detect your system's version e$printf() . Check whether your system hasrintf()

(Virtually all modern Unix systems do.) Then, check the variable d_vprintf in config.sh. If your
system has vprintf, it should be:

d_vprintf="define’

If Configure guessed wrong, it is likely that Configure guessed wrong on a number of other common
functions too. You are probably better off re-running Configure without using nm extraction (see
previous item).

Optimizer
If you can‘t compile successfully, try turning off your compiler‘s optimizer. Edit config.sh and change
the line

optimize="-0O’
to something like
optimize=""

then propagate your changes wsthConfigure —Sand rebuild withmake depend; make

23—-Mar-1997 Perl Version 5.004 BETA 133

INSTALL

Perl Programmers Reference Guide INSTALL

If you still can‘t compile successfully, try adding-BCRIPPLED_CCflag. (Just because you get no
errors doesn't mean it compiled right!) This simplifies some complicated expressions for compilers
that get indigestion easily.

Missing functions

If you have missing routines, you probably need to add some library or other, or you need to undefine
some feature that Configure thought was there but is defective or incomplete. Look through config.h
for likely suspects.

Some compilers will not compile or optimize the larger files without some extra switches to use larger
jump offsets or allocate larger internal tables. You can customize the switches for eactfifigsin

It's okay to insert rules for specific files intnakefile since a default rule only takes effect in the
absence of a specific rule.

Missing dbmclose

SCO prior to 3.2.4 may be missimlpmclose() . An upgrade to 3.2.4 that includes libdbm.nfs
(which includesdibmclose()) may be available.

Note (probably harmless): No library found for —Isomething

If you see such a message during the building of an extension, but the extension passes its tests anyway
(see"make test"below), then don‘t worry about the warning message. The extension Makefile.PL
goes looking for various libraries needed on various systems; few systems will need all the possible
libraries listed. For example, a system may have —Icposix or —lposix, but it's unlikely to have both, so
most users will see warnings for the one they don't have. The phrase ‘probably harmless’ is intended
to reassure you that nothing unusual is happening, and the build process is continuing.

On the other hand, if you are building GDBM_File and you get the message
Note (probably harmless): No library found for —lgdbm

then it's likely you‘re going to run into trouble somewhere along the line, since it's hard to see how
you can use the GDBM_File extension without the —Igdbm library.

It is true that, in principle, Configure could have figured all of this out, but Configure and the extension
building process are not quite that tightly coordinated.

sh: ar: not found

This is a message from your shell telling you that the command ‘ar’ was not found. You need to check
your PATH environment variable to make sure that it includes the directory with the ‘ar command.
This is a common problem on Solaris, where ‘ar’ is in/tise/ccs/bindirectory.

db-recno failure on tests 51, 53 and 55

make test

Old versions of the DB library (including the DB library which comes with FreeBSD 2.1) had broken
handling of recno databases with modified bval settings. Upgrade your DB library or OS.

Some additional things that have been reported for either perl4 or perl5:
Genix may need to use libc rather than libc_s, or #undef VARARGS.

NCR Tower 32 (OS 2.01.01) may need —W2,-SI,2000 and #undef MKDIR.
UTS may need one or more of —-DCRIPPLED_EK,or —g, and undef LSTAT.
If you get syntax errors on ‘(*, try -DCRIPPLED_CC.

Machines with half-implemented dbm routines will need to #undef |_ODBM

This will run the regression tests on the perl you just made. If it doesn‘t say "All tests successful" then
something went wrong. See the iIREADME in thet subdirectory. Note that you can‘t run the tests in
background if this disables opening of /devi/tty.

134

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

If make testbombs out, justd to thet directory and run/TEST by hand to see if it makes any difference.
If individual tests bomb, you can run them by hand, e.g.,

perl op/groups.t

Another way to get more detailed information about failed tests and individual subtesidisotdhet
directory and run

Jperl harness
(this assumes thatosttests succeed, sinbarnessuses complicated constructs).
You can also read the individual tests to see if there are any helpful comments that apply to your system.

Note: One possible reason for errors is that some external programs may be broken due to the combination
of your environment and the wayake test exercises them. For example, this may happen if you have
one or more of these environment variables 44%. ALL LC_CTYPE LC_COLLATE LANG. In some
versions of UNIX, the non—-English locales are known to cause programs to exhibit mysterious errors.

If you have any of the above environment variables set, please try
setenv LC_ALL C

(for C shell) or
LC_ALL=C;export LC_ALL

for Bourne or Korn shell) from the command line and then retige test . If the tests then succeed, you

may have a broken program that is confusing the testing. Please run the troublesome test by hand as shown
above and see whether you can locate the program. Look for things dikec, ‘backquoted

command’, system, open("|...") oropen("...|") . All these mean that Perl is trying to run

some external program.

make install

This will put perl into the public directory you specified@onfigure; by default this igusr/local/bin. It

will also try to put the man pages in a reasonable place. It will not nroff the man pages, however. You may
need to be root to rumake install. If you are not root, you must own the directories in question and you
should ignore any messages about chown not working.

If you want to see exactly what will happen without installing anything, you can run

Jperl installperl —n
Jperl installman —n

make install will install the following:

perl,
perl5.nnn where nnn is the current release number. This
will be a link to perl.

suidperl,
sperl5.nnn If you requested setuid emulation.
azp awk-to—perl translator
cppstdin This is used by perl —P, if your cc —E can’t

read from stdin.
c2ph, pstruct Scripts for handling C structures in header files.

s2p sed-to—perl translator

find2perl find—to—perl translator

h2ph Extract constants and simple macros from C headers
h2xs Converts C .h header files to Perl extensions.
perlbug Tool to report bugs in Perl.

perldoc Tool to read perl's pod documentation.

pl2pm Convert Perl 4 .pl files to Perl 5 .pm modules

23—-Mar-1997 Perl Version 5.004 BETA 135

INSTALL Perl Programmers Reference Guide INSTALL

pod2html, Converters from perl’s pod documentation format

pod2latex, to other useful formats.

pod2man, and

pod2text

splain Describe Perl warnings and errors

library files in $privlib and $archlib specified to
Configure, usually under /usr/local/lib/perl5/.

man pages in the location specified to Configure, usually
something like /usr/local/man/man1.

module in the location specified to Configure, usually

man pages under /ust/local/lib/perl5/man/man3.

pod/*.pod in $priviib/pod/.

Installperl will also create the library directorigsiteperl and$sitearch listed in config.sh. Usually,
these are something like

/usr/local/lib/perl5/site_perl/

{usr/local/lib/perl5/site_pefarchname
where$archname is something like sun4-sunos. These directories will be used for installing extensions.

Perl's *.h header files and the libperl.a library are also installed @adtehlib so that any user may later
build new extensions, run the optional Perl compiler, or embed the perl interpreter into another program even
if the Perl source is no longer available.

Coexistence with earlier versions of perl5

You can safely install the current version of perl5 and still run scripts under the old binaries for versions
5.003 and later ONLY. Instead of starting your script with #l/usr/local/bin/perl, just start it with
#l/usr/local/bin/perl5.003 (or whatever version you want to run.) If you want to retain a version of Perl 5
prior to 5.003, you'll need to install the current version in a separate directory tree, since some of the
architecture—independent library files have changed in incompatible ways.

The architecture—dependent files are stored in a version—specific directory (such as
/usr/local/lib/perl5/sun4—sunos/5.004so that they are still accessiblilote: Perl 5.000 and 5.001 did not
put their architecture—dependent libraries in a version—specific directory. They are simply in
{usr/local/lib/perl5/$archname . If you will not be using 5.000 or 5.001, you may safely remove those
files.

The standard library files itusr/local/lib/perl5should be usable by all versions of perl5.

Most extensions will probably not need to be recompiled to use with a newer version of perl. If you do run
into problems, and you want to continue to use the old version of perl along with your extension, simply
move those extension files to the appropriate version directory, suabkréscal/lib/perl/archname/5.003

Then Perl 5.003 will find your files in the 5.003 directory, and newer versions of perl will find your newer
extension in the site_perl directory.

Some users may prefer to keep all versions of perl in completely separate directories. One convenient way to
do this is by using a separate prefix for each version, such as

sh Configure —Dprefix=/opt/perl5.004

and adding /opt/perl5.004/bin to the shell PATH variable. Such users may also wish to add a symbolic link
/usr/local/bin/perl so that scripts can still start with #!/usr/local/bin/per!.

Coexistence with perl4

You can safely install perl5 even if you want to keep perl4 around.

By default, the perl5 libraries go intuisr/local/lib/perl5/ so they don‘t override the perl4 libraries in
/usr/local/lib/perl/.

In your /usr/local/bin directory, you should have a binary napes.036 That will not be touched by the
perl5 installation process. Most perl4 scripts should run just fine under perl5. However, if you have any

136

Perl Version 5.004 BETA 23—-Mar-1997

INSTALL Perl Programmers Reference Guide INSTALL

scripts that require perl4, you can replacetthdine at the top of them by
#l/usr/local/bin/perl4.036 (or whatever the appropriate pathname is). See pod/perltrap.pod for
possible problems running perl4 scripts under perl5.

cd /usrf/include; h2ph *.h sys/*.h

Some perl scripts need to be able to obtain information from the system header files. This command will
convert the most commonly used header file&gn/include into files that can be easily interpreted by perl.
These files will be placed in the architectural library directory you specifi€bmdigure; by default this is
{usr/local/lib/perl5/ARCH/VERSION where ARCH is your architecture (such asin4-solaris) and
VERSION is the version of perl you are building (for exampl®04).

Note: Due to differences in the C and perl languages, the conversion of the header files is not perfect. You
will probably have to hand-edit some of the converted files to get them to parse correctly. For example,
h2ph breaks spectacularly on type casting and certain structures.

cd pod &&make html && mv *.html (www home dir)
Some sites may wish to make the documentation in the pod/ directory available in HTML format. Type

cd pod && make html && mv *.html <www home dir>
wherewww home diris wherever your site keeps HTML files.

cd pod &&make tex && (process the latex files)
Some sites may also wish to make the documentation in the pod/ directory available in TeX format. Type

(cd pod && make tex && <process the latex files>)

Reporting Problems
If you have difficulty building perl, and none of the advice in this file helps, and careful reading of the error
message and the relevant manual pages on your system doesn'‘t help either, then you should send a message
to either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem.

Please include theutputof the./myconfig shell script that comes with the distribution. Alternatively, you
can use th@erlbug program that comes with the perl distribution, but you need to have perl compiled and
installed before you can use it.

You might also find helpful information in tHeorting directory of the perl distribution.

DOCUMENTATION

Read the manual entries before running perl. The main documentation is in the pod/ subdirectory and should
have been installed during the build process. Tiypaa perl to get started. Alternatively, you can type
perldoc perl to use the suppliegerldoc script. This is sometimes useful for finding things in the library
modules.

Under UNIX, you can produce a documentation book in postscript form along withbits of Contentby
going to the pod/ subdirectory and running (either):

Jroffitall —groff # If you have GNU groff installed
Jroffitall —psroff # If you have psroff

This will leave you with two postscript files ready to be printed. (You may need to fix the roffitall command
to use your local troff set-up.)

Note that you must have performed the installation already before running the above, since the script collects
the installed files to generate the documentation.

AUTHOR

Andy Dougherty <doughera@Ilafcol.lafayette.edu, borrowiagy heavily from the original README by
Larry Wall.

23—-Mar-1997 Perl Version 5.004 BETA 137

INSTALL Perl Programmers Reference Guide INSTALL

LAST MODIFIED
$ld: INSTALL,v 1.8 1997/03/21 16:21:53 doughera Releded

138 Perl Version 5.004 BETA 23—-Mar-1997

perldata Perl Programmers Reference Guide perldata

NAME
perldata — Perl data types

DESCRIPTION

Variable names

Perl has three data structures: scalars, arrays of scalars, and associative arrays of scalars, known as "hashes".
Normal arrays are indexed by number, starting with 0. (Negative subscripts count from the end.) Hash
arrays are indexed by string.

Values are usually referred to by name (or through a named reference). The first character of the name tells
you to what sort of data structure it refers. The rest of the name tells you the particular value to which it
refers. Most often, it consists of a singlentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by

(or by’ , but that's deprecated); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (sd@ackagesfor details). It's possible to substitute for a simple
identifier an expression which produces a reference to the value at runtime; this is described in more detail
below, and imperlref.

There are also special variables whose names don‘t follow these rules, so that they don‘t accidentally collide
with one of your normal variables. Strings which match parenthesized parts of a regular expression are
saved under names containing only digits afterhseeperlop andperlre). In addition, several special
variables which provide windows into the inner working of Perl have names containing punctuation
characters (segerlvar).

Scalar values are always named with ‘ even when referring to a scalar that is part of an array. It works
like the English word "the". Thus we have:

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb’} # the 'Feb’ value from hash %days
$#days # the last index of array @days
but entire arrays or array slices are denoted by ‘@°, which works much like the word "these" or "those":
@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as @days[3..5]
@days{'a’,'c’} # same as ($days{'a’},$days{’c’})

and entire hashes are denoted by ‘%"
%days # (keyl, vall, key2, val2? ...)

In addition, subroutines are named with an initi&l, * though this is optional when it's otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an initial
**_but you don't really care about that yet.

Every variable type has its own namespace. You can, without fear of conflict, use the same name for a scalar
variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, or a label). This means that
$foo and @foo are two different variables. It also means$feat[1] is a part of @foo, not a part of

$foo. This may seem a bit weird, but that's okay, because it is weird.

Because variable and array references always start$ith‘@°, or ‘%', the "reserved" words aren't in fact
reserved with respect to variable names. (They ARE reserved with respect to labels and filehandles,
however, which don‘t have an initial special character. You can‘t have a filehandle named "log", for
instance. Hint: you could saypen(LOG, logdfile’) rather tharopen(log,‘logfile’) . Using
uppercase filehandles also improves readability and protects you from conflict with future reserved words.)
CaselS significant—"FOQ", "Foo", and "foo" are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

23—-Mar-1997 Perl Version 5.004 BETA 139

perldata Perl Programmers Reference Guide perldata

It is possible to replace such an alphanumeric name with an expression that returns a reference to an object of
that type. For a description of this, seelref.

Names that start with a digit may contain only more digits. Names which do not start with a letter,
underscore, or digit are limited to one character, &thor $$. (Most of these one character names have a
predefined significance to Perl. For instar®®,is the current process id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. There are two major contexts: scalar and list. Certain operations return list
values in contexts wanting a list, and scalar values otherwise. (If this is true of an operation it will be
mentioned in the documentation for that operation.) In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural. (Some words in English work this way, like "fish"
and "sheep".)

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides a scalar context for the <STDIN> operator, which responds by reading one
line from STDIN and passing it back to the integer operation, which will then find the integer value of that
line and return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides a list context for <STDIN>, which will proceed to read every line available
up to the end of file, and pass that list of lines back to the sort routine, which will then sort those lines and
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the righthand side in a scalar context, while assignment to an
array or array slice evaluates the righthand side in a list context. Assignment to a list also evaluates the
righthand side in a list context.

User defined subroutines may choose to care whether they are being called in a scalar or list context, but
most subroutines do not need to care, because scalars are automatically interpolated into lists. See
wantarray.

Scalar values

All data in Perl is a scalar or an array of scalars or a hash of scalars. Scalar variables may contain various
kinds of singular data, such as numbers, strings, and references. In general, conversion from one form to
another is transparent. (A scalar may not contain multiple values, but may contain a reference to an array or
hash containing multiple values.) Because of the automatic conversion of scalars, operations, and functions
that return scalars don't need to care (and, in fact, can‘t care) whether the context is looking for a string or a
number.

Scalars aren‘t necessarily one thing or another. There's no place to declare a scalar variable to be of type
"string", or of type "number", or type "filehandle", or anything else. Perl is a contextually polymorphic
language whose scalars can be strings, numbers, or references (which includes objects). While strings and
numbers are considered pretty much the same thing for nearly all purposes, references are strongly-typed
uncastable pointers with built—in reference—counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0 (or its
string equivalent, "0"). The Boolean context is just a special kind of scalar context.

There are actually two varieties of null scalars: defined and undefined. Undefined null scalars are returned
when there is no real value for something, such as when there was an error, or at end of file, or when you
refer to an uninitialized variable or element of an array. An undefined null scalar may become defined the
first time you use it as if it were defined, but prior to that you can usdefireed() operator to determine
whether the value is defined or not.

140

Perl Version 5.004 BETA 23—-Mar-1997

perldata Perl Programmers Reference Guide perldata

To find out whether a given string is a valid non-zero number, it's usually enough to test it against both
numeric 0 and also lexical "0" (although this will causg noises). That's because strings that aren't
numbers count as 0, just as they dawrk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That's usually preferable because otherwise you won't treat IEEE notation®NdiMeor Infinity
properly. At other times you might prefer to use a regular expression to check whether data is numeric. See
perlre for details on regular expressions.

warn "has nondigits" if AD/;
warn "not a whole number" unless /M\d+$/;
warn "not an integer" unless /A[+=]2\d+$/

warn "not a decimal number" unless /A[+=]2\d+\.2\d*$/
warn "not a C float"
unless /M ([+-]1?2)(?=\d\\d)\d*(\.\d*) ?([Ee] ([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evékddys as

in csh (Actually, it's not the length of the array, it's the subscript of the last element, because there is
(ordinarily) a Oth element.) Assigning $#days changes the length of the array. Shortening an array by

this method destroys intervening values. Lengthening an array that was previously sho@drm@dGER

recovers the values that were in those elements. (It used to in Perl 4, but we had to break this to make sure
destructors were called when expected.) You can also gain some measure of efficiency by preextending an
array that is going to get big. (You can also extend an array by assigning to an element that is off the end of
the array.) You can truncate an array down to nothing by assigning the nQll istit. The following are
equivalent:

@whatever = ();
$#whatever = $[- 1;

If you evaluate a named array in a scalar context, it returns the length of the array. (Note that this is not true
of lists, which return the last value, like the C comma operator.) The following is always true:

scalar(@whatever) == $#whatever — $[+ 1;

Version 5 of Perl changed the semantic$[of files that don‘t set the value 8f no longer need to worry
about whether another file changed its value. (In other words, e isfdeprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1,
Some programmers choose to use an explicit conversion so nothing'‘s left to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in a scalar context, it returns a value which is true if and only if the hash contains any
key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of the number of
used buckets and the number of allocated buckets, separated by a slash. This is pretty much useful only to
find out whether Perl's (compiled in) hashing algorithm is performing poorly on your data set. For example,
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which means only
one out of sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn‘t
supposed to happen.)

Scalar value constructors
Numeric literals are specified in any of the customary floating point or integer formats:
12345

12345.67
.23E-10

23—-Mar-1997 Perl Version 5.004 BETA 141

perldata Perl Programmers Reference Guide perldata

Oxffff # hex
0377 # octal
4 294 967_296 # underline for legibility

String literals are usually delimited by either single or double quotes. They work much like shell quotes:
double—quoted string literals are subject to backslash and variable substitution; single—quoted strings are not
(except for ' " and "\ "). The usual Unix backslash rules apply for making characters such as newline,
tab, etc., as well as some more exotic forms. (Bese and Quotelike Operatofsr a list.

Octal or hex representations in string literals (e.g. ‘Oxffff’) are not automatically converted to their integer
representation. Thieex() andoct() functions make these conversions for you. t8s&ndoct for more
details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, arrays, and array slices. (In other words, names beginifing \@th
followed by an optional bracketed expression as a subscript.) The following code segment prints out "The

price is$100."
$Price ='$100’; # not interpreted
print "The price is $Price.\n"; # interpreted

As in some shells, you can put curly brackets around the name to delimit it from following alphanumerics.
In fact, an identifier within such curlies is forced to be a string, as is any single identifier within a hash
subscript. Our earlier example,

$days{'Feb’}
can be written as
$days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression.

Note that a single—quoted string must be separated from a preceding word by a space, because single quote is
a valid (though deprecated) character in a variable nam@ésdagep

Three special literals are __FILE__, LINE__, and _ PACKAGE__, which represent the current filename,
line number, and package name at that point in your program. They may be used only as separate tokens;
they will not be interpolated into strings. If there is no current package (dupdaokage; directive),

__ PACKAGE__ is the undefined value.

The tokens __ END___and _ DATA__ may be used to indicate the logical end of the script before the actual
end of file. Any following text is ignored, but may be read via a DATA filehandle: main::DATA for
__END__, or PACKNAME::DATA (where PACKNAME is the current package) for _ DATA__. The two
control characters *D and ~Z are synonyms for _ END__ (or __ DATA__ in a modulebeBesaderfor

more description of __ DATA__, and an example of its use.

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These are
known as "barewords”. As with filehandles and labels, a bareword that consists entirely of lowercase letters
risks conflict with future reserved words, and if you use-tweswitch, Perl will warn you about any such
words. Some people may wish to outlaw barewords entirely. If you say

use strict 'subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile—time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this by
sayingno strict ‘subs’

Array variables are interpolated into double—quoted strings by joining all the elements of the array with the

142 Perl Version 5.004 BETA 23—-Mar-1997

perldata Perl Programmers Reference Guide perldata

delimiter specified in th&" variable $LIST_SEPARATORIn English), space by default. The following
are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double—quotish substitution) there is a bad ambiguity: Is
/$foo[bar)/ to be interpreted a${foo}[bar]/ (where[bar] is a character class for the regular
expression) or agb{foo[bar]}/ (where[bar] is the subscript to array @foo)? If @foo doesn‘t
otherwise exist, then it's obviously a character class. If @foo exists, Perl takes a good gudsabaqut

and is almost always right. If it does guess wrong, or if you'‘re just plain paranoid, you can force the correct
interpretation with curly brackets as above.

A line—oriented form of quoting is based on the shell "here—doc" syntax. Followirgy®u specify a

string to terminate the quoted material, and all lines following the current line down to the terminating string
are the value of the item. The terminating string may be either an identifier (a word), or some quoted text. If
guoted, the type of quotes you use determines the treatment of the text, just as in regular quoting. An
unquoted identifier works like double quotes. There must be no space betwseratig: the identifier. (If

you put a space it will be treated as a null identifier, which is valid, and matches the first blank line.) The
terminating string must appear by itself (unquoted and with no surrounding whitespace) on the terminating

line.
print <<EOF;
The price is $Price.
EOF

print <<"EOF"; # same as above
The price is $Price.
EOF

print <<‘EOC'; # execute commands
echo hi there
echo lo there

EOC
print <<"foo", <<"bar"; # you can stack them
| said foo.
foo
| said bar.
bar
myfunc(<<"THIS", 23, <<'THAT);
Here's a line
or two.
THIS
and here another.
THAT

Just don't forget that you have to put a semicolon on the end to finish the statement, as Perl doesn‘t know
you'‘re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

23—-Mar-1997 Perl Version 5.004 BETA 143

perldata Perl Programmers Reference Guide perldata

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of the list literal is the value of the final element, as with the
C comma operator. For example,

@foo = ('cc’, '=E’, $bar);
assigns the entire list value to array foo, but
$foo = (‘'cc’, '—E’, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar context is
the length of the array; the following assign$too the value 3:

@foo = (cc’, '-E’, $bar);

$foo = @foo; # $foo gets 3
You may have an optional comma before the closing parenthesis of an list literal, so that you can say:
@foo = (
1!
2!
3!
)i

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the list is
evaluated in a list context, and the resulting list value is interpolated into LIST just as if each individual
element were a member of LIST. Thus arrays lose their identity in a LIST—the list

(@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub when it's called in a list context. To make a list reference that
doesNOT interpolate, seperlref.

The null list is represented iy . Interpolating it in a list has no effect. TH@s(),()) is equivalent to
() . Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. Examples:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.

$hexdigit = (‘a’,’b’,’c’,’'d’,’e’,'f)[$digit—10];
A "reverse comma operator".

return (pop(@foo),pop(@fo0))[0];

You may assign tandef in a list. This is useful for throwing away some of the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

Lists may be assigned to if and only if each element of the list is legal to assign to:

144 Perl Version 5.004 BETA 23—-Mar-1997

perldata Perl Programmers Reference Guide perldata

($a, $b, $c) = (1, 2, 3);
($map{’red’}, $map{’blue’}, $map{'green’}) = (0x00f, 0x0f0, Oxf0O);

Array assignment in a scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = 1()); # set $x to f()'s return count

This is very handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

The final element may be an array or a hash:

($a, $b, @rest) = split;
local($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will get a null value. This may be usefubita) ormy() .

A hash literal contains pairs of values to be interpreted as a key and a value:

same as map assignment above
%map = ('red’,0x00f,’blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are usually interchangeable, that's not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into key/value pairs. That's why it's good to use references sometimes.

It is often more readable to use the operator between key/value pairs. Hrweoperator is mostly just a
more visually distinctive synonym for a comma, but it also arranges for its left—-hand operand to be
interpreted as a string, if it's a bareword which would be a legal identifier. This makes it nice for initializing

hashes:
%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,
)i
or for initializing hash references to be used as records:
$rec ={
witch =>'Mable the Merciless’,
cat =>'Fluffy the Ferocious’,
date =>'10/31/1776’,
¥

or for using call-by—named-parameter to complicated functions:

$field = $query—>radio_group(
name =>’'group_name’,
values =>[eenie’,’meenie’,'minie’],
default =>’'meenie’,
linebreak => 'true’,
labels =>\%labels

)i
Note that just because a hash is initialized in that order doesn't mean that it comes out in that ostet. See
for examples of how to arrange for an output ordering.

23—-Mar-1997 Perl Version 5.004 BETA 145

perldata Perl Programmers Reference Guide perldata

Typeglobs and Filehandles

Perl uses an internal type calledypeglobto hold an entire symbol table entry. The type prefix of a
typeglob is &, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed. It also used to be
the preferred way to pass filehandles into a function, but now that we have the *foo{THING} notation it
isn‘t often needed for that, either. It is still needed to pass new filehandles into functions (*HANDLE{IO}
only works if HANDLE has already been used).

If you need to use a typeglob to save away a filehandle, do it this way:
$th = *STDOUT;

or perhaps as a real reference, like this:
$th = *STDOUT;

This is also a way to create a local filehandle. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) || return undef;
return *FH;

}

$th = newopen('/etc/passwd’);
Another way to create local filehandles is with 10::Handle and its ilk, see the botigpef) .

Seeperlref, perlsuh andSymbol Tables in perimddr more discussion on typeglobs.

146

Perl Version 5.004 BETA 23—-Mar-1997

perlsyn Perl Programmers Reference Guide perlsyn

NAME

perlsyn — Perl syntax

DESCRIPTION

A Perl script consists of a sequence of declarations and statements. The only things that need to be declared
in Perl are report formats and subroutines. See the sections below for more information on those
declarations. All uninitialized user—created objects are assumed to start with a null or O value until they are
defined by some explicit operation such as assignment. (Though you can get warnings about the use of
undefined values if you like.) The sequence of statements is executed just once, usdit@rd awk

scripts, where the sequence of statements is executed for each input line. While this means that you must
explicitly loop over the lines of your input file (or files), it also means you have much more control over
which files and which lines you look at. (Actually, I'm lying—it is possible to do an implicit loop with
either the-n or —p switch. It's just not the mandatory default like it isedandawk.)

Declarations

Perl is, for the most part, a free-form language. (The only exception to this is format declarations, for
obvious reasons.) Comments are indicated by the "#" character, and extend to the end of the line. If you
attempt to use* */ C-style comments, it will be interpreted either as division or pattern matching,
depending on the context, and CH#+ comments just look like a null regular expression, so don‘t do that.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements—declarations all take effect at compile time. Typically all the declarations are put at
the beginning or the end of the script. However, if you‘re using lexically—scoped private variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine (prototyped to take one scalar parameter) without
defining it by saying just:

sub myname ($);
$me = myname $0 or die "can’t get myname";

Note that it functions as a list operator though, not as a unary operator, so be carefal tingt=ad of|
there.

Subroutines declarations can also be loaded up withetiigre statement or both loaded and imported
into your namespace withuse statement. Segerimodfor details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

Simple statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged there if the block takes up more than one line, because you may
eventually add another line.) Note that there are some operatoe/éik§} anddo {} that look like
compound statements, but aren't (they're just TERMs in an expression), and thus need an explicit
termination if used as the last item in a statement.

Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR

23—-Mar-1997 Perl Version 5.004 BETA 147

perlsyn Perl Programmers Reference Guide perlsyn

Theif andunless modifiers have the expected semantics, presuming you're a speaker of English. The
while anduntil modifiers also have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do—-BLOCK (or to the now-deprecated do—SUBROUTINE statement), in which
case the block executes once before the conditional is evaluated. This is so that you can write loops like:

do {
$line = <STDIN>;
} until $line eq ".\n";
Seedo. Note also that the loop control statements described lateN@illwork in this construct, because

modifiers don‘t take loop labels. Sorry. You can always wrap another block around it to do that sort of
thing.

Compound statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited by the
file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKS, not statements. This means that the
curly brackets areequired—no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

if (lopen(FOO)) { die "Can’t open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom’ : die "Can’t open $FOO: $!";
a bit exotic, that last one

Theif statement is straightforward. Because BLOCKSs are always bounded by curly brackets, there is never
any ambiguity about whicli anelse goes with. If you usanless in place ofif , the sense of the test
is reversed.

Thewhile statement executes the block as long as the expression is true (does not evaluate to the null string
or 0 or "0"). The LABEL is optional, and if present, consists of an identifier followed by a colon. The
LABEL identifies the loop for the loop control statemenext , last , andredo . If the LABEL is

omitted, the loop control statement refers to the innermost enclosing loop. This may include dynamically
looking back your call-stack at run time to find the LABEL. Such desperate behavior triggers a warning if
you use the-w flag.

If there is acontinue BLOCK, it is always executed just before the conditional is about to be evaluated
again, just like the third part offar loop in C. Thus it can be used to increment a loop variable, even
when the loop has been continued viartegt statement (which is similar to theoBntinue statement).

148

Perl Version 5.004 BETA 23—-Mar-1997

perlsyn Perl Programmers Reference Guide perlsyn

Loop Control
Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Thelast command is like théreak statement in C (as used in loops); it immediately exits the loop in
guestion. Theontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

The redo command restarts the loop block without evaluating the conditional again.cofitiaue
block, if any, isnot executed. This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file lilec/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sN\$//) {
$ =<
redo unless eof();
}

now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while ($line = <ARGV>) {
chomp($line);
if ($line =~ s/\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line

}

Or here's a simpleminded Pascal comment stripper (warning: assumes no { or } in strings).

LINE: while (<STDIN>) {
while (s|({.*}.){-}$1) {}
S I
it (sI{-*) {
$front=$_;
while (<STDIN>) {
if (}){ # end of comment?
s|™$front{|;
redo LINE;
}

print;

23—-Mar-1997 Perl Version 5.004 BETA 149

perlsyn Perl Programmers Reference Guide perlsyn

Note that if there were @ontinue block on the above code, it would get executed even on discarded lines.

If the wordwhile is replaced by the wondntil , the sense of the test is reversed, but the conditional is
still tested before the first iteration.
The formwhile/if BLOCK BLOCK , available in Perl 4, is no longer available. Replace any occurrence
of if BLOCK byif (do BLOCK)

For Loops

Perl's C-styldfor loop works exactly like the correspondiwwhile loop; that means that this:

for ($i = 1; $i < 10; $i++) {

}

is the same as this:

$i=1;
while ($i < 10) {

} continu.é.{
Si++;
}

(There is one minor difference: The first form implies a lexical scope for variables declaredwiittihe
initialization expression.)

Besides the normal array index loopifigr, can lend itself to many other interesting applications. Here's
one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file
descriptor causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something

}

Foreach Loops
Theforeach loop iterates over a normal list value and sets the variable VAR to be each element of the list
in turn. If the variable is preceded with the keyworg then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former value upon
exiting the loop. If the variable was previously declared withit uses that variable instead of the global
one, but it's still localized to the loop. (Note that a lexically scoped variable can cause problems with you
have subroutine or format declarations.)

The foreach keyword is actually a synonym for ttfer keyword, so you can usereach for
readability orfor for brevity. If VAR is omitted$_ is set to each value. If LIST is an actual array (as
opposed to an expression returning a list value), you can modify each element of the array by modifying
VAR inside the loop. That's because foeeach loop index variable is an implicit alias for each item in

the list that you‘re looping over.

Examples:
for (@ary) { s/foo/bar/ }

foreach my $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM’) {
print $count, "\n"; sleep(1);

150 Perl Version 5.004 BETA 23—-Mar-1997

perlsyn Perl Programmers Reference Guide perlsyn

}
for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";
}

Here's how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @aryl; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :—(

}
Saryl[$i] += Sary2[$]];
}

this is where that last takes me

}

Whereas here's how a Perl programmer more comfortable with the idiom might do it:

OUTER: foreach my $wid (@ary1) {
INNER: foreach my $jet (@ary?2) {
next OUTER if $wid > $jet;
$wid += $jet;
}
}

See how much easier this is? It's cleaner, safer, and faster. It's cleaner because it's less noisy. It's safer
because if code gets added between the inner and outer loops later on, the new code won‘t be accidentally
executed. Theext explicitly iterates the other loop rather than merely terminating the inner one. And it's
faster because Perl executdsr@ach statement more rapidly than it would the equivalent loop.

Basic BLOCKs and Switch Statements

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note thatN@i¥ fsue in

eval{} , sub{} , or contrary to popular belieflo{} blocks, which doNOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1; last SWITCH; }
if (/*xyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

There is no official switch statement in Perl, because there are already several ways to write the equivalent.
In addition to the above, you could write

SWITCH: {
$abc = 1, last SWITCH if /*abc/;
$def = 1, last SWITCH if /~def;
$xyz = 1, last SWITCH if /"xyz/;
$nothing = 1;

}

(That's actually not as strange as it looks once you realize that you can use loop control "operators" within an
expression, That's just the normal C comma operator.)

23—-Mar-1997 Perl Version 5.004 BETA 151

perlsyn Perl Programmers Reference Guide perlsyn

or
SWITCH: {
/Mabc/ && do { $abc = 1; last SWITCH; };
/~def/ && do { $def = 1; last SWITCH; };
I"xyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;
}
or formatted so it stands out more as a "proper" switch statement:
SWITCH: {
/Nabc/ && do {
$abc = 1;
last SWITCH,;
¥
/def/ && do {
$def = 1;
last SWITCH,;
¥
"xyz/ && do {
$xyz = 1;
last SWITCH,;
¥
$nothing = 1;
}
or
SWITCH: {
/~abc/ and $abc = 1, last SWITCH,;
/~def/ and $def = 1, last SWITCH;
["xyz/ and $xyz = 1, last SWITCH;
$nothing = 1;
}
or even, horrors,
if (/~abcl)
{$abc=1}
elsif (/~def/)
{$def=1}
elsif (/"xyz/)
{$xyz=1}

else
{ $nothing =1}

A common idiom for a switch statement is to feeeach ‘s aliasing to make a temporary assignment to
$_ for convenient matching:

SWITCH: for ($where) {
/In Card Names/ && do { push @flags, '-e’; last; };
/Anywhere/ && do { push @flags, '-h’; last; };
/In Rulings/ && do{ last; };
die "unknown value for form variable where: ‘Swhere™;

}

Another interesting approach to a switch statement is arrangeléoblck to return the proper value:

152 Perl Version 5.004 BETA 23—-Mar-1997

perlsyn Perl Programmers Reference Guide perlsyn

$amode = do {
if ($flag & O_RDONLY){"r"}
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {
if ($flag & O_CREAT) {"w+"}
else { ($flag & O_APPEND) ? "a+": "r+"}

Goto

Although not for the faint of heart, Perl does suppagb® statement. A loop‘’s LABEL is not actually a
valid target for ggoto ; it's just the name of the loop. There are three forms: goto—LABEL, goto—EXPR,
and goto&NAME.

The goto—-LABEL form finds the statement labeled with LABEL and resumes execution there. It may not be
used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It also can't
be used to go into a construct that is optimized away. It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it's usually better to use some other construct such as last or
die. The author of Perl has never felt the need to use this form of goto (in Perl, that is—C is another matter).

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn‘t necessarily recommended if you‘re optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$il;

The goto-&NAMEorm is highly magical, and substitutes a call to the named subroutine for the currently
running subroutine. This is used AYTOLOAD() subroutines that wish to load another subroutine and then
pretend that the other subroutine had been called in the first place (except that any modifications to @__ in the
current subroutine are propagated to the other subroutine.) Aftgotbe not evencaller() will be

able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the structured control flow mechanisms of
next ,last , orredo instead of resorting togoto . For certain applications, the catch and throw pair of
eval{} anddie() for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it's expecting the beginning of
a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

=headl Here There Be Pods!

Then that text and all remaining text up through and including a line beginningauth will be ignored.
The format of the intervening text is describegénlpod

This allows you to intermix your source code and your documentation text freely, as in
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph.
This means that the following secret stuff will be ignored by both the compiler and the translators.

23—-Mar-1997 Perl Version 5.004 BETA 153

perlsyn Perl Programmers Reference Guide perlsyn

$a=3;

=secret stuff

warn "Neither POD nor CODE!?"
=cut back

print "got $a\n";

You probably shouldn't rely upon thearn() being podded out forever. Not all pod translators are
well-behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)

Much like the C preprocessor, perl can process line directives. Using this, one can control perl's idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is the same as for most C preprocessors: it matches the regular
expressionM\s*line\s+(\d+)\s*(?:\s"(['T*)")?/ with $1 being the line number for the

next line, and2 being the optional filename (specified within quotes).

Here are some examples that you should be able to type into your command shell:

% perl

line 200 "bzzzt"

the '‘# on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

line 200 "bzzzt"

eval gq[\n#line 2001 ""\ndie 'foo’]; print $@;
__END__

foo at - line 2001.

% perl

eval gg[\n#line 200 "foo bar"\ndie 'foo’]; print $@;
__END__

foo at foo bar line 200.

% perl

line 345 "goop"

eval\n#line". LINE__.’"™. FILE__ ."\"\ndie 'foo™;
print $@;

__END__

foo at goop line 345.

154 Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

NAME
perlop — Perl operators and precedence

SYNOPSIS

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Note that all operators borrowed from C keep the same precedence relationship with each other, even where
C's precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left -

nonassoc ++ ——

right *x

right I ~\and unary + and -
left =~ I~

left *[% X

left +-.

left << >>

nonassoc named unary operators
nonassoc <><=>zltgtlege
nonassoc === <=>eq ne cmp
left &

left |~

left &&

left I

nonassoc .

right ?:

right =+= —-="*=etc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators are covered in precedence order.
DESCRIPTION

Terms and List Operators (Leftward)

Any TERM is of highest precedence of Perl. These includes variables, quote and quote-like operators, any

expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren't really
functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. These are all documepeelfinc

If any list operator(print() , etc.) or any unary operatqchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators puch assort , or chmod is either
very high or very low depending on whether you look at the left side of operator or the right side of it. For
example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated
after. In other words, list operators tend to gobble up all the arguments that follow them, and then act like a
simple TERM with regard to the preceding expression. Note that you have to be careful with parentheses:

23—-Mar-1997 Perl Version 5.004 BETA 155

perlop

Perl Programmers Reference Guide perlop

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably doesn‘t do what you expect at first glance. Skaened Unary Operatorfor more discussion of
this.

Also parsed as terms are tthe {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdts and{} .

See als®@uote and Quote-like Operatoteward the end of this section, as welta®perators"

The Arrow Operator

Auto—i

Just as in C and C++:-2" is an infix dereference operator. If the right side is either]a or{...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or a location
capable of holding a hard reference, if it's an lvalue (assignable)peBlee.

Otherwise, the right side is a method name or a simple scalar variable containing the method name, and the
left side must either be an object (a blessed reference) or a class name (that is, a package pamea)j. See

ncrement and Auto—decrement
"++" and "—" work as in C. That is, if placed before a variable, they increment or decrement the variable
before returning the value, and if placed after, increment or decrement the variable after returning the value.

The auto-increment operator has a little extra built-in magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has been used in only string contexts since it was set, and has a value that is not null and matches

the pattern“a-zA-Z]J*[0-9]*$/, the increment is done as a string, preserving each character within
its range, with carry:

print ++($foo ='99’); # prints '100°

print ++($foo ='a0’); # prints 'al’

print ++($foo = 'Az’); # prints 'Ba’

print ++($foo = 'zz’); # prints 'aaa’

The auto—decrement operator is not magical.

Exponentiation

Binary "**" is the exponentiation operator. Note that it binds even more tightly than unary minus, so —2**4
is —(2**4), not (-2)**4. (This is implemented using C's pow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators

Unary "I" performs logical negation, i.e., "not". See aisb for a lower precedence version of this.

Unary "-" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a string

consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returned. One effect of these rules is that
—bareword is equivalent t6—bareword"

Unary "~" performs bitwise negation, i.e., 1's complement. (Sedrasger Arithmetig

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function name

156

Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (See examples above ufi@ems and List Operators (Leftwarjl)

Unary "\" creates a reference to whatever follows it. |$edref Do not confuse this behavior with the
behavior of backslash within a string, although both forms do convey the notion of protecting the next thing
from interpretation.

Binding Operators

Binary "=~" binds a scalar expression to a pattern match. Certain operations search or modify the string

by default. This operator makes that kind of operation work on some other string. The right argument is a
search pattern, substitution, or translation. The left argument is what is supposed to be searched, substituted,
or translated instead of the defahilt The return value indicates the success of the operation. (If the right
argument is an expression rather than a search pattern, substitution, or translation, it is interpreted as a search
pattern at run time. This can be is less efficient than an explicit search, because the pattern must be compiled
every time the expression is evaluated.

Binary "I~" is just like "=~" except the return value is negated in the logical sense.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of the two numbers.

Binary "X" is the repetition operator. In a scalar context, it returns a string consisting of the left operand
repeated the number of times specified by the right operand. In a list context, if the left operand is a list in
parentheses, it repeats the list.

print "=’ x 80; # print row of dashes
print "\t" x ($tab/8), ' ' x ($tab%8); # tab over
@ones = (1) x 80; #alistof 80 1's
@ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators

Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers. (Sedisger Arithmetig

Binary " returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers. (Sedisger Arithmetig

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.
These include the filetest operators, ke —M etc. Se@erlfunc

If any list operator(print() , etc.) or any unary operatqchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call. Examples:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

23—-Mar-1997 Perl Version 5.004 BETA 157

perlop Perl Programmers Reference Guide perlop

but, because * is higher precedence than ||:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; #rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; #rand (10 * 20)
See alsdTerms and List Operators (Leftward)"

Relational Operators
Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<="returns true if the left argument is numerically less than or equal to the right argument.
Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.
Binary "It" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.
Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "=="returns true if the left argument is numerically equal to the right argument.

Binary "1="returns true if the left argument is numerically not equal to the right argument.

Binary "<=>" returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.
Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to, or
greater than the right argument.

"It", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current locade ifocale
is in effect. Segerllocale

Bitwise And
Binary "&" returns its operators ANDed together bit by bit. (Seelateger Arithmetig

Bitwise Or and Exclusive Or
Binary "|" returns its operators ORed together bit by bit. (Sedraisger Arithmetic

Binary """ returns its operators XORed together bit by bit. (Seelalsger Arithmetic

C-style Logical And
Binary "&&" performs a short—circuit logical AND operation. That is, if the left operand is false, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.
C-style Logical Or

Binary "||" performs a short—circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

158 Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

The || and&& operators differ from C's in that, rather than returning O or 1, they return the last value
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it's not "0") might be:

$home = SENV{'HOME'} || SENV{'LOGDIR’} ||
(getpwuid($<))[7] || die "You're homeless\n";

As more readable alternatives && and|| , Perl provides "and" and "or" operators (see below). The
short—circuit behavior is identical. The precedence of "and" and "or" is much lower, however, so that you
can safely use them after a list operator without the need for parentheses:

unlink "alpha”, "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would have been written like this:

unlink("alpha”, "beta", "gamma")
|| (gripe(), next LINE);

Range Operator

Binary ".." is the range operator, which is really two different operators depending on the context. In a list
context, it returns an array of values counting (by ones) from the left value to the right value. This is useful
for writing for (1..10) loops and for doing slice operations on arrays. Be aware that under the current

implementation, a temporary array is created, so you'll burn a lot of memory if you write something like

this:

for (1 .. 1_000_000) {
code

}

In a scalar context, ".." returns a boolean value. The operator is bistable, like a flip—flop, and emulates the
line-range (comma) operator &£d awk, and various editors. Each ".." operator maintains its own boolean
state. Itis false as long as its left operand is false. Once the left operand is true, the range operator stays true
until the right operand is tru&FTERwhich the range operator becomes false again. (It doesn‘'t become
false till the next time the range operator is evaluated. It can test the right operand and become false on the
same evaluation it became true (aguvk), but it still returns true once. If you don‘t want it to test the right
operand till the next evaluation (asdad, use three dots ("...") instead of two.) The right operand is not
evaluated while the operator is in the "false" state, and the left operand is not evaluated while the operator is
in the "true" state. The precedence is a little lower than |R&nd The value returned is either the null

string for false, or a sequence number (beginning with 1) for true. The sequence number is reset for each
range encountered. The final sequence number in a range has the string "EQ" appended to it, which doesn't
affect its numeric value, but gives you something to search for if you want to exclude the endpoint. You can
exclude the beginning point by waiting for the sequence number to be greater than 1. If either operand of
scalar ".." is a numeric literal, that operand is implicity compared to$thevariable, the current line
number. Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines
nextline if (1 .. /"$/); # skip header lines
s> [if (/9] .. eof()); # quote body

As a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[$[.. $#foo]; # an expensive no-op
@foo = @foo[$#foo—-4 .. $#foo]; # slice last 5 items

The range operator (in a list context) makes use of the magical auto—increment algorithm if the operands are
strings. You can say

@alphabet = (A’ .. 'Z’);

23—-Mar-1997 Perl Version 5.004 BETA 159

perlop Perl Programmers Reference Guide perlop

to get all the letters of the alphabet, or
$hexdigit = (0 .. 9, ’a’ .. 'f)[$num & 15];
to get a hexadecimal digit, or
@z2 = (01’ .. '31"); print $z2[$mday];

to get dates with leading zeros. If the final value specified is not in the sequence that the magical increment
would produce, the sequence goes until the next value would be longer than the final value specified.

Conditional Operator

Ternary "?:" is the conditional operator, just as in C. It works much like an if-then—-else. If the argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned. For
example:

printf "I have %d dog%s.\n", $n,
($n==1)72":"s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$a = $ok ? $b : $c; # get a scalar
@a = %ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal Ivalues (meaning that you can
assign to them):

($a_or_b ? $a : $b) = $c;
This is not necessarily guaranteed to contribute to the readability of your program.

Assignment Operators
"="is the ordinary assignment operator.

Assignment operators work as in C. That is,

$a +=2;
is equivalent to
$a=$%a+2;
although without duplicating any side effects that dereferencing the Ivalue might trigger, such as from
tie() . Other assignment operators work similarly. The following are recognized:
= p= F= = <<= &&=
—_ = |: >>= ||:
= Op= N=

Note that while these are grouped by family, they all have the precedence of assignment.

Unlike in C, the assignment operator produces a valid Ivalue. Modifying an assignment is equivalent to
doing the assignment and then modifying the variable that was assigned to. This is useful for modifying a
copy of something, like this:

($tmp = $global) =~ tr [A-Z] [a-z];
Likewise,

($a +=2) *=3;
is equivalent to

$a +=2;
$a *=3;

160 Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

Comma Operator

Binary "," is the comma operator. In a scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. This is just like C's comma operator.

In a list context, it's just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It's useful for documenting arguments
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a string.
List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical operators "and", "or", and
"not”, which may be used to evaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can't open: $!\n";

See also discussion of list operatord@rms and List Operators (Leftward)

Logical Not

Unary "not" returns the logical negation of the expression to its right. It's the equivalent of
very low precedence.

except for the

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It's equivalk&t to
except for the very low precedence. This means that it short—circuits: i.e., the right expression is evaluated
only if the left expression is true.

Logical or and Exclusive Or

Binary "or" returns the logical disjunction of the two surrounding expressions. It's equivalent to || except for
the very low precedence. This means that it short—circuits: i.e., the right expression is evaluated only if the
left expression is false.

Binary "xor" returns the exclusive—OR of the two surrounding expressions. It cannot short circuit, of course.

C Operators Missing From Perl
Here is what C has that Perl doesn‘t:

unary & Address-of operator. (But see the "\" operator for taking a reference.)

unary * Dereference—address operator. (Perl‘s prefix dereferencing operators arebty@d:%, and
&)

(TYPE) Type casting operator.

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various kinds

of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. In the following

table, af} represents any pair of delimiters you choose. Non-bracketing delimiters use the same character
fore and aft, but the 4 sorts of brackets (round, angle, square, curly) will all nest.

Customary Generic Meaning Interpolates

" af} Literal no
qa{} Literal yes
“ ax{} Command yes
gw{} Word list no
I m{} Pattern match yes
s{{} Substitution yes
tr{}{} Translation no

23—-Mar-1997 Perl Version 5.004 BETA 161

perlop Perl Programmers Reference Guide perlop

For constructs that do interpolation, variables beginning with 6r "@ are interpolated, as are the
following sequences:

\t tab (HT, TAB)
\n newline (LF, NL)
\r return (CR)

\f form feed (FF)

\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\033 octal char

\x1b hex char

\c[control char

\l lowercase next char
\u uppercase next char
\L lowercase till \E

\U uppercase till \E

\E end case modification
\Q guote regexp metacharacters till \E

If use locale is in effect, the case map used\by, \L ,\u and <\U is taken from the current locale. See
perllocale

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. If this is not what you want, ¥3eto interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation. In particular, contrary to the expectations
of shell programmers, back—quotes NOT interpolate within double quotes, nor do single quotes impede
evaluation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-like operators that apply to pattern matching and related activities.

?PATTERN?

This is just like thepattern/ search, except that it matches only once between calls to the
reset() operator. This is a useful optimization when you want to see only the first occurrence
of something in each file of a set of files, for instance. fypatterns local to the current
package are reset.

This usage is vaguely deprecated, and may be removed in some future version of Perl.

m/PATTERN/gimosx
/PATTERN/gimosx

Searches a string for a pattern match, and in a scalar context returns true (1) or false (). If no
string is specified via the~ or !~ operator, th&_ string is searched. (The string specified with

=~ need not be an lvalue—it may be the result of an expression evaluation, but remember the
binds rather tightly.) See algerlre. Seeperllocale for discussion of additional considerations
which apply wheruse locale s in effect.

Options are:

g Match globally, i.e., find all occurrences.
i Do case-insensitive pattern matching.
m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

162 Perl Version 5.004 BETA 23—-Mar-1997

perlop

Perl Programmers Reference Guide perlop

If "/" is the delimiter then the initiam is optional. With them you can use any pair of
non—-alphanumeric, non-whitespace characters as delimiters. This is particularly useful for
matching Unix path names that contain /", to avoid LTS (leaning toothpick syndrome).

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every
time the pattern search is evaluated. (Note $hatnd$| might not be interpolated because
they look like end-of-string tests.) If you want such a pattern to be compiled only once, add a
/o after the trailing delimiter. This avoids expensive run-time recompilations, and is useful
when the value you are interpolating won‘t change over the life of the script. However,
mentioning/o constitutes a promise that you won't change the variables in the pattern. If you
change them, Perl won'‘t even notice.

If the PATTERN evaluates to a null string, the last successfully executed regular expression is
used instead.

If used in a context that requires a list value, a pattern match returns a list consisting of the
subexpressions matched by the parentheses in the patter§li.e$2, $3...). (Note that

here$1 etc. are also set, and that this differs from Perl 4's behavior.) If the match fails, a null
array is returned. If the match succeeds, but there were no parentheses, a list value of (1) is
returned.

Examples:

open(TTY, '/devitty’);
<TTY> =~ /"y/i && foo(); # do foo if desired

if (/Version: *([0-9.]%)/) { $version = $1; }
next if m#~/usr/spool/uucp#;

poor man'’s grep

$arg = shift;
while (<>) {

print if /$arg/o; # compile only once
}

if (BF1, $F2, SELC) = ($100 =~ NASH\s+(SHN\S*(.¥)1))

This last example splitéfoo into the first two words and the remainder of the line, and assigns
those three fields t&F1, $F2, and$Etc. The conditional is true if any variables were
assigned, i.e., if the pattern matched.

The/g modifier specifies global pattern matching—that is, matching as many times as possible
within the string. How it behaves depends on the context. In a list context, it returns a list of all
the substrings matched by all the parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In a scalar contexin//g iterates through the string, returning TRUE each time it matches, and
FALSE when it eventually runs out of matches. (In other words, it remembers where it left off
last time and restarts the search at that point. You can actually find the current match position of
a string or set it using th@os() function—segos) Note that you can use this feature to stack
m//g matches or intermim//g matches withm/N\G.../

If you modify the string in any way, the match position is reset to the beginning. Examples:

list context
($one, $five, fifteen) = (‘uptime’ =~ /\d+\.\d+)/g);

scalar context
$/ =" $* = 1; # $* deprecated in modern perls
while ($paragraph = <>) {

23-Mar-1997

Perl Version 5.004 BETA 163

perlop Perl Programmers Reference Guide perlop

while ($paragraph =~ /[a—z][")]*[.!?]+[")]*\s/g) {
$sentences++;
}
}

print "$sentences\n";

using m//g with \G
$_ = "ppooqppq’;
while ($i++ < 2) {
print "1: ™
print $1 while /(0)/g; print ", pos=", pos, "\n";
print "2: ™
print $1 if AG(q)/; print ", pos=", pos, "\n";
print "3: ™"
print $1 while /(p)/g; print ", pos=", pos, "\n";
}

The last example should print:

1:’o0’, pos=4
2:'q’, pos=4
3:'pp’, pos=7
1.7, pos=7
2:'q", pos=7
3., pos=7

Note howm//g matches change the value reportedpmg() , but the non-global match
doesn't.

A useful idiom forlex -like scanners i8G.../g . You can combine several regexps like this
to process a string part-by—part, doing different actions depending on which regexp matched.
The next regexp would step in at the place the previous one left off.

$ =<<EOL’;

$url = new URI::URL "http://www/"; die if $url eq "xXx";
EOL
LOOP:

{
print(" digits"), redo LOOP if A\G\d+\b[,.;]?\s*/g;
print(" lowercase"), redo LOOP if AG[a—z]+\b[,.;]?\s*/g;
print(" UPPERCASE"), redo LOOP if AG[A-Z]+\b[,.;]?\s*/g;
print(" Capitalized"), redo LOOP if A\G[A-Z][a—z]+\b][,.;]?\s*/g;
print(" MiXeD"), redo LOOP if N\G[A-Za-z]+\b],.;]?\s*/g;
print(" alphanumeric"), redo LOOP if A\G[A-Za-z0-9]+\b][,.;]?\s*/g;

print(" line—-noise"),redo LOOP if A\G[*A-Za-z0-9]+/g;
print ". That's all\n";
}

Here is the output (split into several lines):

line—noise lowercase line—noise lowercase UPPERCASE line—noise
UPPERCASE line—noise lowercase line—noise lowercase line—noise
lowercase lowercase line—noise lowercase lowercase line—noise
MiXeD line—-noise. That's all!

q/STRING/
‘STRING’

A single—quoted, literal string. A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

164 Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

$foo = g!l said, "You said, 'She said it."";
$bar = q('This is it.”);
$baz ="\n’; # a two—character string

qa/STRING/
"STRING"

A double—quoted, interpolated string.

$_.=qq

(*** The previous line contains the naughty word "$1".\n)
if /(tclrexx|python)/; # :-)

$baz = "\n"; # a one—character string

gX/STRING/

‘STRING® A string which is interpolated and then executed as a system command. The collected standard
output of the command is returned. In scalar context, it comes back as a single (potentially
multi-line) string. In list context, returns a list of lines (however you‘ve defined lineshwitbr
$INPUT_RECORD_SEPARATOR).

$today = qx{ date };
SeeO Operatorsfor more discussion.

qW/STRING/

Returns a list of the words extracted out of STRING, using embedded whitespace as the word
delimiters. It is exactly equivalent to

split(" ’, g/STRING/);
Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

S/IPATTERN/REPLACEMENT/egimosx

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (specifically, the empty
string).

If no string is specified via the~ or !~ operator, thes_ variable is searched and modified.
(The string specified witke~ must be a scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an Ivalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATTERN
or the REPLACEMENT. Otherwise, if the PATTERN contain$ that looks like a variable

rather than an end-of-string test, the variable will be interpolated into the pattern at run—time. If
you want the pattern compiled only once the first time the variable is interpolated, uUse the
option. If the pattern evaluates to a null string, the last successfully executed regular expression
is used instead. Sewerlre for further explanation on these. Segerllocale for discussion of
additional considerations which apply whese locale is in effect.

Options are:

e Evaluate the right side as an expression.
g Replace globally, i.e., all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

o] Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

23—-Mar-1997 Perl Version 5.004 BETA 165

perlop Perl Programmers Reference Guide perlop

Any non-alphanumeric, hon-whitespace delimiter may replace the slashes. If single quotes are
used, no interpretation is done on the replacement string/gthenodifier overrides this,
however). Unlike Perl 4, Perl 5 treats back-ticks as normal delimiters; the replacement text is
not evaluated as a command. If the PATTERN is delimited by bracketing quotes, the
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes, e.g.,
s(foo)(bar) or s<foo>/bar/ . Al/e will cause the replacement portion to be interpreter

as a full-fledged Perl expression aewhl() ed right then and there. It is, however, syntax
checked at compile-time.

Examples:
s/\bgreen\b/mauve/q; # don’t change wintergreen
$path =~ s|/usr/bin|/usr/local/bin];
s/Login: $foo/Login: $bar/; # run—-time pattern
($foo = $bar) =~ s/this/that/;
$count = ($paragraph =~ s/Mister\b/Mr./g);
$_ ='abcl23xyz’;

sN\d+/$&*2/e; # yields 'abc246xyz’
sN\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’

s\w/$& x 2/eg; # yields 'aabbcc 224466xxyyzz’
s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
si*=(\w+)/&pod($1)/ge; # use function call

/e’s can even nest; this will expand
simple embedded variables in $_
s/(\$\w+)/$1/eeq;

Delete C comments.
$program =~ s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.

}Hlgsx;

SIMs*(*?)\s*$/$1/; # trim white space

sI(M %) *([™ 1%)/$2 $1/; # reverse 1st two fields

Note the use of instead of \ in the last example. Unlileed we use the \digit> form in only
the left hand side. Anywhere else sdigit >.

Occasionally, you can't use just/@ to get all the changes to occur. Here are two common
cases:

put commas in the right places in an integer
1 while s/(.:A\d)(\d\d\d)/$1,$2/g; # perl4
1 while s/(\d)(\d\d\d)(?\d)/$1,$2/g; # perl5

expand tabs to 8—column spacing
1 while sA\t+/" * x (length($&)*8 — length($)%8)/e;
tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds
Translates all occurrences of the characters found in the search list with the corresponding

character in the replacement list. It returns the number of characters replaced or deleted. If no
string is specified via the =~ or !~ operator, $hestring is translated. (The string specified with

166 Perl Version 5.004 BETA 23—-Mar-1997

perlop

Perl Programmers Reference Guide perlop

I/O Operators

There are several 1/0 operators you should know about. A string is enclosed by back-ticks (grave accents)
first undergoes variable substitution just like a double quoted string. It is then interpreted as a command, and
the output of that command is the value of the pseudo-literal, like in a shell. In a scalar context, a single

string consisting of all the output is returned. In a list context, a list of values is returned, one for each line of

(You can se$/ to use a different line terminator.) The command is executed each time the

=~ must be a scalar variable, an array element, or an assignment to one of those, i.e., an lvalue.)
For sed devoteesy is provided as a synonym for . If the SEARCHLIST is delimited by
bracketing quotes, the REPLACEMENTLIST has its own pair of quotes, which may or may not
be bracketing quotes, e.tfJA-Z][a-Z] ortr(+—*/)/ABCD/

Options:

¢ Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. [fthe
modifier is specified, any characters specified by SEARCHLIST not found in

REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavior of
sometr programs, which delete anything they find in the SEARCHLIST, period.) Ifshe
modifier is specified, sequences of characters that were translated to the same character are
squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is
replicated till it is long enough. If the REPLACEMENTLIST is null, the SEARCHLIST is
replicated. This latter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:
$ARGV[1] =~ tr/A-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # countthe starsin $_
$cnt = $sky =~ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla—zA-Z/ls; # bookkeeper —> bokeper
($HOST = $host) =~ trla-z/A-Z/;
trla-zA-Z/ Ics; # change non-alphas to single space
tr \200-\377]
[\000-\177]; # delete 8th bit
If multiple translations are given for a character, only the first one is used:
tr/AAAIXYZ/

will translate any A to X.

Note that because the translation table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you want
to use variables, you must useemal()

eval "tr/$oldlist/Snewlist/";

die 3@ if $@;
eval "tr/$oldlist/$newlist/, 1" or die $@;

23-Mar-1997

Perl Version 5.004 BETA 167

perlop

Perl Programmers Reference Guide perlop

pseudo-literal is evaluated. The status value of the command is returi$&d (see perlvar for the
interpretation ofs?). Unlike incsh, no translation is done on the return data—newlines remain newlines.
Unlike in any of the shells, single quotes do not hide variable names in the command from interpretation. To
pass & through to the shell you need to hide it with a backslash. The generalized form of back-ticks is
gx// . (Because back-ticks always undergo shell expansion as welkrdsecfor security concerns.)

Evaluating a filehandle in angle brackets yields the next line from that file (newline, if any, included), or
undef at end of file. Ordinarily you must assign that value to a variable, but there is one situation where an
automatic assignment happentand ONLY ifthe input symbol is the only thing inside the conditional of a
while or for(;;) loop, the value is automatically assigned to the varifble The assigned value is

then tested to see if it is defined. (This may seem like an odd thing to you, but you'll use the construct in
almost every Perl script you write.) Anyway, the following lines are equivalent to each other:

while (defined($_ = <STDIN>)) { print; }
while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while <STDIN>;

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehastdies , stdout , and
stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additional filehandles may be created withdpen() function. Se@pen() for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list consisting of all the input lines is
returned, one line per list element. It's easy to mak&RGEdata space this way, so use with care.

The null filehandle <> is special and can be used to emulate the behasextafdawk. Input from <>

comes either from standard input, or from each file listed on the command line. Here's how it works: the
first time <> is evaluated, the @ARGYV array is checked, and if it is B8RGV[0] is set to "-", which

when opened gives you standard input. The @ARGYV array is then processed as a list of filenames. The
loop

while (<>) {
code for each line

}

is equivalent to the following Perl-like pseudo code:

unshiftf(@ARGV, ') if $#ARGV < $J;
while (ARGV = shift) {
open(ARGV, $ARGV);
while (RARGV>) {
code for each line
}
}

except that it isn‘t so cumbersome to say, and will actually work. It really does shift array @ARGV and put
the current filename into variabARGV. It also uses filehandl@ARGVinternally—<> is just a synonym

for <ARGV>, which is magical. (The pseudo code above doesn‘t work because it treats <ARGV> as
non—-magical.)

You can modify @ARGYV before the first <> as long as the array ends up containing the list of flenames you
really want. Line numbersp() continue as if the input were one big happy file. (But see example under
eof() for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. If you want to pass switches into your
script, you can use one of the Getopts modules or put a loop on the front like this:

while ($_ = $SARGVI[0], /I"-/) {
shift;

168

Perl Version 5.004 BETA 23—-Mar-1997

perlop Perl Programmers Reference Guide perlop

last if N ——9/;
if (/A-D(.*)/) { $debug = $1}
if (*-vl) {$verbose++ }
other switches
}
while (<>) {
code for each line

}

The <> symbol will return FALSE only once. If you call it again after this it will assume you are processing
another @ARGYV list, and if you haven't set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar variable§fgz)< then that variable
contains the name of the filehandle to input from, or a reference to the same. For example:

$fh = *STDIN;
$line = <$fh>;

If the string inside angle brackets is not a filehandle or a scalar variable containing a filehandle name or
reference, then it is interpreted as a filename pattern to be globbed, and either a list of flenames or the next
filename in the list is returned, depending on context. One lev&linterpretation is done first, but you

can't say<$foo> because that's an indirect filehandle as explained in the previous paragraph. (In older
versions of Perl, programmers would insert curly brackets to force interpretation as a filename glob:
<${foo}>. These days, it's considered cleaner to call the internal function directipl$foo),

which is probably the right way to have done it in the first place.) Example:

while (<*.c>) {
chmod 0644, $_;
}

is equivalent to

open(FOO, "echo *.c | tr —s " \t\r\f’ "\\012\\012\\012\\012'|");
while (<FOO>) {

chop;

chmod 0644, $_;
}

In fact, it's currently implemented that way. (Which means it will not work on filenames with spaces in
them unless you have csh(1) on your machine.) Of course, the shortest way to do the above is:

chmod 0644, <*.c>;

Because globbing invokes a shell, it's often faster torealdidir() yourself and do your owgrep()
on the filenames. Furthermore, due to its current implementation of using a shglibbihe routine may
get "Arg list too long" errors (unless you‘ve installed tcsh(1U/basgcsh).

A glob evaluates its (embedded) argument only when it is starting a new list. All values must be read before
it will start over. In a list context this isn‘t important, because you automatically get them all anyway. In a
scalar context, however, the operator returns the next value each time it is called, or a FALSE value if you‘ve
just run out. Again, FALSE is returned only once. So if you‘re expecting a single value from a glob, it is
much better to say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning FALSE.

It you're trying to do variable interpolation, it's definitely better to useglod() function, because the

23—-Mar-1997 Perl Version 5.004 BETA 169

perlop Perl Programmers Reference Guide perlop

older notation can cause people to become confused with the indirect filehandle notation.
@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time, whenever it determines that all
of the arguments to an operator are static and have no side effects. In particular, string concatenation

happens at compile time between literals that don‘t do variable substitution. Backslash interpretation also
happens at compile time. You can say

'Now is the time for all’ . "\n" .
'good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (-s $file > 5 + 100 * 2**16) { ... }
}

the compiler will pre—compute the number that expression represents so that the interpreter won'‘t have to.
Integer Arithmetic
By default Perl assumes that it must do most of its arithmetic in floating point. But by saying
use integer;

you may tell the compiler that it's okay to use integer operations from here to the end of the enclosing
BLOCK. An inner BLOCK may countermand this by saying

no integer;
which lasts until the end of that BLOCK.

The bitwise operators &", "|", """, "~", "<<", and "") always produce integral results. Howevee

integer still has meaning for them. By default, their results are interpreted as unsigned integers.
However, ifuse integer is in effect, their results are interpreted as signed integers. For exafple,
usually evaluates to a large integral value. Howawss integer; ~0 is —1.

Floating—point Arithmetic

While use integer provides integer—only arithmetic, there is no similar ways to provide rounding or
truncation at a certain number of decimal places. For rounding to a certain number cffigit$) or
printf() is usually the easiest route.

The POSIX module (part of the standard perl distribution) implenoeii(3 , floor() , and a number of

other mathematical and trigonometric functions. The Math::Complex module (part of the standard perl
distribution) defines a number of mathematical functions that can also work on real numbers.
Math::Complex not as efficient as POSIX, but POSIX can‘t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

170 Perl Version 5.004 BETA 23—-Mar-1997

perire Perl Programmers Reference Guide perlre

NAME
perlre — Perl regular expressions

DESCRIPTION

This page describes the syntax of regular expressions in Perl. For a description of usawvetgular
expressions in matching operations, plus various examples of the samé/, saels/// in perlop.

The matching operations can have various modifiers. The modifiers which relate to the interpretation of the
regular expression inside are listed below. For the modifiers that alter the behaviour of the operation, see
m// in perlopands// in perlop

[Do case-insensitive pattern matching.
If use locale is in effect, the case map is taken from the current localepe3kecale

m Treat string as multiple lines. That is, change "" &id from matching at only the very start or end
of the string to the start or end of any line anywhere within the string,

S Treat string as single line. That is, change "." to match any character whatsoever, even a newline,
which it normally would not match.

X Extend your pattern's legibility by permitting whitespace and comments.

These are usually written as "the modifier", even though the delimiter in question might not actually be a
slash. In fact, any of these modifiers may also be embedded within the regular expression itself using the
new(?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells the regular expression parser to ignore
whitespace that is neither backslashed nor within a character class. You can use this to break up your regular
expression into (slightly) more readable parts. Bheharacter is also treated as a meta—character
introducing a comment, just as in ordinary Perl code. This also means that if you want real white#pace or
characters in the pattern that you'll have to either escape them or encode them using octal or hex escapes.
Taken together, these features go a long way towards making Perl‘s regular expressions more readable. See
the C comment deletion codeperiop

Regular Expressions

The patterns used in pattern matching are regular expressions such as those supplied in the Version 8 regexp
routines. (In fact, the routines are derived (distantly) from Henry Spencer's freely redistributable
reimplementation of the V8 routines.) Séersion 8 Regular Expressiofar details.

In particular the following metacharacters have their stanelgnep-ish meanings:

\ Quote the next meta—character

A Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)
| Alternation

() Grouping

[Character class

By default, the "*" character is guaranteed to match at only the beginning of the strirg), dteafacter at

only the end (or before the newline at the end) and Perl does certain optimizations with the assumption that
the string contains only one line. Embedded newlines will not be matched by "$".or 'You may,
however, wish to treat a string as a multi-line buffer, such that the "" will match after any newline within
the string, and$" will match before any newline. At the cost of a little more overhead, you can do this by
using the /m modifier on the pattern match operator. (Older programs did this by $&ttingut this

practice is now deprecated.)

To facilitate multi-line substitutions, the character never matches a newline unless you Ise the
modifier, which in effect tells Perl to pretend the string is a single line—even if it isn't./sTheodifier

23—-Mar-1997 Perl Version 5.004 BETA 171

perire

Perl Programmers Reference Guide perlre

also overrides the setting 8f, in case you have some (badly behaved) older code that sets it in another
module.

The following standard quantifiers are recognized:

* Match O or more times
+ Match 1 or more times
? Match 1 or O times

{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated as a regular character.) The ™" modifier is
equivalent tof0,} , the "+" modifier to{1,} , and the "?" modifier t§0,1} . n and m are limited to
integral values less than 65536.

By default, a quantified sub—pattern is "greedy", that is, it will match as many times as possible without
causing the rest of the pattern not to match. The standard quantifiers are all "greedy", in that they match as
many occurrences as possible (given a particular starting location) without causing the pattern to fail. If you
want it to match the minimum number of times possible, follow the quantifier with a "?" after any of them.
Note that the meanings don‘t change, just the "gravity":

*? Match O or more times

+? Match 1 or more times

?? Match O or 1 time

{n}? Match exactly n times

{n,}? Match at least n times

{n,m}? Match at least n but not more than m times

Because patterns are processed as double quoted strings, the following also work:

\t tab (HT, TAB)

\n newline (LF, NL)

\r return (CR)

\f form feed (FF)

\a alarm (bell) (BEL)

\e escape (think troff) (ESC)
\033 octal char (think of a PDP-11)
\x1B hex char

\c[control char

\l lowercase next char (think vi)

\u uppercase next char (think vi)
\L lowercase till \E (think vi)

\U uppercase till \E (think vi)

\E end case modification (think vi)
\Q quote regexp metacharacters till \E

If use locale is in effect, the case map used\by, \L ,\u and <\U is taken from the current locale. See
perllocale

In addition, Perl defines the following:

\w Match a "word" character (alphanumeric plus " ")
\W Match a non-word character

\s Match a whitespace character

\S Match a non—-whitespace character

\d Match a digit character

\D Match a non-digit character

172

Perl Version 5.004 BETA 23—-Mar-1997

perire Perl Programmers Reference Guide perlre

Note that\w matches a single alphanumeric character, not a whole word. To match a word you‘d need to
say\w+ . If use locale is in effect, the list of alphabetic characters generategvbig taken from the
current locale. Seperllocale You may usaw, \W, \s ,\S,\d , and\D within character classes (though

not as either end of a range).

Perl defines the following zero—width assertions:

\b Match a word boundary

\B Match a non-(word boundary)

\A Match at only beginning of string

\Z Match at only end of string (or before newline at the end)
\G Match only where previous m//g left off

A word boundary\p) is defined as a spot between two characters that Yvasoa one side of it and\av

on the other side of it (in either order), counting the imaginary characters off the beginning and end of the
string as matching ®V. (Within character classéls represents backspace rather than a word boundary.)
The\A and\Z are just like """ and$" except that they won‘t match multiple times when/themodifier

is used, while "M and$" will match at every internal line boundary. To match the actual end of the string,
not ignoring newline, you can us&?\n) . The\G assertion can be used to mix global matches (using
m//g) and non—global ones, as describedRagexp Quote-Like Operators in perldpis also useful when

writing lex —like scanners, when you have several regexps which you want to match against consequent
substrings of your string, see the previous reference. The actual location\@heik match can also be
influenced by usingos() as an Ivalue. Sgm®s

When the bracketing construgt..) is used, \<digit> matches the digit'th substring. Outside of the
pattern, always uses” instead of "\" in front of the digit. (While the \<digit> notation can on rare occasion
work outside the current pattern, this should not be relied upon. See the WARNING below.) The scope of
$<digit> (and$', $&, and$’) extends to the end of the enclosing BLOCK or eval string, or to the next
successful pattern match, whichever comes first. If you want to use parentheses to delimit a subpattern (e.g.,
a set of alternatives) without saving it as a subpattern, follow the (with a ?:.

You may have as many parentheses as you wish. If you have more than 9 substrings, the$&Djables

$11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc. refer back to substrings if
there have been at least that many left parentheses before the backreference. Otherwise (for backward
compatibility) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And so on. (\1 through
\9 are always backreferences.)

$+ returns whatever the last bracket match match®®l.returns the entire matched string$0 (used to
return the same thing, but not any moré&) returns everything before the matched strir§j. returns
everything after the matched string. Examples:

SIN[MT) *([M T9)/%2 $1/; # swap first two words

if (Time: (..):(.):(IN {
$hours = $1;
$minutes = $2;
$seconds = $3;

}

Once perl sees that you need on8&f $ or$’ anywhere in the program, it has to provide them on each

and every pattern match. This can slow your program down. The same mechanism that handles these
provides for the use df1, $2, etc., so you pay the same price for each regexp that contains capturing
parentheses. But if you never @&, etc., in your script, then regexpsthout capturing parentheses won't

be penalized. So avoi&, $‘, and$' if you can, but if you can‘t (and some algorithms really appreciate
them), once you'‘ve used them once, use them at will, because you‘ve already paid the price.

You will note that all backslashed metacharacters in Perl are alphanumeric, sbch\was \n . Unlike
some other regular expression languages, there are no backslashed symbols that aren‘t alphanumeric. So
anything that looks like \\, \(; \), \<, \>, \{{, or \} is always interpreted as a literal character, not a

23—-Mar-1997 Perl Version 5.004 BETA 173

perire Perl Programmers Reference Guide perlre

meta—character. This makes it simple to quote a string that you want to use for a pattern but that you are
afraid might contain metacharacters. Quote simply all the non—alphanumeric characters:

$pattern =~ s/(\W)\\$1/g;

You can also use the built-iquotemeta() function to do this. An even easier way to quote
metacharacters right in the match operator is to say

/$unquoted\Q$quoted\E$unquoted/

Perl defines a consistent extension syntax for regular expressions. The syntax is a pair of parentheses with a
guestion mark as the first thing within the parentheses (this was a syntax error in older versions of Perl). The
character after the question mark gives the function of the extension. Several extensions are already
supported:

(?#text) A comment. The text is ignored. If the switch is used to enable whitespace formatting, a
simple# will suffice.

(?:regexp) This groups things lik&) " but doesn‘t make backreferences liKe " does. So
split(Ab(?:alb|c)\b/)
is like
split(Ab(a|b|c)\b/)
but doesn‘t spit out extra fields.

(?=regexp) A zero—width positive lookahead assertion. For exaniphe;(?=\t)/ matches a word
followed by a tab, without including the tab$&..

(?'regexp) A zero—width negative lookahead assertion. For exartiptg?!bar)/ matches any
occurrence of "foo" that isn‘t followed by "bar". Note however that lookahead and
lookbehind are NOT the same thing. You cannot use this for lookbée(?tdo)bar/
will not find an occurrence of "bar" that is preceded by something which is not "foo". That's
because th€?!foo) s just saying that the next thing cannot be "foo"—and it's not, it's a
"bar", so "foobar" will match. You would have to do something l{Ré&foo)...bar/
for that. We say "like" because there's the case of your "bar" not having three characters
before it. You could cover that this wa{?:(?!foo)...|"..?)bar/ . Sometimes it's
still easier just to say:

if (/foo/ && $' =~ /bar$/)

(?imsx) One or more embedded pattern—match modifiers. This is particularly useful for patterns that
are specified in a table somewhere, some of which want to be case sensitive, and some of
which don‘t. The case insensitive ones need to include mggly at the front of the
pattern. For example:

$pattern = "foobar";
if (/$pattern/i)

more flexible:

$pattern = "(?i)foobar"”;
if (/$pattern/)

The specific choice of question mark for this and the new minimal matching construct was because 1)
guestion mark is pretty rare in older regular expressions, and 2) whenever you see one, you should stop and
"question"” exactly what is going on. That's psychology...

Backtracking

A fundamental feature of regular expression matching involves the notion batt&ttacking which is
used (when needed) by all regular expression quantifiers, nantély +, +?, {n,m} , and{n,m}? .

174 Perl Version 5.004 BETA 23—-Mar-1997

perire

Perl Programmers Reference Guide perlre

For a regular expression to match, #mire regular expression must match, not just part of it. So if the
beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the pattern to fail,
the matching engine backs up and recalculates the beginning part—that‘s why it's called backtracking.

Here is an example of backtracking: Let's say you want to find the word following "foo" in the string "Food
is on the foo table.™:

$ ="Food is on the foo table.";
if (Ab(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
}

When the match runs, the first part of the regular expresdi@fod)) finds a possible match right at the
beginning of the string, and loads #fi with "Foo". However, as soon as the matching engine sees that
there's no whitespace following the "Foo" that it had savefilin it realizes its mistake and starts over

again one character after where it had the tentative match. This time it goes all the way until the next
occurrence of "foo". The complete regular expression matches this time, and you get the expected output of
"table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match everything between "foo" and
"bar". Initially, you write something like this:

$_ = "The food is under the bar in the barn.";
if (/foo(.*)bar/) {

print "got <$1>\n";
}

Which perhaps unexpectedly yields:
got <d is under the bar in the >

That's because® was greedy, so you get everything betweerfitag"foo" and thdast "bar". In this case,
it's more effective to use minimal matching to make sure you get the text between a "foo" and the first "bar"
thereafter.

if (/foo(.*?)bar/) { print "got <$1>\n"}
got <d is under the >

Here's another example: let's say you'd like to match a number at the end of a string, and you also want to
keep the preceding part the match. So you write this:

$ ="l have 2 numbers: 53147";
if (/(X)0d¥)/){ # Wrong!
print "Beginning is <$1>, number is <$2>.\n";

}

That won't work at all, becausé was greedy and gobbled up the whole string\d&s can match on an
empty string the complete regular expression matched successfully.

Beginning is <I have 2 numbers: 53147>, number is <>.
Here are some variants, most of which don‘t work:

$ ="l have 2 numbers: 53147";
@pats = qw{

(:)(\d*)

(:)(\d+)

(*?)(\d*)

(*?)(\d+)

((\d+)$

(*?)(\d+)$

(\b(\d+)$

23—-Mar-1997 Perl Version 5.004 BETA 175

perire

Perl Programmers Reference Guide perlre

(AD)(\d+)$

for $pat (@pats) {
printf "%-12s ", $pat;
if (/$pat/) {
print "<$1> <$2>\n";
}else {
print "FAIL\n";
}
}

That will print out:

(.:*)(\d*) <l have 2 numbers: 53147> <>
(.:*)(\d+) <l have 2 numbers: 5314> <7>
(F)(\d*) <><>

(.*?)(\d+) <l have > <2>

(*)(\d+)$ <l have 2 numbers: 5314> <7>
(-*?)(\d+)$ <I have 2 numbers: > <53147>
(-*)\b(\d+)$ <I have 2 numbers: > <53147>
(.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It's important to realize that a regular expression is merely a set of
assertions that gives a definition of success. There may be 0, 1, or several different ways that the definition
might succeed against a particular string. And if there are multiple ways it might succeed, you need to
understand backtracking to know which variety of success you will achieve.

When using lookahead assertions and negations, this can all get even tricker. Imagine you‘d like to find a
sequence of non—-digits not followed by "123". You might try to write that as

$_="ABC123"

if (/M\D*(?1123)/){ # Wrong!
print "Yup, no 123 in $_\n";

}

But that isn‘t going to match; at least, not the way you‘re hoping. It claims that there is no 123 in the string.
Here's a clearer picture of why it that pattern matches, contrary to popular expectations:

$x ='ABC123’;
$y = 'ABC445’;

print "1: got $1\n" if $x =~ /A(ABC)(?!123)/ ;
print "2: got $1\n" if $y =~ /*(ABC)(?!123)/ ;

print "3: got $1\n" if $x =~ /M(\D*)(?!1123)/ ;
print "4: got $1\n" if $y =~ /A(\D*)(?!1123)/ ;

This prints

2: got ABC
3: got AB
4: got ABC

You might have expected test 3 to fail because it seems to a more general purpose version of test 1. The
important difference between them is that test 3 contains a quanfiffej &nd so can use backtracking,
whereas test 1 will not. What's happening is that you've asked "Is it true that at the $xartfoflowing 0

or more non-digits, you have something that's not 123?" If the pattern matcher Mad lekpand to

"ABC", this would have caused the whole pattern to fail. The search engine will initially YDétctvith

"ABC". Then it will try to match(?!123 with "123" which, of course, fails. But because a quantifier
(\D*) has been used in the regular expression, the search engine can backtrack and retry the match

176

Perl Version 5.004 BETA 23—-Mar-1997

perire Perl Programmers Reference Guide perlre

differently in the hope of matching the complete regular expression.

Well now, the pattern reallyeally wants to succeed, so it uses the standard regexp back-off-and-retry and
lets\D* expand to just "AB" this time. Now there's indeed something following "AB" that is not "123".
It's in fact "C123", which suffices.

We can deal with this by using both an assertion and a negation. We'll say that the firs§pariust be
followed by a digit, and in fact, it must also be followed by something that's not "123". Remember that the
lookaheads are zero—-width expressions—they only look, but don‘t consume any of the string in their match.
So rewriting this way produces what you‘d expect; that is, case 5 will fail, but case 6 succeeds:

print "5: got $1\n" if $x =~ /A(\D*)(?=\d)(?!123)/ ;
print "6: got $1\n" if $y =~ /A(\D*)(?=\d)(?!123)/ ;

6: got ABC

In other words, the two zero—width assertions next to each other work like they‘'re ANDed together, just as
you'd use any builtin assertiong®$/ matches only if you'‘re at the beginning of the line AND the end of

the line simultaneously. The deeper underlying truth is that juxtaposition in regular expressions always
means AND, except when you write an explicit OR using the vertical fadw. means match "a" AND

(then) match "b", although the attempted matches are made at different positions because "a" is not a
zero—-width assertion, but a one—width assertion.

One warning: particularly complicated regular expressions can take exponential time to solve due to the
immense number of possible ways they can use backtracking to try match. For example this will take a very
long time to run

/((a{0,5}){0,5){0,5}

And if you used* ‘s instead of limiting it to O through 5 matches, then it would take literally forever—or
until you ran out of stack space.

Version 8 Regular Expressions

In case you'‘re not familiar with the "regular" Version 8 regexp routines, here are the pattern—matching rules
not described above.

Any single character matches itself, unless it imetia—charactemwith a special meaning described here or
above. You can cause characters which normally function as metacharacters to be interpreted literally by
prefixing them with a "\" (e.g., "\." matches a ".", not any character; "\\" matches a "\"). A series of
characters matches that series of characters in the target string, so thebpattern would match "blurfl"

in the target string.

You can specify a character class, by enclosing a list of characigrs which will match any one of the
characters in the list. If the first character after the "[" is """, the class matches any character not in the list.
Within a list, the "-" character is used to specify a range, sattmtepresents all the characters between

"a" and "z", inclusive.

Characters may be specified using a meta—character syntax much like that used in C: "\n" matches a newline,
"\t" a tab, "\r" a carriage return, "\f* a form feed, etc. More generally) \wherennnis a string of octal
digits, matches the character whose ASCII valuenis Similarly, \xan, wherenn are hexadecimal digits,
matches the character whose ASCII valuerisThe expression Xcmatches the ASCII character contral-

Finally, the "." meta—character matches any character except "\n" (unless ysuuse

You can specify a series of alternatives for a pattern using "|" to separate themfesgiftbHoe will

match any of "fee", "fie", or "foe" in the target string (as wd(ddijo)e). Note that the first alternative
includes everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the first "|",
and the last alternative contains everything from the last "|" to the next pattern delimiter. For this reason, it's
common practice to include alternatives in parentheses, to minimize confusion about where they start and
end. Note however that "|" is interpreted as a literal with square brackets, so if ydieeffieejfoe]

you're really only matchingfeio|]

23—-Mar-1997 Perl Version 5.004 BETA 177

perire Perl Programmers Reference Guide perlre

Within a pattern, you may designate sub—patterns for later reference by enclosing them in parentheses, and
you may refer back to theth sub—pattern later in the pattern using the meta—charactsub—patterns are
numbered based on the left to right order of their opening parenthesis. Note that a backreference matches
whatever actually matched the sub—pattern in the string being examined, not the rules for that sub—pattern.
Therefore, (0]0x)\d*\s\1\d* will match "0x1234 0x4321".but not "0x1234 01234", because
sub—pattern 1 actually matched "0x", even though theOjObe could potentially match the leading O in the
second number.

WARNING on\lvs $1
Some people get too used to writing things like
$pattern =~ s/(\W)\\1/g;

This is grandfathered for the RHS of a substitute to avoid shockirngetheddicts, but it's a dirty habit to
get into. That's because in PerlThink, the righthand sidesdff a is a double—quoted strindl in the
usual double—quoted string means a control-A. The customary Unix meaningsokludged in fois///

However, if you get into the habit of doing that, you get yourself into trouble if you then afid an
modifier.

s/(\d+)/\1 + 1 /eqg;
Or if you try to do
s/(\d+)/\1000/;

You can‘t disambiguate that by sayi{d}000 , whereas you can fix it witB{1}000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference. Certainly
they mean two different things on tledt side of thes///

178 Perl Version 5.004 BETA 23—-Mar-1997

perlrun Perl Programmers Reference Guide perlrun

NAME

perlrun — how to execute the Perl interpreter
SYNOPSIS

perl [-sTuU]

[-hv][-V[:configval]

[—cw] [—d[:debuggef] [-D[number/lis}]

[-pna][—Fpattern] [—I[octall] [—O[octal|]

[-Idir][=-m[-]module] [-M[-]'module...’]

[-P]

[-S]

[—x[dir]]

[—i[extensioh]

[—e‘command’] [—] [programfile] [argument]...

DESCRIPTION
Upon startup, Perl looks for your script in one of the following places:

1. Specified line by line viae switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments—to pass
arguments to a STDIN script you must explicitly specify a "-" for the script name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you‘ve speeified a
switch, in which case it scans for the first line starting with #! and containing the word "perl", and starts there
instead. This is useful for running a script embedded in a larger message. (In this case you would indicate
the end of the script using the __ END___ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you‘'re on a machine that
allows only one argument with the #! line, or worse, doesn‘t even recognize the #! line, you still can get
consistent switch behavior regardless of how Perl was invoked, evenwis used to find the beginning of

the script.

Because many operating systems silently chop off kernel interpretation of the #! line after 32 characters,
some switches may be passed in on the command line, and some may not; you could even get a "-" without
its letter, if you‘re not careful. You probably want to make sure that all your switches fall either before or
after that 32 character boundary. Most switches don't actually care if they're processed redundantly, but
getting a - instead of a complete switch could cause Perl to try to execute standard input instead of your
script. And a partiatl switch could also cause odd results.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "-*" and "- " are
specifically ignored so that you could, if you were so inclined, say

#l/bin/sh —— # —*— perl —*— —p
eval 'exec /usr/bin/perl $0 -S ${1+"$@"}
if $running_under_some_shell;

to let Perl see thep switch.

If the #! line does not contain the word "perl”, the program named after the #! is executed instead of the Perl
interpreter. This is slightly bizarre, but it helps people on machines that don‘t do #!, because they can tell a
program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct interpreter
for them.

After locating your script, Perl compiles the entire script to an internal form. If there are any compilation
errors, execution of the script is not attempted. (This is unlike the typical shell script, which might run
partway through before finding a syntax error.)

23—-Mar-1997 Perl Version 5.004 BETA 179

perlrun Perl Programmers Reference Guide perlrun

If the script is syntactically correct, it is executed. If the script runs off the end without hitteagt@n
ordie() operator, an impliciexit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems

Unix's #! technique can be simulated on other systems:

0Ss/2
Put

extproc perl =S —your_switches

as the first line irf.cmd file (—S due to a bug in cmd.exe's ‘extproc’ handling).

DOS
Create a batch file to run your script, and codify iIRIlTERNATIVE_SHEBANGsee thalosish.hfile
in the source distribution for more information).

Win95/NT

The Win95/NT installation, when using the Activeware port of Perl, will modify the Registry to
associate the .pl extension with the perl interpreter. If you install another port of Perl, including the
one in the win32 directory of the Perl distribution, then you'll have to modify the Registry yourself.

Macintosh
Macintosh perl scripts will have the the appropriate Creator and Type, so that double—clicking them
will invoke the perl application.

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells. You'll
need to learn the special characters in your command-interptetergnd"” are common) and how to
protect whitespace and these characters to run one-linerse(sstow).

On some systems, you may have to change single—quotes to double ones, which YO Tresbn Unix
or Plan9 systems. You might also have to change a single % to a %%.

For example:

Unix
perl —e "print "Hello world\n

DOS, etc.
perl —e "print \"Hello world\n\

Mac
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

#VMS
perl —e "print ""Hello world\n

The problem is that none of this is reliable: it depends on the command tirely possible neither works. If
4DOS was the command shell, this would probably work better:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking, but
just try to find documentation for its quoting rules.

Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is much like
Unix shells in its support for several quoting variants, except that it makes free use of the Mac's non—-ASCI|
characters as control characters.

There is no general solution to all of this. It's just a mess.

180

Perl Version 5.004 BETA 23—-Mar-1997

perlrun Perl Programmers Reference Guide perlrun

Switches
A single—character switch may be combined with the following switch, if any.
#1/usr/bin/perl —spi.bak # same as —s —p —i.bak
Switches include:
—0[digits]
specifies the input record separathf) (as an octal number. If there are no digits, the null character

is the separator. Other switches may precede or follow the digits. For example, if you have a version
of find which can print filenames terminated by the null character, you can say this:

find . —name *.bak’ —print0 | perl —nOe unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will cause Perl
to slurp files whole because there is no legal character with that value.

—a turns on autosplit mode when used withraor —p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced byther —p.

perl —ane ’'print pop(@F), "\n";’
is equivalent to

while (<>) {

@F = split(’);

print pop(@F), "\n";
}

An alternate delimiter may be specified usitlg

—-C causes Perl to check the syntax of the script and then exit without executing it. Actuailly, it
executeBEGIN, ENDQ and use blocks, because these are considered as occurring outside the
execution of your program.

—-d runs the script under the Perl debugger. (seklebug
-d: foo

runs the script under the control of a debugging or tracing module installed as Devel::foo. E.g.,
—d:DProf executes the script using the Devel::DProf profiler. [g=llebug

-Dnumber
-Dlist

sets debugging flags. To watch how it executes your script-Ddd. (This works only if
debugging is compiled into your Perl.) Another nice valueD4024 which lists your compiled
syntax tree. And-D512 displays compiled regular expressions. As an alternative specify a list of
letters instead of numbers (e.gD14 is equivalent te-Dtls):

1 p Tokenizing and Parsing

2 s Stack Snapshots

4 | Label Stack Processing

8 t Trace Execution

16 o Operator Node Construction

32 ¢ String/Numeric Conversions

64 P Print Preprocessor Command for —P
128 m Memory Allocation

256 f Format Processing

512 r Regular Expression Parsing
1024 x Syntax Tree Dump
2048 u Tainting Checks
4096 L Memory Leaks (not supported anymore)

23—-Mar-1997 Perl Version 5.004 BETA 181

perlrun Perl Programmers Reference Guide perlrun

8192 H Hash Dump —- usurps values()
16384 X Scratchpad Allocation
32768 D Cleaning Up

—-e commandline

may be used to enter one line of script.—dfis given, Perl will not look for a script filename in the
argument list. Multiple-e commands may be given to build up a multi-line script. Make sure to
use semicolons where you would in a normal program.

—Fpattern

specifies the pattern to split on-# is also in effect. The pattern may be surroundedl hy™ , or
", otherwise it will be put in single quotes.

-h prints a summary of the options.

—i[extension]
specifies that files processed by #re construct are to be edited in—place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. The extension, if supplied, is added to the name of the old file to make a
backup copy. If no extension is supplied, no backup is made. From the shell, saying

$ perl —p —i.bak —e "s/foo/bar/; ... "
is the same as using the script:

#1/usr/bin/perl —pi.bak
s/foo/bar/;

which is equivalent to

#1/usr/bin/perl
while (<>) {
if (JARGV ne $oldargv) {
rename($ARGV, $ARGV . ".bak’);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;
}
s/foo/bar/;
}
continue {
print; # this prints to original filename

}
select(STDOUT);

except that thei form doesn‘t need to compa$ARGVto $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDOUT is
restored as the default output filehandle after the loop.

You can useof without parenthesis to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see exampé®in
—ldirectory

Directories specified byl are prepended to the search path for mod@id(), and also tells the C
preprocessor where to search for include files. The C preprocessor is invokedPyathdefault it
searches /usr/include and /ustr/lib/perl.

=l[octnum]

enables automatic line—ending processing. It has two effects: first, it automatically cl&itnps "
(the input record separator) when used withor —p, and second, it assign$\" (the output record

182

Perl Version 5.004 BETA 23—-Mar-1997

perlrun Perl Programmers Reference Guide perlrun

separator) to have the value @ftnumso that any print statements will have that separator added
back on. Ifoctnumis omitted, sets$\" to the current value ofs/". For instance, to trim lines to
80 columns:

perl —Ipe 'substr($_, 80) ="

Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separatorif shétch is followed by &0 switch:

gnufind / —print0 | perl =InOe ’print "found $_" if -p’
This sets$p\ to newline and then se$¢ to the null character.

—-m[-]module

-M[-]module

-M[-]'module ...’

—[mM] [-]module=arg[,arg]...

—-mmoduleexecutesise module(); before executing your script.

—Mmoduleexecutesuse module; before executing your script. You can use quotes to add extra
code after the module name, e-gM‘'module qw(foo bar)’

If the first character after theMor —mis a dash+) then the ‘use’ is replaced with ‘no’.

A little built—in syntactic sugar means you can also-saynodule=foo,bar or

—Mmodule=foo,bar as a shortcut forM‘module gw(foo bar)’ . This avoids the need to
use quotes when importing symbols. The actual code generatddrbgdule=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the= form removes the distinction betweem
and-M

-n causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed —nor awk:

while (<>) {
your script goes here

}

Note that the lines are not printed by default. Se¢o have lines printed. Here is an efficient way
to delete all files older than a week:

find . -mtime +7 —print | perl —nle 'unlink;’

This is faster than using th@xec switch offind because you don‘t have to start a process on every
filename found.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

-p causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed

while (<>) {
your script goes here
} continue {
print;
}
Note that the lines are printed automatically. To suppress printing use #wdtch. A—p overrides
a—n switch.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

23—-Mar-1997 Perl Version 5.004 BETA 183

perlrun Perl Programmers Reference Guide perlrun

—-P causes your script to be run through the C preprocessor before compilation by Perl. (Because both
comments and cpp directives begin with the # character, you should avoid starting comments with

any words recognized by the C preprocessor such as "if", "else", or "define".)

-s enables some rudimentary switch parsing for switches on the command line after the script name but
before any filename arguments (or before-p Any switch found there is removed from @ARGV
and sets the corresponding variable in the Perl script. The following script prints "true" if and only if
the script is invoked with axyz switch.

#l/usr/bin/perl —s
if ($xyz) { print "true\n"; }

-S makes Perl use the PATH environment variable to search for the script (unless the name of the script
starts with a slash). Typically this is used to emulate #! startup on machines that don‘t support #!, in
the following manner:

#1/usr/bin/perl
eval 'exec /usr/bin/perl =S $0 ${1+"$@"}
if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to execute the
Perl script as a shell script. The shell executes the second line as a normal shell command, and thus
starts up the Perl interpreter. On some systgdndoesn‘t always contain the full pathname, so the
—Stells Perl to search for the script if necessary. After Perl locates the script, it parses the lines and
ignores them because the variaieinning_under_some_shell is never true. A better
construct than$* would be ${1+"$@"}, which handles embedded spaces and such in the
filenames, but doesn't work if the script is being interpreted by csh. To start up sh rather than csh,
some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can‘t control that, and need a totally devious construct that
will work under any of csh, sh, or Perl, such as the following:

eval '(exit $70)' && eval 'exec /usr/bin/perl =S $0 ${1+"$@"}
& eval 'exec /usr/bin/perl =S $0 $argv:q’
if $running_under_some_shell;

-T forces "taint" checks to be turned on so you can test them. Ordinarily these checks are done only
when running setuid or setgid. It's a good idea to turn them on explicitly for programs run on
another's behalf, such as CGI programs. [Saésec

-u causes Perl to dump core after compiling your script. You can then take this core dump and turn it
into an executable file by using thendump program (not supplied). This speeds startup at the
expense of some disk space (which you can minimize by stripping the executable). (Still, a "hello
world" executable comes out to about 200K on my machine.) If you want to execute a portion of
your script before dumping, use tdemp() operator instead. Note: availability ahdump is
platform specific and may not be available for a specific port of Perl.

-U allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings.

-V prints the version and patchlevel of your Perl executable.
-V prints summary of the major perl configuration values and the current value of @INC.

-V:name
Prints to STDOUT the value of the named configuration variable.
-w prints warnings about variable names that are mentioned only once, and scalar variables that are used

before being set. Also warns about redefined subroutines, and references to undefined filehandles or
filehandles opened read-only that you are attempting to write on. Also warns you if you use values

184 Perl Version 5.004 BETA 23—-Mar-1997

perlrun Perl Programmers Reference Guide perlrun

as a number that doesn‘t look like numbers, using an array as though it were a scalar, if your
subroutines recurse more than 100 deep, and innumerable other things.

You can disable specific warnings using?WARN__hooks, as described perlvar andwarn. See
alsoperldiag andperltrap.

—X directory

tells Perl that the script is embedded in a message. Leading garbage will be discarded until the first
line that starts with #! and contains the string "perl". Any meaningful switches on that line will be
applied. If a directory name is specified, Perl will switch to that directory before running the script.
The —x switch controls only the disposal of leading garbage. The script must be terminated with
__END___if there is trailing garbage to be ignored (the script can process any or all of the trailing
garbage via the DATA filehandle if desired).

ENVIRONMENT

HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the scrifftig used.

PERL5LIB A colon-separated list of directories in which to look for Perl library files before looking

in the standard library and the current directory. If PERL5LIB is not defined, PERLLIB is
used. When running taint checks (because the script was running setuid or setgid, or the
—T switch was used), neither variable is used. The script should instead say

use lib "/my/directory";

PERLLIB A colon-separated list of directories in which to look for Perl library files before looking
in the standard library and the current directory. If PERL5LIB is defined, PERLLIB is not
used.

PERL5DB The command used to load the debugger code. The default is:
BEGIN { require 'perl5db.pl’ }

PERL_DEBUG_MSTATS
Relevant only if your perl executable was built witDDEBUGGING_MSTATS, if set,
this causes memory statistics to be dumped after execution. If set to an integer greater than
one, also causes memory statistics to be dumped after compilation.

PERL_DESTRUCT_LEVEL

Relevant only if your perl executable was built Wit DEBUGGING, this controls the
behavior of global destruction of objects and other references.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages. Segerllocale

Apart from these, Perl uses no other environment variables, except to make them available to the script being
executed, and to child processes. However, scripts running setuid would do well to execute the following
lines before doing anything else, just to keep people honest:

$ENV{PATH'} = '/bin:/usr/bin’; # or whatever you need
$ENV{'SHELL'} = '/bin/sh’ if defined $ENV{'SHELL'}
SENV{IFS} =" if defined SENV{'IFS’};

23—-Mar-1997 Perl Version 5.004 BETA 185

perlfunc Perl Programmers Reference Guide perlfunc

NAME

perlfunc — Perl builtin functions

DESCRIPTION

The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators. These differ in their precedence relationship with a following comma.
(See the precedence tableperlop.) List operators take more than one argument, while unary operators can
never take more than one argument. Thus, a comma terminates the argument of a unary operator, but merely
separates the arguments of a list operator. A unary operator generally provides a scalar context to its
argument, while a list operator may provide either scalar and list contexts for its arguments. If it does both,
the scalar arguments will be first, and the list argument will follow. (Note that there can ever be only one list
argument.) For instancsplice() has three scalar arguments followed by a list.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown with LIST as an argument. Such a list may consist of any combination of
scalar arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single—dimensional list value. Elements of the LIST
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but occasionally
surprising) rule is this: ILOOKSIlike a function, therefore iS a function, and precedence doesn‘t matter.
Otherwise it's a list operator or unary operator, and precedence does matter. And whitespace between the
function and left parenthesis doesn‘t count—so you need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.

print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.

print ((1+2)+4); # Prints 7.
If you run Perl with the-w switch it can warn you about this. For example, the third line above produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at — line 1.

For functions that can be used in either a scalar or list context, non—abortive failure is generally indicated in
a scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following rule:

THERE IS NO GENERAL RULE FOR CONVERTING A LIST INTO A SCALAR!

Each operator and function decides which sort of value it would be most appropriate to return in a scalar
context. Some operators return the length of the list that would have been returned in a list context. Some
operators return the first value in the list. Some operators return the last value in the list. Some operators
return a count of successful operations. In general, they do what you want, unless you want consistency.

Perl Functions by Category

Here are Perl's functions (including things that look like functions, like some of the keywords and named
operators) arranged by category. Some functions appear in more than one place.
Functions for SCALARS or strings
chomp, chop, chr, crypt, hex, index, lc, Icfirst, length, oct, ord, pack, g/STRING/, qq/STRING/,
reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///
Regular expressions and pattern matching
m//, pos, quotemeta, s///, split, study

186

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAY's
pop, push, shift, splice, unshift

Functions for list data
grep, join, map, qw/STRING/, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, domclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf, read,
readdir, rewinddir, seek, seekdir, select, syscall, sysread, syswrite, tell, telldir, truncate, warn, write
Functions for fixed length data or records
pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories
-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, Istat, mkdir, open, opendir, readlink, rename,
rmdir, stat, symlink, umask, unlink, utime

Keywords related to the control flow of your perl program
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray

Keywords related to scoping
caller, import, local, my, package, use

Miscellaneous functions
defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, gx/STRING/, setpgrp, setpriority, sleep,
system, times, wait, waitpid

Keywords related to perl modules
do, import, no, package, require, use

Keywords related to classes and object-orientedness
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, shutdown,
socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network info

endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnetbyname,
getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname, getservbyport, getservent,
sethostent, setnetent, setprotoent, setservent

23—-Mar-1997 Perl Version 5.004 BETA 187

perlfunc

Perl Programmers Reference Guide

perlfunc

Time-related functions
gmtime, localtime, time, times

Functions new in perl5
abs, bless, chomp, chr, exists, formline, glob, import, Ic, Icfirst, map, my, no, prototype, gx, qw,

readline, readpipe, ref, sub*, sysopen, tie, tied, uc, ucfirst, untie, use

* — sub was a keyword in perl4, but in perl5 it is an operator which can be used in expressions.

Functions obsoleted in perl5
dbmclose, dbmopen

Alphabetical Listing of Perl Functions

—-X FILEHANDLE

-X EXPR
=X

A file test, where X is one of the letters listed below. This unary operator takes one argument,
either a filename or a filehandle, and tests the associated file to see if something is true about it.

If the argument is omitted, tes$,
documented, it returnk for TRUE and’

except for-t , which tests STDIN. Unless otherwise
for FALSE, or the undefined value if the file doesn't

exist. Despite the funny names, precedence is the same as any other named unary operator, and
the argument may be parenthesized like any other unary operator. The operator may be any of:

=T
-W

File is readable by effective uid/gid.
File is writable by effective uid/gid.
File is executable by effective uid/gid.
File is owned by effective uid.

File is readable by real uid/gid.
File is writable by real uid/gid.
File is executable by real uid/gid.
File is owned by real uid.

File exists.
File has zero size.
File has non-zero size (returns size).

File is a plain file.
File is a directory.

File is a symbolic link.

File is a named pipe (FIFO).
File is a socket.

File is a block special file.
File is a character special file.
Filehandle is opened to a tty.

File has setuid bit set.
File has setgid bit set.
File has sticky bit set.

File is a text file.
File is a binary file (opposite of -T).

Age of file in days when script started.
Same for access time.
Same for inode change time.

The interpretation of the file permission operatars —R, —w, -W —x, and-X is based solely on
the mode of the file and the uids and gids of the user. There may be other reasons you can‘t
actually read, write or execute the file. Also note that, for the superuserR, -w, and-W

188

Perl Version 5.004 BETA

23-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

always return 1, angx and-X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to detat() to determine the actual mode of the file, or temporarily
set the uid to something else.

Example:

while (<>) {
chop;
next unless —f $_; # ignore specials

}

Note that-s/a/b/ does not do a negated substitution. Sayiagp($foo) still works as
expected, however—only single letters following a minus are interpreted as file tests.

The-T and-B switches work as follows. The first block or so of the file is examined for odd
characters such as strange control codes or characters with the high bit set. If too many odd
characters (>30%) are found, it's—8 file, otherwise it's a-T file. Also, any file containing

null in the first block is considered a binary file.—If or—B is used on a filehandle, the current

stdio buffer is examined rather than the first block. Bofhand-B return TRUE on a null file,

or a file at EOF when testing a filehandle. Because you have to read a file to-dotésg on

most occasions you want to usefa against the file first, as inext unless —f $file

&& - T $file.

If any of the file tests (or either thetat() or Istat() operators) are given the special
filehandle consisting of a solitary underline, then the stat structure of the previous file test (or stat
operator) is used, saving a system call. (This doesn‘t work-witfand you need to remember
thatIstat() and-| will leave values in the stat structure for the symbolic link, not the real
file.) Example:

print "Can do.\n" if -r $a || ~-w _ || -x _;

stat($filename);

print "Readable\n" if —r _;
print "Writable\n" if -w _;
print "Executable\n™ if -x _;
print "Setuid\n" if —u _;
print "Setgid\n" if —-g _;
print "Sticky\n" if -k _;

print "Text\n" if =T _;

print "Binary\n" if -B _;

abs VALUE
abs Returns the absolute value of its argument. If VALUE is omitted, $ises

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as the accept(2) system call does. Returns the packed
address if it succeeded, FALSE otherwise. See example in
Sockets: Client/Server Communication in petlipc

alarm SECONDS

alarm Arranges to have a SIGALRM delivered to this process after the specified number of seconds
have elapsed. If SECONDS is not specified, the value stoied im used. (On some machines,
unfortunately, the elapsed time may be up to one second less than you specified because of how
seconds are counted.) Only one timer may be counting at once. Each call disables the previous
timer, and an argument of 0 may be supplied to cancel the previous timer without starting a new
one. The returned value is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may use Besksll() interface to
access setitimer(2) if your system supports it, or elsésséect() below. Itis not advised

23—-Mar-1997 Perl Version 5.004 BETA 189

perlfunc

Perl Programmers Reference Guide perlfunc

atan2 Y, X

to intermixalarm() andsleep() calls.

If you want to usealarm() to time out a system call you need to use an eval/die pair. You
can't rely on the alarm causing the system call to fail $ithset to EINTR because Perl sets up
signal handlers to restart system calls on some systems. Using eval/die always works.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
h
die if $@ && $@ ne "alarm\n”; # propagate errors
if ($@) {
timed out
}
else {
didn't
}

Returns the arctangent of Y/X in the range —PI to PI.

For the tangent operation, you may use B@SIX::tan() function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME

Binds a network address to a socket, just as the bind system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

binmode FILEHANDLE

Arranges for the file to be read or written in "binary” mode in operating systems that distinguish
between binary and text files. Files that are not in binary mode have CR LF sequences translated
to LF on input and LF translated to CR LF on output. Binmode has no effect under Unix; in
DOS and similarly archaic systems, it may be imperative—otherwise your DOS-damaged C
library may mangle your file. The key distinction between systems that need binmode and those
that don't is their text file formats. Systems like Unix and Plan9 that delimit lines with a single
character, and that encode that character in C as ‘\n‘, do nobimeedde . The rest need it. If
FILEHANDLE is an expression, the value is taken as the name of the filehandle.

bless REF,CLASSNAME

bless REF

This function tells the thingy referenced by REF that it is now an object in the CLASSNAME
package—or the current package if no CLASSNAME is specified, which is often the case. It
returns the reference for convenience, becauddess() is often the last thing in a
constructor. Always use the two—argument version if the function doing the blessing might be
inherited by a derived class. Sesrlobjfor more about the blessing (and blessings) of objects.

caller EXPR

caller

Returns the context of the current subroutine call. In a scalar context, returns the caller's
package name if there is a caller, that is, if we're in a subroutiegatf) or require()
and the undefined value otherwise. In a list context, returns

($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The

190

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

value of EXPR indicates how many call frames to go back before the current one.

($package, $filename, $line, $subroutine,
$hasargs, $wantarray, $evaltext, $is_require) = caller($i);

Here $subroutine may be"(eval)" if the frame is not a subroutine call, bestal . In
such a case additional elemeftaltext and$is_require are setSis_require is
true if the frame is created byquire or use statement$evaltext contains the text of
eval EXPR statement. In particular, feval BLOCK statemen$filename is

"(eval)" , but$evaltext is undefined. (Note also thase statement createsraquire
frame inside arval EXPR) frame.

Furthermore, when called from within the DB package, caller returns more detailed information:
it sets the list variable @DB::args to be the arguments with which that subroutine was invoked.

chdir EXPR

Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to home
directory. Returns TRUE upon success, FALSE otherwise. See exampl&iefder

chmod LIST

Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number, and which definitely shou&d string of

octal digits:0644 is okay,'0644’ is not. Returns the number of files successfully changed.
See alsmct, if all you have is a string.

$cnt = chmod 0755, 'foo’, 'bar’;

chmod 0755, @executables;

$mode ='0644"; chmod $mode, 'foo’; # !l sets mode to ——w————r-T
$mode ='0644"; chmod oct($mode), 'foo’; # this is better

$mode = 0644; chmod $mode, 'foo’; # this is best

chomp VARIABLE

chomp LIST

chomp This is a slightly safer version of chop (see below). It removes any line ending that corresponds
to the current value d/ (also known as$INPUT_RECORD_SEPARATQAR the English
module). It returns the total number of characters removed from all its arguments. It's often
used to remove the newline from the end of an input record when you‘re worried that the final
record may be missing its newline. When in paragraph n®ide'(), it removes all trailing
newlines from the string. If VARIABLE is omitted, it chomps. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);

}
You can actually chomp anything that's an Ivalue, including an assignment:

chomp($cwd = ‘pwd’);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

chop VARIABLE

chop LIST

chop Chops off the last character of a string and returns the character chopped. It's used primarily to
remove the newline from the end of an input record, but is much more efficierd/thén
because it neither scans nor copies the string. If VARIABLE is omitted, &hopExample:

23—-Mar-1997 Perl Version 5.004 BETA 191

perlfunc

Perl Programmers Reference Guide perlfunc

while (<>) {
chop; # avoid \n on last field
@array = split(/:/);

}

You can actually chop anything that's an Ivalue, including an assignment:

chop($cwd = ‘pwd";
chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, —1)

chown LIST

Changes the owner (and group) of a list of files. The first two elements of the list must be the
NUMERICALuid and gid, in that order. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

Here's an example that looks up hon—numeric uids in the passwd file:

print "User: ";

chop($user = <STDIN>);
print "Files: "
chop($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = <${pattern}>; # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you‘re the
superuser, although you should be able to change the group to any of your secondary groups. On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.

chr NUMBER

chr

Returns the character represented by that NUMBER in the character set. For exiar(Gdg,
is "A" in ASCII. For the reverse, used.

If NUMBER is omitted, use$.

chroot FILENAME

chroot

This function works as the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with a "/* by your process and all of its
children. (It doesn‘t change your current working directory, which is unaffected.) For security
reasons, this call is restricted to the superuser. If FILENAME is omitted, does choot to

close FILEHANDLE

Closes the file or pipe associated with the file handle, returning TRUE only if stdio successfully
flushes buffers and closes the system file descriptor. You don‘t have to close FILEHANDLE if
you are immediately going to do anotlgren() on it, becausepen() will close it for you.
(Seeopen() .) However, an explicit close on an input file resets the line coudifer (while

the implicit close done bgpen() does not. Also, closing a pipe will wait for the process
executing on the pipe to complete, in case you want to look at the output of the pipe afterwards.
Closing a pipe explicitly also puts the status value of the commangiintoExample:

open(OUTPUT, ’|sort >foo’); # pipe to sort

192

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

print stuff to output
close OUTPUT; # wait for sort to finish
open(INPUT, foo’); # get sort’s results

FILEHANDLE may be an expression whose value gives the real filehandle name.

closedir DIRHANDLE
Closes a directory opened bgendir()

connect SOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

continue BLOCK

Actually a flow control statement rather than a function. If there é@rdinue BLOCK
attached to a BLOCK (typically in\ahile orforeach), it is always executed just before the
conditional is about to be evaluated again, just like the third partoof doop in C. Thus it can
be used to increment a loop variable, even when the loop has been continuednaat the
statement (which is similar to thed®ntinue statement).

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes c@ksine of

For the inverse cosine operation, you may useRO&IX::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 — $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT

Encrypts a string exactly like the crypt(3) function in the C library (assuming that you actually
have a version there that has not been extirpated as a potential munition). This can prove useful
for checking the password file for lousy passwords, amongst other things. Only the guys
wearing white hats should do this.

Note that crypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) corresponding decrypt function. As a result, this function isn'‘t all
that useful for cryptography. (For that, see your nearby CPAN mirror.)

Here's an example that makes sure that whoever runs this program knows their own password:

$pwd = (getpwuid($<))[1];
$salt = substr($pwd, 0, 2);

system "stty —echo";

print "Password: ";

chop($word = <STDIN>);

print "\n";

system "stty echo";

if (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

}else {
print "ok\n";

}

Of course, typing in your own password to whomever asks you for it is unwise.

dbmclose HASH
[This function has been superseded byuhie() function.]

23—-Mar-1997 Perl Version 5.004 BETA 193

perlfunc

Perl Programmers Reference Guide perlfunc

Breaks the binding between a DBM file and a hash.

dbmopen HASH,DBNAME ,MODE

[This function has been superseded bytigh@ function.]

This binds a dbm(3), ndbm(3), sdbm(83bm() , or Berkeley DB file to a hash. HASH is the
name of the hash. (Unlike normal open, the first argumeadOi§ a filehandle, even though it
looks like one). DBNAME is the name of the database (withoutdineor .pag extension if

any). If the database does not exist, it is created with protection specified by MODE (as
modified by theumask()). If your system supports only the older DBM functions, you may
perform only onadbmopen() in your program. In older versions of Perl, if your system had
neither DBM nor ndbm, callinglbmopen() produced a fatal error; it now falls back to
sdbm(3).

If you don‘t have write access to the DBM file, you can only read hash variables, not set them.
If you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside areval() , which will trap the error.

Note that functions such &gys() andvalues() may return huge array values when used
on large DBM files. You may prefer to use thach() function to iterate over large DBM
files. Example:

print out history file offsets
dbmopen(%HIST, /usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =, unpack(’L’,$val), "\n";
}
dbmclose(%HIST);

See als;AnyDBM_Filefor a more general description of the pros and cons of the various dbm
approaches, as well 88 _File for a particularly rich implementation.

defined EXPR

defined

Returns a Boolean value telling whether EXPR has a value other than the undefined value
undef . If EXPR is not presen$_ will be checked.

Many operations returundef to indicate failure, end of file, system error, uninitialized
variable, and other exceptional conditions. This function allows you to distinguigi from
other values. (A simple Boolean test will not distinguish amordgf , zero, the empty string,
and "0", which are all equally false.) Note that sinecelef is a valid scalar, its presence
doesn‘tnecessarilyindicate an exceptional conditiopop() returnsundef when its argument
is an empty arraygr when the element to return happens tahaef .

You may also usdefined() to check whether a subroutine exists. On the other hand, use of
defined() upon aggregates (hashes and arrays) is not guaranteed to produce intuitive results,
and should probably be avoided.

When used on a hash element, it tells you whether the value is defined, not whether the key
exists in the hash. Usxistsfor the latter purpose.

Examples:

print if defined $switch{'D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overus#efined() , and then are surprised to discover that the
number 0 and "™ (the zero-length string) are, in fact, defined values. For example, if you say

194

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

"ab" =~ fa(.*)b/;

the pattern match succeeds, &idis defined, despite the fact that it matched "nothing”. But it
didn't really match nothing—rather, it matched something that happened to be 0 characters long.
This is all very above-board and honest. When a function returns an undefined value, it's an
admission that it couldn‘t give you an honest answer. So you shouldefised() only

when you'‘re questioning the integrity of what you‘re trying to do. At other times, a simple
comparison to 0 or "™ is what you want.

Currently, usingdefined() on an entire array or hash reports whether memory for that
aggregate has ever been allocated. So an array you set to the empty list appears undefined
initially, and one that once was full and that you then set to the empty list still appears defined.
You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%0a_hash) { print "has hash members\n" }

Usingundef() on these, however, does clear their memory and then report them as not defined
anymore, but you shoudIn‘t do that unless you don‘t plan to use them again, because it saves
time when you load them up again to have memory already ready to be filled.

This counter—intuitive behaviour alefined() on aggregates may be changed, fixed, or
broken in a future release of Perl.

See alsaindef exists ref.

delete EXPR

die LIST

Deletes the specified key(s) and their associated values from a hash. For each key, returns the
deleted value associated with that key, or the undefined value if there was no such key. Deleting
from $ENV{} modifies the environment. Deleting from a hash tied to a DBM file deletes the
entry from the DBM file. (But deleting from &e() d hash doesn‘t necessarily return
anything.)

The following deletes all the values of a hash:
foreach $key (keys %HASH) {

delete SHASH{$key};
}

And so does this:
delete @HASH{keys %HASH}

(But both of these are slower than thedef() =command.) Note that the EXPR can be
arbitrarily complicated as long as the final operation is a hash element lookup or hash slice:

delete $ref->[$x][$yl{Skey};
delete @{$ref—>[$x][Sy]}{$keyl, $key2, @morekeys};

Outside of areval() , prints the value of LIST t8§ TDERRand exits with the current value of
$! (errno). If$! is O, exits with the value dB? >> 8) (back-tick ‘command’ status). If
($? >>8) is 0, exits with 255. Inside aval() , the error message is stuffed i§@), and
the eval() is terminated with the undefined value; this malle) the way to raise an
exception.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news’;
chdir '/usr/spool/news’ or die "Can't cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Hint: sometimes appending ",
stopped" to your message will cause it to make better sense when the string "at foo line 123" is

23-Mar-1997

Perl Version 5.004 BETA 195

perlfunc Perl Programmers Reference Guide perlfunc

appended. Suppose you are running script "canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See als@xit() andwarn() .

You can arrange for a callback to be called just beforelit(@ does its deed, by setting the
$SIG{__DIE__} hook. The associated handler will be called with the error text and can
change the error message, if it sees fit, by callied) again. Seeerlvar for details on
setting%SIGentries, an@val() for some examples.

do BLOCK

Not really a function. Returns the value of the last command in the sequence of commands
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do SUBROUTINE(LIST)
A deprecated form of subroutine call. $eelsub

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as a Perl script. Its
primary use is to include subroutines from a Perl subroutine library.

do 'stat.pl’;
is just like
eval ‘cat stat.pl;

except that it's more efficient, more concise, keeps track of the current filename for error
messages, and searches allthdibraries if the file isn‘t in the current directory (see also the
@INC array inPredefined Nam@s It's the same, however, in that it does re-parse the file every
time you call it, so you probably don‘t want to do this inside a loop.

Note that inclusion of library modules is better done with tise() and require()
operators, which also do error checking and raise an exception if there's a problem.

dump LABEL

This causes an immediate core dump. Primarily this is so that you can usehgp program

to turn your core dump into an executable binary after having initialized all your variables at the
beginning of the program. When the new binary is executed it will begin by execuirtg a
LABEL (with all the restrictions thajoto suffers). Think of it as a goto with an intervening
core dump and reincarnation. If LABEL is omitted, restarts the program from the top.
WARNING: any files opened at the time of the dump will NOT be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl. See @dimn

in perlrun.

Example:

#1/usr/bin/perl
require 'getopt.pl’;
require 'stat.pl’;
%days = (
'Sun’ => 1,
'Mon’ => 2,
"Tue’ => 3,
'Wed' => 4,

196 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

"Thu' => 5,
Fri’ => 6,
'Sat’ => 7,
);
dump QUICKSTART if $ARGV(0] eq '-d’;

QUICKSTART:
Getopt('f);

each HASH

When called in a list context, returns a 2—element array consisting of the key and value for the
next element of a hash, so that you can iterate over it. When called in a scalar context, returns
the key for only the next element in the hash. (Note: Keys may be "0" or ™, which are logically
false; you may wish to avoid constructs lidile ($k = each %foo) {} for this
reason.)

Entries are returned in an apparently random order. When the hash is entirely read, a null array
is returned in list context (which when assigned produces a FALSE (0) valug)ndefl is

returned in a scalar context. The next cakach() after that will start iterating again. There

is a single iterator for each hash, shared bgath() , keys() , andvalues() function calls

in the program; it can be reset by reading all the elements from the hash, or by eviéyating
HASHor values HASH . If you add or delete elements of a hash while you're iterating over it,
you may get entries skipped or duplicated, so don't.

The following prints out your environment like the printenv(1) program, only in a different
order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";

}

See als&eys() andvalues()

eof FILEHANDLE

eof ()
eof

Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not
open. FILEHANDLE may be an expression whose value gives the real filehandle name. (Note
that this function actually reads a character and tingretc() s it, so it is not very useful in an
interactive context.) Do not read from a terminal file (or eaf(FILEHANDLE) on it) after
end-of-file is reached. Filetypes such as terminals may lose the end-of-file condition if you
do.

An eof without an argument uses the last file read as argument. Empty parefthesayg be
used to indicate the pseudo file formed of the files listed on the command lineofi(e., is
reasonable to use insidewdile (<>) loop to detect the end of only the last file. Use
eof(ARGV) or eof without the parentheses to teACHfile in a while (<>) loop. Examples:

reset line numbering on each input file

while (<>) {
print "$.\t$_";
close(ARGV) if (eof); # Not eof().
}
insert dashes just before last line of last file
while (<>) {
if (eof()) {
print " \n";
close(ARGV); # close or break; is needed if we

are reading from the terminal

23-Mar-1997

Perl Version 5.004 BETA 197

perlfunc Perl Programmers Reference Guide perlfunc

}
print;

}

Practical hint: you almost never need to esé in Perl, because the input operators return undef
when they run out of data.

eval EXPR
eval BLOCK

EXPR is parsed and executed as if it were a little Perl program. It is executed in the context of
the current Perl program, so that any variable settings or subroutine and format definitions
remain afterwards. The value returned is the value of the last expression evaluated, or a return
statement may be used, just as with subroutines. The last expression is evaluated in scalar or
array context, depending on the context of the eval.

If there is a syntax error or runtime error, ati@() statement is executed, an undefined value
is returned byeval() , and$@is set to the error message. If there was no ed@ris
guaranteed to be a null string. If EXPR is omitted, evaluiates The final semicolon, if any,
may be omitted from the expression. Beware that usirad() neither silences perl from
printing warnings to STDERR, nor does it stuff the text of warning message$@ntoTo do
either of those, you have to use $&G{ WARN__} facility. Seewarn() andperlvar.

Note that, becauseval() traps otherwise—fatal errors, it is useful for determining whether a
particular feature (such asocket() or symlink()) is implemented. It is also Perl's
exception trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn't vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Examples:

make divide—-by-zero non-fatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer = };

a run—time error
eval '$answer ='; # sets $@

When using the eval{} form as an exception trap in libraries, you may wish not to trigger any
__DIE__ hooks that user code may have installed. You can usectle
$SIG{_DIE__} construct for this purpose, as shown in this example:

a very private exception trap for divide-by-zero
eval { local $SIG{__DIE__'}; $answer = $a / $b; }; warn $@ if $@;

This is especially significant, given thatDIE__ hooks can caltlie() again, which has the
effect of changing their error messages:

__DIE__ hooks may modify error messages

{
local $SIG{__DIE__'} = sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x }
eval { die "foo foofs here" };
print $@ if $@; # prints "bar barfs here"

}

With aneval() , you should be especially careful to remember what's being looked at when:

198 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

exec LIST

Perl Programmers Reference Guide perlfunc
eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$$x++" # CASE 5
$Ex++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the #iable
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
‘$x‘, which does nothing but return the value$af (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run—time.)
Case 5 is a place where normally YWAWOULD like to use double quotes, except that in that
particular situation, you can just use symbolic references instead, as in case 6.

The exec() function executes a system commaAND NEVER RETURNSunless the
command does not exist and is executed directly instead dfimiah —c (see below). Use
system() instead okxec() if you want it to return.

If there is more than one argument in LIST, or if LIST is an array with more than one value, calls
execvp(3) with the arguments in LIST. If there is only one scalar argument, the argument is
checked for shell metacharacters. If there are any, the entire argument is p@sseshto

—c for parsing. If there are none, the argument is split into words and passed directly to
execvp() , which is more efficient. Noteexec() andsystem() do not flush your output
buffer, so you may need to st to avoid lost output. Examples:

exec 'fbinfecho’, "Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don't really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
"indirect object" (without a comma) in front of the LIST. (This always forces interpretation of
the LIST as a multi-valued list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;
exec $shell '=sh’; # pretend it's a login shell
or, more directly,

exec {'/bin/csh’} '=sh’; # pretend it's a login shell

exists EXPR

Returns TRUE if the specified hash key exists in its hash array, even if the corresponding value
is undefined.

print "Exists\n" if exists $array{$key};
print "Defined\n" if defined $array{$key};
print "True\n" if $array{$key};

A hash element can be TRUE only if it's defined, and defined if it exists, but the reverse doesn‘t
necessarily hold true.

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash key
lookup:

if (exists $ref->[$x][$yl{$key}) { ... }

23-Mar-1997

Perl Version 5.004 BETA 199

perlfunc Perl Programmers Reference Guide perlfunc

exit EXPR
Evaluates EXPR and exits immediately with that value. (Actually, it calls any defiNéd
routines first, but th&NDroutines may not abort the exit. Likewise any object destructors that
need to be called are called before exit.) Example:

$ans = <STDIN>;
exit 0 if $ans =~ /"[Xx]/;

See alsdlie() . If EXPR is omitted, exits with O status. The only univerally portable values
for EXPR are 0 for success and 1 for error; all other values are subject to unpredictable
interpretation depending on the environment in which the Perl program is running.

You shouldn‘t useexit() to abort a subroutine if there's any chance that someone might want
to trap whatever error happened. ds=) instead, which can be trapped byesal()

exp EXPR
exp Returnse (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives

exp($)).
fentl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You'll probably have to say

use Fentl;

first to get the correct function definitions. Argument processing and value return works just like
ioctl() below. Note thafcntl() will produce a fatal error if used on a machine that
doesn‘t implement fcntl(2). For example:

use Fentl;
fentl($filehandle, F_GETLK, $packed_return_buffer);

fileno FILEHANDLE

Returns the file descriptor for a filehandle. This is useful for constructing bitmaps for
select() . If FILEHANDLE is an expression, the value is taken as the name of the filehandle.

flock FILEHANDLE,OPERATION
Calls flock(2), or an emulation of it, on FILEHANDLE. Returns TRUE for success, FALSE on
failure. Produces a fatal error if used on a machine that doesn‘t implement flock(2), fcntl(2)
locking, or lockf(3). flock() is Perl's portable file locking interface, although it locks only
entire files, not records.

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic
names if import them from the Fcntl module, either individually, or as a group using the “:flock’
tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
releases a previously requested lock. If LOCK_NB is added to LOCK_SH or LOCK_EX then
flock() will return immediately rather than blocking waiting for the lock (check the return
status to see if you got it).

To avoid the possibility of mis—coordination, Perl flushes FILEHANDLE before (un)locking it.

Note that the emulation built with lockf(3) doesn't provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics that lockf(3) implements.
Most (all?) systems implement lockf(3) in terms of fcntl(2) locking, though, so the differing

semantics shouldn‘t bite too many people.

Note also that some versionsflafck() cannot lock things over the network; you would need
to use the more system-specifiatl() for that. If you like you can force Perl to ignore your
system's flock(2) function, and so provide its own fcntl(2)-based emulation, by passing the

200 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

switch—-Ud_flock to theConfigure program when you configure perl.
Here's a mailbox appender for BSD systems.
use Fentl :flock’; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/SENV{'USER'}")
or die "Can't open mailbox: $!";

lock();
print MBOX $msg,"\n\n";
unlock();

See als®B_File for otherflock() examples.

fork Does a fork(2) system call. Returns the child pid to the parent process and 0 to the child process,
or undef if the fork is unsuccessful. Note: unflushed buffers remain unflushed in both
processes, which means you may need to$set($AUTOFLUSHIn English) or call the
autoflush() method of 10::Handle to avoid duplicate output.
If youfork() without ever waiting on your children, you will accumulate zombies:
$SIG{CHLD} = sub { wait };
There's also the double—fork trick (error checkingfornk() returns omitted);
unless ($pid = fork) {
unless (fork) {
exec "what you really wanna do";
die "no exec";
#..0r...
(some_perl_code_here)
exit 0;
}
exit 0;
}
waitpid($pid,0);
See als@erlipc for more examples of forking and reaping moribund children.
Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are
actually connected by a pipe or socket, even if you exit, the remote server (such as, say, httpd or
rsh) won‘t think you‘re done. You should reopen those to /dev/null if it's any issue.
format Declare a picture format with use by thdate() function. For example:
format Something =
Test: @<<<<<<<< @Q||||| @>>>>>
$str, $%, '$. int($num)
23-Mar-1997 Perl Version 5.004 BETA 201

perlfunc Perl Programmers Reference Guide perlfunc

$str = "widget";

$num = $cost/$quantity;
$~ ='Something’;

write;

Seeperlformfor many details and examples.

formline PICTURE, LIST
This is an internal function used lgrmat s, though you may call it too. It formats (see
perlform) a list of values according to the contents of PICTURE, placing the output into the
format output accumulator$”A (or SACCUMULATORNn English). Eventually, when a
write() is done, the contents 8MA are written to some filehandle, but you could also read
$"A yourself and then s&*A back to "". Note that a format typically does daemline()
per line of form, but thdormline() function itself doesn‘t care how many newlines are
embedded in the PICTURE. This means thattlaad~~ tokens will treat the entire PICTURE
as a single line. You may therefore need to use multiple formlines to implement a single record
format, just like the format compiler.

Be careful if you put double quotes around the picture, becaus@ ahdracter may be taken to
mean the beginning of an array narfeemline() always returns TRUE. Seeerlform for
other examples.

getc FILEHANDLE

getc Returns the next character from the input file attached to FILEHANDLE, or a null string at end
of file. If FILEHANDLE is omitted, reads from STDIN. This is not particularly efficient. It
cannot be used to get unbuffered single—characters, however. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}

else {

system "stty", '—icanon’, 'eol’, "\001";
}
$key = getc(STDIN);

if ($BSD_STYLE) {
system "stty —cbreak </dev/tty >/dev/ity 2>&1";
}

else {
system "stty", 'icanon’, 'eol’, "*@’; # ASCII null

}
print "\n";

Determination of whetheBSD_STYLEshould be set is left as an exercise to the reader.

The POSIX::getattr() function can do this more portably on systems alleging POSIX
compliance. See also tfieerm::ReadKey module from your nearest CPAN site; details on
CPAN can be found 08PAN

getlogin Returns the current login frofatc/utmp if any. If null, usegetpwuid()
$login = getlogin || getpwuid($<) || "Kilroy";
Do not considegetlogin() for authentication: it is not as securegagpwuid()

getpeername SOCKET
Returns the packed sockaddr address of other end of the SOCKET connection.

use Socket;
$hersockaddr = getpeername(SOCK);

202 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

($port, $iaddr) = unpack_sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrp PID
Returns the current process group for the specified PID. Use a PID of 0 to get the current
process group for the current process. Will raise an exception if used on a machine that doesn‘t
implement getpgrp(2). If PID is omitted, returns process group of current process. Note that the
POSIX version ofgetpgrp() does not accept a PID argument, so only PID==0 is truly
portable.

getppid Returns the process id of the parent process.

getpriority WHICH,WHO

Returns the current priority for a process, a process group, or a usege{Seerity(2)) Will
raise a fatal exception if used on a machine that doesn‘t implement getpriority(2).

getpwnam NAME

getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID

getgrgid GID

getservbyname NAME,PROTO
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROTO
getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent STAYOPEN
setnetent STAYOPEN
setprotoent STAYOPEN
setservent STAYOPEN
endpwent

endgrent

endhostent

endnetent

endprotoent

endservent

These routines perform the same functions as their counterparts in the system library. Within a
list context, the return values from the various get routines are as follows:

($name,$passwd,$uid, $gid,

$quota,$comment,$gcos, $dir,$shell) = getpw*
($name,$passwd,$gid, Smembers) = getgr*
($name, $aliases,$addrtype,$length, @addrs) = gethost*
($name,$aliases,$addrtype,$net) = getnet*
($name,$aliases, $proto) = getproto*

23—-Mar-1997 Perl Version 5.004 BETA 203

perlfunc Perl Programmers Reference Guide perlfunc

($name,$aliases,$port,$proto) = getserv*
(If the entry doesn‘t exist you get a null list.)

Within a scalar context, you get the name, unless the function was a lookup by name, in which
case you get the other thing, whatever it is. (If the entry doesn't exist you get the undefined
value.) For example:

$uid = getpwnam

$name = getpwuid

$name = getpwent

$gid = getgrnam

$name = getgrgid

$name = getgrent

etc.

The$members value returned bgetgr*() is a space separated list of the login names of the
members of the group.

For thegethost*() functions, if theh_errno variable is supported in C, it will be returned

to you via$? if the function call fails. The @addrs value returned by a successful call is a list of
the raw addresses returned by the corresponding system library call. In the Internet domain, each
address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('C4’,$addr[0]);
getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = unpack_sockaddr_in($mysockaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Returns the socket option requested, or undefined if there is an error.

glob EXPR

glob Returns the value of EXPR with filename expansions such as a shell would do. This is the
internal function implementing the*.c> operator, but you can use it directly. If EXPR is
omitted,$_ is used. The*.c> operator is discussed in more detail/d Operators in perlop

gmtime EXPR

Converts a time as returned by the time function to a 9—element array with the time localized for
the standard Greenwich time zone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 affivday has the range 0..6. Alspyear is the number of years
since 1900not simply the last two digits of the year.

If EXPR is omitted, doegmtime(time())
In a scalar context, prints out the ctime(3) value:
$now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"
Also see theimegm.pllibrary, and the strftime(3) function available via the POSIX module.

goto LABEL

204 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

goto EXPR
goto &NAME

The goto—LABEL form finds the statement labeled with LABEL and resumes execution there. It
may not be used to go into any construct that requires initialization, such as a subroutine or a
foreach loop. It also can‘t be used to go into a construct that is optimized away, or to get out of a
block or subroutine given teort() . It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it's usually better to use some other construct
such as last or die. The author of Perl has never felt the need to use this form of goto (in Perl,
that is—C is another matter).

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This
allows for computed gotos per FORTRAN, but isn't necessarily recommended if you're
optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$il;

The goto&NAMHorm is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used by AUTOLOAD subroutines that wish to load
another subroutine and then pretend that the other subroutine had been called in the first place
(except that any modifications to @_ in the current subroutine are propagated to the other
subroutine.) After the goto, not evealler() will be able to tell that this routine was called

first.

grep BLOCK LIST

grep EXPR,LIST
This is similar in spirit to, but not the same gep(1)and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally sefiingo each element)
and returns the list value consisting of those elements for which the expression evaluated to
TRUE. In a scalar context, returns the number of times the expression was TRUE.

@foo = grep(!/"#/, @bar); # weed out comments
or equivalently,
@foo = grep {I/#/} @bar; # weed out comments

Note that, becaus® is a reference into the list value, it can be used to modify the elements of
the array. While this is useful and supported, it can cause bizarre results if the LIST is not a
named array. Similarly, grep returns aliases into the original list, much like the way that
Foreach Loop's index variable aliases the list elements. That is, modifying an element of a list
returned by grep actually modifies the element in the original list.

hex EXPR
hex Interprets EXPR as a hex string and returns the corresponding value. (To convert strings that
might start with either O or Ox seet) If EXPR is omitted, useb .

print hex 'OXAf’; # prints 175’
print hex 'aF’; # same

import There is no built-inmport() function. It is merely an ordinary method (subroutine) defined
(or inherited) by modules that wish to export names to another moduleus&fle function
calls theimport() = method for the package used. See Alsg perlmod andExporter.

index STR,SUBSTR,POSITION

index STR,SUBSTR
Returns the position of the first occurrence of SUBSTR in STR at or after POSITION. If
POSITION is omitted, starts searching from the beginning of the string. The return value is
based at 0 (or whatever you‘ve set $ievariable to—but don‘t do that). If the substring is not

23—-Mar-1997 Perl Version 5.004 BETA 205

perlfunc Perl Programmers Reference Guide perlfunc

found, returns one less than the base, ordinarily —1.

int EXPR
int Returns the integer portion of EXPR. If EXPR is omitted, $ses

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl(2) function. You'll probably have to say

require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

first to get the correct function definitions. itfctl.ph doesn't exist or doesn't have the correct
definitions you'll have to roll your own, based on your C header files suetsyadioctl.h>

(There is a Perl script calld@®2ph that comes with the Perl kit which may help you in this, but

it's non-trivial.) SCALAR will be read and/or written depending on the FUNCTION—a pointer

to the string value of SCALAR will be passed as the third argument of the actual ioctl call. (If
SCALAR has no string value but does have a numeric value, that value will be passed rather than
a pointer to the string value. To guarantee this to be TRUE, add a 0 to the scalar before using it.)
The pack() andunpack() functions are useful for manipulating the values of structures
used byioctl() . The following example sets the erase character to DEL.

require 'ioctl.ph’;
$getp = &TIOCGETP;
die "NO TIOCGETP" if $@ || !$getp;
$sgttyb_t = "ccces”; # 4 chars and a short
if (ioctl(STDIN,$getp,$sgttyb)) {
@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,&TIOCSETP,$sgttyb)
|| die "Can't ioctl: $!";

}
The return value of ioctl (and fcntl) is as follows:
if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns TRUE on success and FALSE on failure, yet you can still easily determine the
actual value returned by the operating system:

($retval = ioctl(...)) || ($retval = -1);
printf "System returned %d\n", $retval;

join EXPR,LIST

Joins the separate strings of LIST or ARRAY into a single string with fields separated by the
value of EXPR, and returns the string. Example:

$_=join(’’", $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Seesplit.

keys HASH

Returns a normal array consisting of all the keys of the named hash. (In a scalar context, returns
the number of keys.) The keys are returned in an apparently random order, but it is the same
order as either thealues() oreach() function produces (given that the hash has not been
modified). As a side effect, it resets HASH's iterator.

Here is yet another way to print your environment:

206

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

@keys = keys %ENV;
@values = values %ENV;
while ($#keys >= 0) {
print pop(@keys), '=’, pop(@values), "\n";
}

or how about sorted by key:

foreach $key (sort(keys %ENV)) {
print $key, '=", SENV{$key}, "\n";
}

To sort an array by value, you'll need to ussoa{} function. Here's a descending numeric
sort of a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash)) {
printf "%4d %s\n", $hash{$key}, $key;
}

As an Ivaluekeys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big. (This
is similar to pre—extending an array by assigning a larger numBéataay.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it. These buckets will be retained even
if you do%hash = () , useundef %hash if you want to free the storage whiéhash is

still in scope. You can‘t shrink the number of buckets allocated for the hashkeggin this

way (but you needn‘t worry about doing this by accident, as trying has no effect).

kill LIST Sends a signal to a list of processes. The first element of the list must be the signal to send.
Returns the number of processes successfully signaled.

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

Unlike in the shell, in Perl if th8IGNALIs negative, it kills process groups instead of processes.

(On System V, a negativBROCESShumber will also kill process groups, but that's not
portable.) That means you usually want to use positive not negative signals. You may also use a
signal name in quotes. S8@nals in perlipdor details.

last LABEL

last Thelast command is like théreak statement in C (as used in loops); it immediately exits
the loop in question. If the LABEL is omitted, the command refers to the innermost enclosing
loop. Thecontinue block, if any, is not executed:

LINE: while (<STDIN>) {

last LINE if /"$/; # exit when done with header
}

lc EXPR
Ic Returns an lowercased version of EXPR. This is the internal function implementing the \L

escape in double—quoted strings. Respects current LC_CTYPE loaade Ibcale in

force. Seqerllocale

If EXPR is omitted, use$.
Icfirst EXPR
Icfirst Returns the value of EXPR with the first character lowercased. This is the internal function

implementing the \l escape in double—quoted strings. Respects current LC_CTYPE losale if
locale inforce. Se@erllocale

23—-Mar-1997 Perl Version 5.004 BETA 207

perlfunc Perl Programmers Reference Guide perlfunc

If EXPR is omitted, use$.

length EXPR
length Returns the length in characters of the value of EXPR. If EXPR is omitted, returns length of
$_.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns 1 for success, 0 otherwise.

listen SOCKET,QUEUESIZE

Does the same thing that the listen system call does. Returns TRUE if it succeeded, FALSE
otherwise. See example $ockets: Client/Server Communication in petlipc

local EXPR

A local modifies the listed variables to be local to the enclosing block, subroenml, , or
do. If more than one value is listed, the list must be placed in parentheses. See
"Temporary Values vidocal() " for details.

But you really probably want to be usimgy() instead, becausecal() isn‘t what most
people think of as "local"). Séerivate Variables viany() " for details.

localtime EXPR

Converts a time as returned by the time function to a 9—element array with the time analyzed for
the local time zone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday, Sisdst) =
localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 afivday has the range 0..6 aryear is year—-1900, that is,
$year is 123 in year 2023. If EXPR is omitted, uses the current time ("localtime(time)").

In a scalar context, returns the ctime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

Also see the Time::Local module, and the strftime(3) function available via the POSIX module.

log EXPR

log Returns logarithm (bas® of EXPR. If EXPR is omitted, returns log $f.

Istat FILEHANDLE

Istat EXPR

Istat Does the same thing as th@t() function, but stats a symbolic link instead of the file the
symbolic link points to. If symbolic links are unimplemented on your system, a nstath@|
is done.

If EXPR is omitted, stat$.
m// The match operator. Seerlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally sefiingo each element)

and returns the list value composed of the results of each such evaluation. Evaluates BLOCK or
EXPR in a list context, so each element of LIST may produce zero, one, or more elements in the
returned value.

@chars = map(chr, @nums);
translates a list of numbers to the corresponding characters. And

%bhash = map { getkey($_) => $_} @array;

208

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

is just a funny way to write

%hash = ();
foreach $_ (@array) {
$hash{getkey($)} =$_;
}
mkdir FILENAME,MODE
Creates the directory specified by FILENAME, with permissions specified by MODE (as
modified by umask). If it succeeds it returns 1, otherwise it returns 0 arffl s@gno).
msgctl ID,CMD,ARG
Calls the System V IPC function msgctl(2). If CMD&$PC_STAT, then ARG must be a
variable which will hold the returned msqid_ds structure. Returns like ioctl: the undefined value
for error, "0 but true" for zero, or the actual return value otherwise.
msgget KEY,FLAGS
Calls the System V IPC function msgget(2). Returns the message queue id, or the undefined
value if there is an error.
msgsnd ID,MSG,FLAGS

Calls the System V IPC function msgsnd to send the message MSG to the message queue ID.
MSG must begin with the long integer message type, which may be creatquhok{i",
$type). Returns TRUE if successful, or FALSE if there is an error.

msgrecv ID,VAR,SIZE, TYPE,FLAGS

Calls the System V IPC function msgrcv to receive a message from message queue ID into
variable VAR with a maximum message size of SIZE. Note that if a message is received, the
message type will be the first thing in VAR, and the maximum length of VAR is SIZE plus the
size of the message type. Returns TRUE if successful, or FALSE if there is an error.

my EXPR

A "my" declares the listed variables to be local (lexically) to the enclosing block, subroutine,
eval , ordo/require/use ‘d file. If more than one value is listed, the list must be placed in
parentheses. SéBrivate Variables viany() " for details.

next LABEL
next Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Note that if there were aontinue block on the above, it would get executed even on
discarded lines. If the LABEL is omitted, the command refers to the innermost enclosing loop.

no Module LIST
See the "use" function, which "no" is the opposite of.

oct EXPR

oct Interprets EXPR as an octal string and returns the corresponding value. (If EXPR happens to
start off with 0x, interprets it as a hex string instead.) The following will handle decimal, octal,
and hex in the standard Perl or C notation:

$val = oct($val) if $val =~ /70,

If EXPR is omitted, use$_. This function is commonly used when a string such as "644"
needs to be converted into a file mode, for example. (Although perl will automatically convert

23—-Mar-1997 Perl Version 5.004 BETA 209

perlfunc Perl Programmers Reference Guide perlfunc

strings into numbers as needed, this automatic conversion assumes base 10.)

open FILEHANDLE,EXPR
open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE. If
FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted. If
EXPR is omitted, the scalar variable of the same name as the FILEHANDLE contains the
filename. (Note that lexical variables—those declared wmiyh-will not work for this purpose;

so if you're usingmy, specify EXPR in your call to open.)

If the filename begins with ‘<’ or nothing, the file is opened for input. If the filename begins
with *, the file is truncated and opened for output. If the filename begins with ™, the file is
opened for appending. You can put a ‘+’ in front of the ” or ‘<’ to indicate that you want both
read and write access to the file; thus ‘+<’ is almost always preferred for read/write updates—the
‘+’ mode would clobber the file first. The prefix and the filename may be separated with spaces.
These various prefixes correspond to the fopen(3) modes of ‘r', ‘r+*, ‘w', ‘w+, ‘a‘, and ‘a+".

If the filename begins with "|", the filename is interpreted as a command to which output is to be
piped, and if the filename ends with a "|", the filename is interpreted\%#eg open() for

IPC" for more examples of this. as command which pipes input to us. (You may not have a raw
open() to a command that pipes both amd out, but sedPC::Open2 IPC::Open3 and
Bidirectional Communication in perlipfor alternatives.)

Opening ‘=’ opens STDIN and opening ‘>-’ opens STDOUT. Open returns non-zero upon
success, the undefined value otherwise. If the open involved a pipe, the return value happens to
be the pid of the subprocess.

If you're unfortunate enough to be running Perl on a system that distinguishes between text files
and binary files (modern operating systems don‘t care), then you should chébinoadefor

tips for dealing with this. The key distinction between systems that need binmode and those that
don'‘t is their text file formats. Systems like Unix and Plan9 that delimit lines with a single
character, and that encode that character in C as ‘\n‘, do nobimeeode . The rest need it.

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can't find article $ARTICLE: $!\n";
while (<ARTICLE>) {...

open(LOG, '>>/usr/spool/news/twitlog’); # (log is reserved)
open(DBASE, '+<dbase.mine’); # open for update
open(ARTICLE, "caesar <$atrticle |"); # decrypt article
open(EXTRACT, "|sort >/tmp/Tmp$$"); # 3 is our process id
process argument list of files along with any includes

foreach $file (@ARGV) {

process($file, 'fh00’);
}

sub process {
local($filename, $input) = @_;
Sinput++; # this is a string increment
unless (open($input, $filename)) {
print STDERR "Can't open $filename: $\n";
return;

}

210 Perl Version 5.004 BETA 23—-Mar-1997

IPC::Open2
IPC::Open3

perlfunc

Perl Programmers Reference Guide perlfunc

while (<$input>) { # note use of indirection
if (/M #include "(.*)"/) {
process($1, $input);
next;

whatever

}

You may also, in the Bourne shell tradition, specify an EXPR beginning w&h "n which

case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric)
which is to be duped and opened. You may&usdter >, >>, <, +>, +>> and +<. The mode

you specify should match the mode of the original filehandle. (Duping a filehandle does not take
into account any existing contents of stdio buffers.) Here is a script that saves, redirects, and
restores STDOUT and STDERR:

#1/usr/bin/perl
open(SAVEOUT, ">&STDOUT");
open(SAVEERR, ">&STDERR");

open(STDOUT, ">foo.out") || die "Can’t redirect stdout";
open(STDERR, ">&STDOUT") || die "Can’t dup stdout";

select(STDERR); $| = 1; # make unbuffered
select(STDOUT); $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

close(STDOUT);
close(STDERR);

open(STDOUT, ">&SAVEOUT");
open(STDERR, ">&SAVEERR");

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify "&=N", where N is a number, then Perl will do an equivalent of@pen()
of that file descriptor; this is more parsimonious of file descriptors. For example:

open(FILEHANDLE, "<&=%$fd")

If you open a pipe on the command "-", i.e., either "|-" or "—|", then there is an implicit fork
done, and the return value of open is the pid of the child within the parent process, and 0 within
the child process. (Ustefined($pid) to determine whether the open was successful.) The

filehandle behaves normally for the parent, but i/o to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process the filehandle isn‘t opened—i/o
happens from/to the new STDOUT or STDIN. Typically this is used like the normal piped open
when you want to exercise more control over just how the pipe command gets executed, such as
when you are running setuid, and don‘t want to have to scan shell commands for metacharacters.
The following pairs are more or less equivalent:

open(FOO, "|tr '[a-z] '[A-Z]™);
open(FOO, *-") || exec tr’ [a-]’, TA-Z]'

open(FOO, "cat —n "$file’|");
open(FOO, "-|") || exec 'cat’, '-n’, $file;

SeeSafe Pipe Opens in perlifor more examples of this.

23-Mar-1997

Perl Version 5.004 BETA 211

perlfunc Perl Programmers Reference Guide perlfunc

Explicitly closing any piped filehandle causes the parent process to wait for the child to finish,
and returns the status value $@. Note: on any operation which may do a fork, unflushed
buffers remain unflushed in both processes, which means you may need$fo teetavoid
duplicate output.

Using the constructor from the 10::Handle package (or one of its subclasses, such as 10::File or
I0::Socket), you can generate anonymous filehandles which have the scope of whatever
variables hold references to them, and automatically close whenever and however you leave that
scope:

use |0::File;

sub read_myfile_munged {
my $ALL = shift;
my $handle = new IO::File;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>
orreturn (); # Automatically closed here.

mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

}

The filename that is passed to open will have leading and trailing whitespace deleted. To open a
file with arbitrary weird characters in it, it's necessary to protect any leading and trailing
whitespace thusly:

$file =~ s# (\s)#./$1#;
open(FOO, "< $file\0");

If you want a "real" Copen() (seeopen(2)on your system), then you should use the
sysopen() function. This is another way to protect your filenames from interpretation. For
example:

use |0::Handle;

sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL, 0700)
or die "sysopen $path: $!";

HANDLE->autoflush(1);

HANDLE->print("stuff $$\n");

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

See/seek() for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR

Opens a directory named EXPR for processingdaddir() , telldir() , seekdir()
rewinddir() , andclosedir() . Returns TRUE if successful. DIRHANDLEs have their
own namespace separate from FILEHANDLEs.

ord EXPR

ord Returns the numeric ascii value of the first character of EXPR. If EXPR is omitted} uses

For the reverse, sefr.

pack TEMPLATE,LIST

Takes an array or list of values and packs it into a binary structure, returning the string
containing the structure. The TEMPLATE is a sequence of characters that give the order and
type of values, as follows:

A An ascii string, will be space padded.
a An ascii string, will be null padded.

212

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

b A bit string (ascending bit order, like vec()).
B A bit string (descending bit order).

h A hex string (low nybble first).

H A hex string (high nybble first).

¢ Asigned char value.

C Anunsigned char value.

s Asigned short value.

S Anunsigned short value.

i Asigned integer value.

I An unsigned integer value.

I Asigned long value.

L Anunsigned long value.

n Ashortin "network" order.

N A long in "network" order.

v Ashortin "VAX" (little-endian) order.

V Along in "VAX" (little—endian) order.

f A single—precision float in the native format.
d A double—precision float in the native format.
p A pointer to a null-terminated string.

P A pointer to a structure (fixed—length string).
u A uuencoded string.

w A BER compressed integer. Bytes give an unsigned integer base
128, most significant digit first, with as few digits as
possible, and with the bit 8 of each byte except the last set
to"1."

X Anull byte.
X Back up a byte.
@ Null fill to absolute position.

Each letter may optionally be followed by a number which gives a repeat count. With all types
except "a", "A", "b", "B", "h", "H", and "P" the pack function will gobble up that many values
from the LIST. A * for the repeat count means to use however many items are left. The "a" and
"A" types gobble just one value, but pack it as a string of length count, padding with nulls or
spaces as necessary. (When unpacking, "A" strips trailing spaces and nulls, but "a" does not.)
Likewise, the "b" and "B" fields pack a string that many bits long. The "h" and "H" fields pack a
string that many nybbles long. The "P" packs a pointer to a structure of the size indicated by the
length. Real numbers (floats and doubles) are in the native machine format only; due to the
multiplicity of floating formats around, and the lack of a standard "network" representation, no
facility for interchange has been made. This means that packed floating point data written on
one machine may not be readable on another — even if both use IEEE floating point arithmetic
(as the endian—ness of the memory representation is not part of the IEEE spec). Note that Perl
uses doubles internally for all numeric calculation, and converting from double into float and
thence back to double again will lose precision (uapack('f", pack("f", $foo))

will not in general equ&bfoo).

Examples:

$foo = pack("cccc",65,66,67,68);
foo eq "ABCD"

$foo = pack("c4",65,66,67,68);
same thing

23-Mar-1997

Perl Version 5.004 BETA 213

perlfunc

Perl Programmers Reference Guide perlfunc

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\0\OCD"

$foo = pack('s2",1,2);
"\1\0\2\0" on little—endian
"\0\1\0\2" on big—endian

$foo = pack("a4","abcd","x","y","z");
"abcd"

$foo = pack("aaaa","abcd","x","y","z
"axyz"
$foo = pack("al4","abcdefg");
"abcdefg\0\0\0\0\0\0\O"
$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)
sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, —32)));
}

The same template may generally also be used in the unpack function.

package NAMESPACE

Declares the compilation unit as being in the given namespace. The scope of the package
declaration is from the declaration itself through the end of the enclosing block (the same scope
as thelocal() operator). All further unqualified dynamic identifiers will be in this
namespace. A package statement affects only dynamic variables—including those you‘ve used
local() on—but not lexical variables created withny() . Typically it would be the first
declaration in a file to be included by thequire or use operator. You can switch into a
package in more than one place; it influences merely which symbol table is used by the compiler
for the rest of that block. You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double cd®&ackage::Variable.

If the package name is null, theain package as assumed. That$issail is equivalent to
$main::sail.

See Packages in perlmodor more information about packages, modules, and classes. See
perlsubfor other scoping issues.

pipe READHANDLE,WRITEHANDLE

Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that Perl‘s
pipes use stdio buffering, so you may need tdbpeto flush your WRITEHANDLE after each
command, depending on the application.

SeelPC::0pen2 IPC::0pen3 andBidirectional Communication in perlipior examples of such
things.

pop ARRAY

pop

Pops and returns the last value of the array, shortening the array by 1. Has a similar effect to
$tmp = SARRAY[$#ARRAY—-];

If there are no elements in the array, returns the undefined value. If ARRAY is omitted, pops the
@ARGYV array in the main program, and the @_ array in subroutines, jushifi

pos SCALAR

pos

Returns the offset of where the last/g search left off for the variable is in questidh (is
used when the variable is not specified). May be modified to change that offset. Such
modification will also influence theG zero-width assertion in regular expressions. [gske

214

Perl Version 5.004 BETA 23—-Mar-1997

IPC::Open2
IPC::Open3

perlfunc Perl Programmers Reference Guide perlfunc

andperlop.

print FILEHANDLE LIST

print LIST

print Prints a string or a comma-separated list of strings. Returns TRUE if successful.
FILEHANDLE may be a scalar variable name, in which case the variable contains the name of
or a reference to the filehandle, thus introducing one level of indirection. (NOTE: If
FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an operator
unless you interpose a + or put parentheses around the arguments.) If FILEHANDLE is omitted,
prints by default to standard output (or to the last selected output channéselsep If LIST
is also omitted, print$_ to STDOUT. To set the default output channel to something other than
STDOUT use the select operation. Note that, because print takes a LIST, anything in the LIST is
evaluated in a list context, and any subroutine that you call will have one or more of its
expressions evaluated in a list context. Also be careful not to follow the print keyword with a
left parenthesis unless you want the corresponding right parenthesis to terminate the arguments
to the print—interpose a + or put parentheses around all the arguments.

Note that if you're storing FILEHANDLES in an array or other expression, you will have to use
a block returning its value instead:

print { $files[$i] } "stuffin;
print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST
Equivalent toprint FILEHANDLE sprintf(FORMAT, LIST) . The first argument of
the list will be interpreted as the printf format. ue locale is in effect, the character used
for the decimal point in formatted real numbers is affected by the LC_NUMERIC locale. See
perllocale

Don't fall into the trap of using grintf() when a simpleprint() would do. The
print() is more efficient, and less error prone.

prototype FUNCTION

Returns the prototype of a function as a stringuidef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retrieve.

push ARRAY,LIST

Treats ARRAY as a stack, and pushes the values of LIST onto the end of ARRAY. The length
of ARRAY increases by the length of LIST. Has the same effect as

for $value (LIST) {
SARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returns the new number of elements in the array.

q/STRING/

qa/STRING/
qX/STRING/
qW/STRING/

Generalized quotes. Sperlop.

guotemeta EXPR

guotemeta
Returns the value of EXPR with all non—alphanumeric characters backslashed. (That is, all
characters not matchinfA-Za-z_0-9]J/ will be preceded by a backslash in the returned
string, regardless of any locale settings.) This is the internal function implementing the \Q escape
in double—quoted strings.

23—-Mar-1997 Perl Version 5.004 BETA 215

perlfunc Perl Programmers Reference Guide perlfunc

If EXPR is omitted, use$.

rand EXPR

rand Returns a random fractional number between 0 and the value of EXPR. (EXPR should be
positive.) If EXPR is omitted, returns a value between 0 and 1. Automaticallsieait()
unlesssrand() has already been called. See alsmd()

(Note: If your rand function consistently returns numbers that are too large or too small, then
your version of Perl was probably compiled with the wrong number of RANDBITS.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of bytes actually read, or undef if there was an error.
SCALAR will be grown or shrunk to the length actually read. An OFFSET may be specified to
place the read data at some other place than the beginning of the string. This call is actually
implemented in terms of stdio‘s fread call. To get a true read system calyssead()

readdir DIRHANDLE

Returns the next directory entry for a directory openeddandir() . If used in a list context,
returns all the rest of the entries in the directory. If there are no more entries, returns an
undefined value in a scalar context or a null list in a list context.

If you're planning to filetest the return values out afeaddir() , you‘d better prepend the
directory in question. Otherwise, because we dicimdir() there, it would have been testing
the wrong file.

opendir(DIR, $some_dir) || die "can’t opendir $some_dir: $!";
@dots = grep { /"\./ && —f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readlink EXPR

readlink Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a fatal
error. If there is some system error, returns the undefined value asd getsno). If EXPR is
omitted, use$.

recv SOCKET,SCALAR,LEN,FLAGS

Receives a message on a socket. Attempts to receive LENGTH bytes of data into variable
SCALAR from the specified SOCKET filehandle. Actually does ee@/from() , so that it

can returns the address of the sender. Returns the undefined value if there's an error. SCALAR
will be grown or shrunk to the length actually read. Takes the same flags as the system call of
the same name. SE®P: Message Passing in perlifior examples.

redo LABEL

redo The redo command restarts the loop block without evaluating the conditional again. The
continue block, if any, is not executed. If the LABEL is omitted, the command refers to the
innermost enclosing loop. This command is normally used by programs that want to lie to
themselves about what was just input:

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.){}$1) {}

S
it (sI{-* 1) {
$front=$_;
while (<STDIN>) {
if (}){ # end of comment?
s|™$front{|;
216 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

redo LINE;
}
}
} .
print;
}

ref EXPR
ref Returns a TRUE value if EXPR is a reference, FALSE otherwise. If EXPR is not spekified,

will be used. The value returned depends on the type of thing the reference is a reference to.
Builtin types include:

REF
SCALAR
ARRAY
HASH
CODE
GLOB

If the referenced object has been blessed into a package, then that package name is returned
instead. You can think oéf() as atypeof() operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
if ('ref ($r) {

print "r is not a reference at all.\n";
}

See alsperlref.

rename OLDNAME,NEWNAME
Changes the name of a file. Returns 1 for success, 0 otherwise. Will not work across file system
boundaries.

require EXPR

require Demands some semantics specified by EXPR, db_byf EXPR is not supplied. If EXPR is
numeric, demands that the current version of PHErl ¢r SPERL_VERSION) be equal or
greater than EXPR.

Otherwise, demands that a library file be included if it hasn‘t already been included. The file is
included via the do—FILE mechanism, which is essentially just a variegvaf) . Has
semantics similar to the following subroutine:

sub require {
local($filename) = @_;
return 1 if $INC{$filename};
local($realfilename,$result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (—f $realfilename) {
$result = do $realfilename;

last ITER;
}
}
die "Can't find $filename in \@INC";
}
die 3@ if $@;

23—-Mar-1997 Perl Version 5.004 BETA 217

perlfunc Perl Programmers Reference Guide perlfunc

die "$filename did not return true value" unless $result;
SINC{$filename} = $realfilename;
$result;

}

Note that the file will not be included twice under the same specified name. The file must return
TRUE as the last statement to indicate successful execution of any initialization code, so it's
customary to end such a file with "1;" unless you‘re sure it'll return TRUE otherwise. But it's
better just to put thel’; ", in case you add more statements.

If EXPR is a bare word, the require assumega” extension and replaces™ with "/" in the
filename for you, to make it easy to load standard modules. This form of loading of modules
does not risk altering your namespace.

For a yet-more—powerful import facility, sheseand perimod

reset EXPR

reset Generally used in eontinue block at the end of a loop to clear variables and reset ?? searches
so that they work again. The expression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of those letters are reset to their
pristine state. If the expression is omitted, one—match searches (?pattern?) are reset to match
again. Resets only variables or searches in the current package. Always returns 1. Examples:

reset 'X’; # reset all X variables
reset 'a-z’; # reset lower case variables
reset; # just reset ?? searches

Resetting "A-Z" is not recommended because you'll wipe out your ARGV and ENV arrays.
Resets only package variables—Ilexical variables are unaffected, but they clean themselves up on
scope exit anyway, so you'll probably want to use them instead/myee

return LIST

Returns from a subroutineyval() , or do FILE with the value specified. (Note that in the
absence of a return, a subroutine, eval, or do FILE will automatically return the value of the last
expression evaluated.)

reverse LIST

In a list context, returns a list value consisting of the elements of LIST in the opposite order. In a
scalar context, concatenates the elements of LIST, and returns a string value consisting of those
bytes, but in the opposite order.

print reverse <>; # line tac, last line first
undef $/; # for efficiency of <>
print scalar reverse <>; # byte tac, last line tsrif

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted
hash. Also, this has to unwind one hash and build a whole new one, which may take some time
on a large hash.

%by_name = reverse %by_address; # Invert the hash
rewinddir DIRHANDLE
Sets the current position to the beginning of the directory forre¢hddir() routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index except that it returns the position of the LAST occurrence of SUBSTR in
STR. If POSITION is specified, returns the last occurrence at or before that position.

218

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

rmdir FILENAME
rmdir Deletes the directory specified by FILENAME if it is empty. If it succeeds it returns 1,
otherwise it returns 0 and sés (errno). If FILENAME is omitted, uses .

s/l The substitution operator. Sperlop.

scalar EXPR
Forces EXPR to be interpreted in a scalar context and returns the value of EXPR.

@counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in a list context because
it's in practice never needed. If you really wanted to do so, however, you could use the
construction@{[(some expression)]} , but usually a simplésome expression)

suffices.

seek FILEHANDLE,POSITION,WHENCE

Randomly positions the file pointer for FILEHANDLE, just like tfsmek() call of stdio.
FILEHANDLE may be an expression whose value gives the name of the filehandle. The values
for WHENCE are 0 to set the file pointer to POSITION, 1 to set the it to current plus
POSITION, and 2 to set it to EOF plus offset. You may use the values SEEK_ SET,
SEEK_CUR, and SEEK_END for this from POSIX module. Returns 1 upon success, 0
otherwise.

On some systems you have to do a seek whenever you switch between reading and writing.
Amongst other things, this may have the effect of calling stdio‘'s clearerr(3). A "whence" of 1
(SEEK_CUR) is useful for not moving the file pointer:

seek(TEST,0,1);

This is also useful for applications emulatitag —f . Once you hit EOF on your read, and
then sleep for a while, you might have to stick seak() to reset things. First the simple trick
listed above to clear the filepointer. Theek() doesn‘t change the current position, but it
doesclear the end-of-file condition on the handle, so that the ®EME> makes Perl try
again to read something. We hope.

If that doesn‘t work (some stdios are particularly cantankerous), then you may need something
more like this:

for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>; $curpos = tell(FILE)) {
search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}

seekdir DIRHANDLE,POS
Sets the current position for theaddir() routine on DIRHANDLE. POS must be a value
returned bytelldir() . Has the same caveats about possible directory compaction as the
corresponding system library routine.

select FILEHANDLE

select Returns the currently selected filehandle. Sets the current default filehandle for output, if
FILEHANDLE is supplied. This has two effects: first,vaite or aprint without a
filehandle will default to this FILEHANDLE. Second, references to variables related to output
will refer to this output channel. For example, if you have to set the top of form format for more
than one output channel, you might do the following:

23—-Mar-1997 Perl Version 5.004 BETA 219

perlfunc Perl Programmers Reference Guide perlfunc

select(REPORTL);

$”" = "reportl_top’;

select(REPORT?2);

$”" = "report2_top’;
FILEHANDLE may be an expression whose value gives the name of the actual filehandle.
Thus:

$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to
write the last example as:

use 10::Handle;
STDERR->autoflush(1);

select RBITS,WBITS,EBITS, TIMEOUT

This calls the select(2) system call with the bit masks specified, which can be constructed using
fileno() andvec() , along these lines:

$rin = $win = $ein = 7;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin | $win;
If you want to select on many filehandles you might wish to write a subroutine:

sub fhbits {
local(@fhlist) = split(' ’,$_[0]);
local($bits);
for (@fhlist) {
vec($bits,fileno($_),1) = 1;

}
$bits;

}
$rin = thbits('STDIN TTY SOCK’);

The usual idiom is:

($nfound,$timeleft) =
select($rout=%rin, Swout=$win, Seout=$ein, Stimeout);

or to block until something becomes ready just do this
$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything usef@itimeleft, so callingselect() in
a scalar context just returfisfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. Note: not all implementations are capable of returninftimeleft. If not, they
always returrtimeleft equal to the supplieBtimeout.

You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);

WARNING : Do not attempt to mix buffered 1/O (likeead() or <FH>) with select()
You have to ussysread() instead.

semctl ID,SEMNUM,CMD,ARG

Calls the System V IPC function semctl. If CMD&PC_STAT or &GETALL, then ARG
must be a variable which will hold the returned semid_ds structure or semaphore value array.

220

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

Returns like ioctl: the undefined value for error, "0 but true" for zero, or the actual return value
otherwise.

semget KEY,NSEMS,FLAGS

Calls the System V IPC function semget. Returns the semaphore id, or the undefined value if
there is an error.

semop KEY,OPSTRING

Calls the System V IPC function semop to perform semaphore operations such as signaling and
waiting. OPSTRING must be a packed array of semop structures. Each semop structure can be
generated withpack("sss", $semnum, $semop, $semflag). The number of
semaphore operations is implied by the length of OPSTRING. Returns TRUE if successful, or
FALSE if there is an error. As an example, the following code waits on semdseonaum of
semaphore iGsemid:

$semop = pack("sss", $semnum, -1, 0);
die "Semaphore trouble: $1\n" unless semop($semid, $semop);

To signal the semaphore, replace "-1" with "1".

send SOCKET,MSG,FLAGS, TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Takes the same flags as the system call of the same name. On
unconnected sockets you must specify a destination to send TO, in which case it does a C
sendto() . Returns the number of characters sent, or the undefined value if there is an error.
SeeUDP: Message Passing in perlifior examples.

setpgrp PID,PGRP

Sets the current process group for the specified PID, 0 for the current process. Will produce a
fatal error if used on a machine that doesn‘'t implement setpgrp(2). If the arguments are omitted,
it defaults to 0,0. Note that the POSIX versiorsefpgrp() does not accept any arguments,

so only setpgrp 0,0 is portable.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority(2).) Will
produce a fatal error if used on a machine that doesn‘t implement setpriority(2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. OPTVAL may be
specified as undef if you don't want to pass an argument.

shift ARRAY

shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving
everything down. If there are no elements in the array, returns the undefined value. If ARRAY
is omitted, shifts the @ARGYV array in the main program, and the @__ array in subroutines. (This

is determined lexically.) See alamnshift() , push() , and pop() . Shift() and
unshift() do the same thing to the left end of an array plog) andpush() do to the
right end.

shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. If CMD&HPC_STAT, then ARG must be a variable
which will hold the returned shmid_ds structure. Returns like ioctl: the undefined value for error,
"0 but true" for zero, or the actual return value otherwise.

shmget KEY,SIZE,FLAGS

Calls the System V IPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an error.

23—-Mar-1997 Perl Version 5.004 BETA 221

perlfunc Perl Programmers Reference Guide perlfunc

shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size SIZE
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a variable
which will hold the data read. When writing, if STRING is too long, only SIZE bytes are used;

if STRING is too short, nulls are written to fill out SIZE bytes. Return TRUE if successful, or
FALSE if there is an error.

shutdown SOCKET,HOW

Shuts down a socket connection in the manner indicated by HOW, which has the same
interpretation as in the system call of the same name.

sin EXPR
sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns$ine of

For the inverse sine operation, you may uséP&IX::sin() function, or use this relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep EXPR

sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted by
sending the process a SIGALRM. Returns the number of seconds actually slept. You probably
cannot mixalarm() andsleep() calls, becausasleep() is often implemented using
alarm()

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds. Most modern systems always sleep the full amount.

For delays of finer granularity than one second, you may use Besksll() interface to
access setitimer(2) if your system supports it, or elsésséeci() below.

See also the POSIX modulesigpause() function.

socket SOCKET,DOMAIN, TYPE,PROTOCOL

Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE,
and PROTOCOL are specified the same as for the system call of the same name. You should
"use Socket;" first to get the proper definitions imported. See the example in

Sockets: Client/Server Communication in petlipc

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL

Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN,
TYPE, and PROTOCOL are specified the same as for the system call of the same name. If
unimplemented, yields a fatal error. Returns TRUE if successful.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST Sorts the LIST and returns the sorted list value. If SUBNAME or BLOCK is omitted, sorts in
standard string comparison order. If SUBNAME is specified, it gives the name of a subroutine
that returns an integer less than, equal to, or greater than 0, depending on how the elements of the
array are to be ordered. (The> andcmp operators are extremely useful in such routines.)
SUBNAME may be a scalar variable name, in which case the value provides the name of the
subroutine to use. In place of a SUBNAME, you can provide a BLOCK as an anonymous,
in—line sort subroutine.

In the interests of efficiency the normal calling code for subroutines is bypassed, with the
following effects: the subroutine may not be a recursive subroutine, and the two elements to be
compared are passed into the subroutine not via @_ but as the package global $ariabtbs

$b (see example below). They are passed by reference, so don't $@difid$b. And don‘t

try to declare them as lexicals either.

222

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described irperlsynor with goto()

When use locale is in effect,sort LIST sorts LIST according to the current collation
locale. Seqerllocale

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case-insensitively
@articles = sort { uc($a) cmp uc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}

@sortedclass = sort byage @class;

this sorts the %age hash by value instead of key
using an in-line function
@eldest = sort { $age{$b} <=> $age{$a} } keys Yage;

sub backwards { $b cmp $a; }
@harry = ('dog’,’'cat’,’x’,’Cain’,’Abel’);
@george = ('gone’,’chased’,’yz’,’Punished’,;’Axed’);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to’, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using
the first integer after the first = sign, or the
whole record case-insensitively otherwise

@new = sort {
($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
[
uc($a) cmp uc($b)
} @old;

same thing, but much more efficiently;
we'll build auxiliary indices instead

for speed

@nums = @caps = ();

for (@old) {

23-Mar-1997

Perl Version 5.004 BETA 223

perlfunc

Perl Programmers Reference Guide perlfunc

push @nums, /=(\d+)/;
push @caps, uc($_);
}

@new = @old[sort {
$nums[$b] <=> $nums[$a]

$caps[$a] cmp $caps[$b]
} 0..$#old
I;
same thing using a Schwartzian Transform (no temps)
@new =map {$_->[0] }
sort { $h—>[1] <=> $a—>[1]
1
$a->[2] cmp $b—>[2]
}map {[$_, /=(\d+)/, uc($_)] } @old;
If you‘re using strict, yoMUST NOTdeclareba and$b as lexicals. They are package globals.
That means if you're in theain package, it's

@articles = sort {$main::b <=> $main::a} @files;
or just
@articles = sort {$::b <=> $::a} @files;
but if you're in theFooPack package, it's
@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results (sometimes
saying$x[1] is less tharbx[2] and sometimes saying the opposite, for example) the Perl
interpreter will probably crash and dump core. This is entirely due to and dependent upon your
system’s gsort(3) library routine; this routine often avoids sanity checks in the interest of speed.

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them
with the elements of LIST, if any. Returns the elements removed from the array. The array
grows or shrinks as necessary. If LENGTH is omitted, removes everything from OFFSET
onward. The following equivalences hold (assunihg=0):

push(@a,$x,$y) splice(@a,$#a+1,0,$x,3y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,9y) splice(@a,0,0,x,3y)

$a[$x] = Sy splice(@a,$x,1,$y);

Example, assuming array lengths are passed before arrays:

subaeq{ # compare two list values
local(@a) = splice(@_,0,shift);
local(@b) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return O if pop(@a) ne pop(@Db);
}
return 1,

224

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

if (&aeq($len,@foo[l1..$len],0+@bar,@bar)){ ... }

split/PATTERN/,EXPR,LIMIT
split/PATTERN/,EXPR
split /PATTERN/

split Splits a string into an array of strings, and returns it.

If not in a list context, returns the number of fields found and splits into the @_ array. (In a list
context, you can force the split into @_ by usk®yas the pattern delimiters, but it still returns
the array value.) The use of implicit split to @ _ is deprecated, however.
If EXPR is omitted, splits th$_ string. If PATTERN is also omitted, splits on whitespace (after
skipping any leading whitespace). Anything matching PATTERN is taken to be a delimiter
separating the fields. (Note that the delimiter may be longer than one character.) If LIMIT is
specified and is not negative, splits into no more than that many fields (though it may split into
fewer). If LIMIT is unspecified, trailing null fields are stripped (which potential usepepf)
would do well to remember). If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
had been specified.
A pattern matching the null string (not to be confused with a null pattermvhich is just one
member of the set of patterns matching a null string) will split the value of EXPR into separate
characters at each point it matches that way. For example:

print join(":’, split(/ */, 'hi there’));
produces the output ‘h:i:t:h:e:r:e’.
The LIMIT parameter can be used to split a line partially

($login, $passwd, $remainder) = split(/:/, $_, 3);
When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT one larger than the number
of variables in the list, to avoid unnecessary work. For the list above LIMIT would have been 4
by default. In time critical applications it behooves you not to split into more fields than you
really need.
If the PATTERN contains parentheses, additional array elements are created from each matching
substring in the delimiter.

split(/(,-])/, "1-10,20", 3);
produces the list value

(11 ,_,l 101 ,5,! 20)
If you had the entire header of a normal Unix email messagiesiader, you could split it up
into fields and their values this way:

$header =~ s/\n\s+/ /g; # fix continuation lines

%hdrs = (UNIX_FROM => split /*(.*?):\s*/m, $header);
The patter’PATTERN/ may be replaced with an expression to specify patterns that vary at
runtime. (To do runtime compilation only once, (feariable/o.)
As a special case, specifying a PATTERN of space | will split on white space just as split
with no arguments does. Thus, split(’ ') can be used to emaudts default behavior, whereas
split(/ /) will give you as many null initial fields as there are leading spaces. A split on
Ns+/ is like a split(’ ') except that any leading whitespace produces a null first field. A split with
no arguments really doessplit(' ‘, $_) internally.
Example:

open(passwd, '/etc/passwd’);

while (<passwd>) {

23-Mar-1997 Perl Version 5.004 BETA 225

perlfunc

Perl Programmers Reference Guide perlfunc

($login, $passwd, $uid, $gid, $gcos,
$home, $shell) = split(/:/);

}

(Note thatsshell above will still have a newline on it. Sehop /chomp and/join.)

sprintf FORMAT, LIST

sqrt EXPR

sqrt

Returns a string formatted by the usual printf conventions of the C languagespri®¢é3) or
printf(3) on your system for details. (The * character for an indirectly specified length is not
supported, but you can get the same effect by interpolating a variable into the pattase) If
locale is in effect, the character used for the decimal point in formatted real numbers is
affected by the LC_NUMERIC locale. Seerllocale Some C libraries’ implementations of
sprintf() can dump core when fed ludicrous arguments.

Return the square root of EXPR. If EXPR is omitted, returns square rdot of

srand EXPR

srand

Sets the random number seed fordwed operator. If EXPR is omitted, uses a semi-random
value based on the current time and process ID, among other things. In versions of Perl prior to
5.004 the default seed was just the curtieme() . This isn‘t a particularly good seed, so many

old programs supply their own seed value (oftere * $$ ortime * ($$ + ($$ <<

15))), but that isn‘t necessary any more.

In fact, it's usually not necessary to cethnd() at all, because if it is not called explicitly, it is
called implicitly at the first use of theand operator. However, this was not the case in version
of Perl before 5.004, so if your script will run under older Perl versions, it shoulstaadi()

Note that you need something much more random than the default seed for cryptographic
purposes. Checksumming the compressed output of one or more rapidly changing operating
system status programs is the usual method. For example:

srand (time ~ $$ " unpack "%L*", ‘ps axww | gzip*);
If you‘re particularly concerned with this, see the Math::TrulyRandom module in CPAN.

Do not call srand() multiple times in your program unless you know exactly what you‘re
doing and why you‘re doing it. The point of the function is to "seed'tahd() function so
thatrand() can produce a different sequence each time you run your program. Just do it once
at the top of your program, or yeton'‘t get random numbers out @nd() !

Frequently called programs (like CGlI scripts) that simply use
time * $$

for a seed can fall prey to the mathematical property that
a’b == (a+1)(b+1)

one-third of the time. So don't do that.

stat FILEHANDLE

stat EXPR

stat

Returns a 13-element array giving the status info for a file, either the file opened via
FILEHANDLE, or named by EXPR. If EXPR is omitted, it stdts Returns a null list if the
stat fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime, $ctime,$blksize,$blocks)
= stat($filename);

226

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

dev device number of filesystem

ino inode number

mode file mode (type and permissions)
nlink number of (hard) links to the file

uid numeric user ID of file’s owner

gid numeric group ID of file’'s owner

rdev the device identifier (special files only)
size total size of file, in bytes

atime last access time since the epoch

mtime last modify time since the epoch

ctime inode change time (NOT creation time!) since the epoch
blksize preferred block size for file system 1/0O

blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat or filetest are returned. Example:

if (—x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";

}
(This works on machines only for which the device number is negative under NFS.)
study SCALAR
study Takes extra time to study SCALAR (if unspecified) in anticipation of doing many pattern

matches on the string before it is next modified. This may or may not save time, depending on
the nature and number of patterns you are searching on, and on the distribution of character
frequencies in the string to be searched—you probably want to compare run times with and
without it to see which runs faster. Those loops which scan for many short constant strings
(including the constant parts of more complex patterns) will benefit most. You may have only
one study active at a time—if you study a different scalar the first is "unstudied". (The way
study works is this: a linked list of every character in the string to be searched is made, so we
know, for example, where all the ‘k’ characters are. From each search string, the rarest character
is selected, based on some static frequency tables constructed from some C programs and
English text. Only those places that contain this "rarest" character are examined.)

For example, here is a loop which inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".1X foo\n" if Abfoo\b/;
print ".1X ban\n" if Abbar\b/;
print ".1X blurfl\n" if Abblurfl\b/;

print;
}

In searching for Abfoo\b/, only those locationsbin that contain "f* will be looked at, because

"f* is rarer than "0". In general, this is a big win except in pathological cases. The only question
is whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don‘t know till runtime, you can build an entire
loop as a string and eval that to avoid recompiling all your patterns all the time. Together with
undefining $/ to input entire files as one record, this can be very fast, often faster than

23-Mar-1997

Perl Version 5.004 BETA 227

perlfunc Perl Programmers Reference Guide perlfunc
specialized programs like fgrep(1). The following scans a list of f@8l€s) for a list of
words @words), and prints out the names of those files that contain a match:
$search ="while (<>) { study;’;
foreach $word (@words) {
$search .= "++\$seen{\SARGV} if N\bSword\\b/;\n";
}
$search .= "}";
@ARGV = @files;
undef $/;
eval $search; # this screams
$/="\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}
sub BLOCK

sub NAME BLOCK

This is subroutine definition, not a real functiper se With just a NAME (and possibly
prototypes), it's just a forward declaration. Without a NAME, it's an anonymous function
declaration, and does actually return a value: the CODE ref of the closure you just created. See
perlsubandperlreffor details.

substr EXPR,OFFSET,LEN
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset 0, or whatever you‘ve
set$[to (but don't do that). If OFFSET is negative, starts that far from the end of the string. If
LEN is omitted, returns everything to the end of the string. If LEN is negative, leaves that many
characters off the end of the string.

You can use theubstr() function as an Ivalue, in which case EXPR must be an Ivalue. If
you assign something shorter than LEN, the string will shrink, and if you assign something
longer than LEN, the string will grow to accommodate it. To keep the string the same length you
may need to pad or chop your value uspgntf()

symlink OLDFILE,NEWFILE

Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0
otherwise. On systems that don‘t support symbolic links, produces a fatal error at run time. To
check for that, use eval:

$symlink_exists = (eval 'symlink("","");’, $@ eq ");

syscall LIST

Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal error. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If not,
the pointer to the string value is passed. You are responsible to make sure a string is
pre—extended long enough to receive any result that might be written into a string. If your
integer arguments are not literals and have never been interpreted in a numeric context, you may
need to add O to them to force them to look like numbers.

require 'syscall.ph’; # may need to run h2ph
syscall(&SYS_write, fileno(STDOUT), "hi there\n", 9);

Note that Perl supports passing of up to only 14 arguments to your system call, which in practice
should usually suffice.

228

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE.
If FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted.
This function calls the underlying operating systerafgen function with the parameters
FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are system-dependent; they are
available via the standard modutentl . However, for historical reasons, some values are
universal: zero means read-only, one means write—only, and two means read/write.

If the file named by FILENAME does not exist and thgen call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions of the
newly created file. If PERMS is omitted, the default value is 0666, which allows read and write
for all. This default is reasonable: sgaask.

The 10::File module provides a more object-oriented approach, if you‘re into that kind of thing.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE, using the system call read(2). It bypasses stdio, so mixing this with other kinds
of reads may cause confusion. Returns the number of bytes actually read, or undef if there was
an error. SCALAR will be grown or shrunk so that the last byte actually read is the last byte of
the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many bytes counting backwards
from the end of the string. A positive OFFSET greater than the length of SCALAR results in the
string being padded to the required size with "\0" bytes before the result of the read is appended.

system LIST

Does exactly the same thing as "exec LIST" except that a fork is done first, and the parent

process waits for the child process to complete. Note that argument processing varies depending
on the number of arguments. The return value is the exit status of the program as returned by the
wait() call. To getthe actual exit value divide by 256. See/alsec This iSNOT what you

want to use to capture the output from a command, for that you should use merely back-ticks or
gx//, as described 1S TRING' in perlop

Becausesystem() and back-ticks block SIGINT and SIGQUIT, killing the program they‘re
running doesn't actually interrupt your program.

@args = ("command", "argl", "arg2");
system(@args) == 0
or die "system @args failed: $?"

Here's a more elaborate example of analysing the return valuesfystem() on a UNIX
system to check for all possibilities, including for signals and coredumps.

$rc = Oxffff & system @args;
printf "system(%s) returned %#04x: ", "@args", $rc;
if ($rc ==0) {
print "ran with normal exit\n";
}

elsif ($rc == 0xff00) {
print "command failed: $\n";

}
elsif ($rc > 0x80) {

23-Mar-1997

Perl Version 5.004 BETA 229

perlfunc Perl Programmers Reference Guide perlfunc

$rc >>=8;
print "ran with non-zero exit status $rc\n";
}
else {
print "ran with ";
if ($rc & 0x80) {
$rc &= ~0x80;
print "coredump from ";
}
print "signal $rc\n"
}
$ok = ($rc = 0);

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET

syswrite FILEHANDLE,SCALAR,LENGTH
Attempts to write LENGTH bytes of data from variable SCALAR to the specified
FILEHANDLE, using the system call write(2). It bypasses stdio, so mixing this with prints may
cause confusion. Returns the number of bytes actually written, or undef if there was an error. If
the length is greater than the available data, only as much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string other than the
beginning. A negative OFFSET specifies writing from that many bytes counting backwards
from the end of the string.

tell FILEHANDLE

tell Returns the current file position for FILEHANDLE. FILEHANDLE may be an expression
whose value gives the name of the actual filehandle. If FILEHANDLE is omitted, assumes the
file last read.

telldir DIRHANDLE

Returns the current position of theaddir() routines on DIRHANDLE. Value may be given
to seekdir() to access a particular location in a directory. Has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name
of a class implementing objects of correct type. Any additional arguments are passed to the
"new" method of the class (meaning TIESCALAR, TIEARRAY, or TIEHASH). Typically these
are arguments such as might be passed tdlihe open() function of C. The object returned

by the "new" method is also returned by tie§) function, which would be useful if you want

to access other methods in CLASSNAME.

Note that functions such &gys() andvalues() ~may return huge array values when used
on large objects, like DBM files. You may prefer to usedheh() function to iterate over
such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, 'fusr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =", unpack(’L’,$val), "\n";
}

untie(%HIST);
A class implementing a hash should have the following methods:
TIEHASH classname, LIST

230

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

DESTROY this

FETCH this, key
STORE this, key, value
DELETE this, key
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST
DESTROY this

FETCH this, key

STORE this, key, value
[others TBD]

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
DESTROY this

FETCH this,

STORE this, value

Unlike dbmopen() , thetie() function will not use or require a module for you—you need to
do that explicitly yourself. Se®B_File or the Config module for interestingie()
implementations.

tied VARIABLE

Returns a reference to the object underlying VARIABLE (the same value that was originally
returned by théie() call which bound the variable to a package.) Returns the undefined value
if VARIABLE isn't tied to a package.

time Returns the number of non-leap seconds since whatever time the system considers to be the
epoch (that's 00:00:00, January 1, 1904 for MacOS, and 00:00:00 UTC, January 1, 1970 for
most other systems). Suitable for feedingnatime() andlocaltime()

times Returns a four—element array giving the user and system times, in seconds, for this process and
the children of this process.

($user,$system,$cuser,$csystem) = times;
tr/ll The translation operator. Sperlop.
truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH
Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length.
Produces a fatal error if truncate isn‘t implemented on your system.

uc EXPR

uc Returns an uppercased version of EXPR. This is the internal function implementing the \U
escape in double—quoted strings. Respects current LC_CTYPE louakeldcale in force.
Seeperllocale

If EXPR is omitted, use$.

ucfirst EXPR

ucfirst Returns the value of EXPR with the first character uppercased. This is the internal function
implementing the \u escape in double—quoted strings. Respects current LC_CTYPE locale if
use locale in force. Se@erllocale

If EXPR is omitted, use$.

23—-Mar-1997 Perl Version 5.004 BETA 231

perlfunc Perl Programmers Reference Guide perlfunc

umask EXPR

umask Sets the umask for the process to EXPR and returns the previous value. If EXPR is omitted,
merely returns the current umask. Remember that a umask is a number, usually given in octal; it
is nota string of octal digits. See alsot, if all you have is a string.

undef EXPR

undef Undefines the value of EXPR, which must be an Ivalue. Use on only a scalar value, an entire
array or hash, or a subroutine name (us&9." (Usingundef() will probably not do what
you expect on most predefined variables or DBM list values, so don‘t do that.) Always returns
the undefined value. You can omit the EXPR, in which case nothing is undefined, but you still
get an undefined value that you could, for instance, return from a subroutine, assign to a variable
or pass as a parameter. Examples:

undef $foo;

undef $bar{’blurfl’}; # Compare to: delete $bar{’blurfl’};
undef @ary;

undef %hash;

undef &mysub;

return (wantarray ? () : undef) if $they_blew_it;

select undef, undef, undef, 0.25;

($a, $b, undef, $c) = &foo; # Ignore third value returned

unlink LIST

unlink Deletes a list of files. Returns the number of files successfully deleted.
$cnt = unlink 'a’, 'b’, ’c’;
unlink @goners;
unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser aneltiflag is supplied to
Perl. Even if these conditions are met, be warned that unlinking a directory can inflict damage
on your filesystem. Use rmdir instead.

If LIST is omitted, use$.

unpack TEMPLATE,EXPR
Unpack does the reverse of pack: it takes a string representing a structure and expands it out into
a list value, returning the array value. (In a scalar context, it returns merely the first value
produced.) The TEMPLATE has the same format as in the pack function. Here's a subroutine
that does substring:

sub substr {
local($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there's
sub ordinal { unpack('c",$_[0]); } # same as ord()

In addition, you may prefix a field with a %<number> to indicate that you want a <number>-bit
checksum of the items instead of the items themselves. Default is a 16-bit checksum. For
example, the following computes the same number as the System V sum program:

while (<>) {
$checksum += unpack("%16C*", $);

}
$checksum %= 65536;

The following efficiently counts the number of set bits in a bit vector:

232 Perl Version 5.004 BETA 23—-Mar-1997

perlfunc Perl Programmers Reference Guide perlfunc

$setbits = unpack("%32b*", $selectmask);

untie VARIABLE
Breaks the binding between a variable and a package ti¢9ee .)

unshift ARRAY,LIST

Does the opposite of ghift . Or the opposite of push, depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

unshift(ARGV, '-e") unless $ARGV[0] =~ /"-/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Use reverse to do the reverse.

use Module LIST

use Module

use Module VERSION LIST
use VERSION

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; import Module LIST; }
except that Modulenustbe a bare word.

If the first argument taise is a number, it is treated as a version number instead of a module
name. If the version of the Perl interpreter is less than VERSION, then an error message is
printed and Perl exits immediately. This is often useful if you need to check the current Perl
version beforeuseing library modules which have changed in incompatible ways from older
versions of Perl. (We try not to do this more than we have to.)

The BEGIN forces the require and import to happen at compile time. The require makes sure the
module is loaded into memory if it hasn't been yet. The import is not a builtin—it's just an
ordinary static method call into the "Module" package to tell the module to import the list of
features back into the current package. The module can implement its import method any way it
likes, though most modules just choose to derive their import method via inheritance from the
Exporter class that is defined in the Exporter module. Eperter. If no import method can be

found then the error is currently silently ignored. This may change to a fatal error in a future
version.

If you don‘t want your namespace altered, explicitly supply an empty list:
use Module ();

That is exactly equivalent to
BEGIN { require Module; }

If the VERSION argument is present between Module and LIST, thensiewill call the
VERSION method in class Module with the given version as an argument. The default
VERSION method, inherited from the Universal class, croaks if the given version is larger than
the value of the variabléModule::VERSION. (Note that there is not a comma after
VERSION!)

Because this is a wide—open interface, pragmas (compiler directives) are also implemented this
way. Currently implemented pragmas are:

use integer;

use diagnostics;

use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qgw(afunc blurfl);

23—-Mar-1997 Perl Version 5.004 BETA 233

perlfunc Perl Programmers Reference Guide perlfunc

These pseudo—modules import semantics into the current block scope, unlike ordinary modules,
which import symbols into the current package (which are effective through the end of the file).

There's a corresponding "no" command that unimports meanings imported by use, i.e., it calls
unimport Module LIST instead ofmport

no integer;
no strict 'refs’;

If no unimport method can be found the call fails with a fatal error.
Seeperlmodfor a list of standard modules and pragmas.

utime LIST

Changes the access and modification times on each file of a list of files. The first two elements
of the list must be the NUMERICAL access and modification times, in that order. Returns the
number of files successfully changed. The inode modification time of each file is set to the
current time. Example of a "touch" command:

#1/usr/bin/perl

$now = time;

utime $now, $now, @ARGV;
values HASH

Returns a normal array consisting of all the values of the named hash. (In a scalar context,
returns the number of values.) The values are returned in an apparently random order, but it is
the same order as either tkeys() oreach() function would produce on the same hash. As
a side effect, it resets HASH's iterator. See &bys() , each() , andsort()

vec EXPR,OFFSET,BITS

Treats the string in EXPR as a vector of unsigned integers, and returns the value of the bit field
specified by OFFSET. BITS specifies the number of bits that are reserved for each entry in the
bit vector. This must be a power of two from 1 to\83%() may also be assigned to, in which
case parentheses are needed to give the expression the correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

Vectors created witlvec() can also be manipulated with the logical operato& |and *,
which will assume a bit vector operation is desired when both operands are strings.

To transform a bit vector into a string or array of 0‘'s and 1's, use these:

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

wait Waits for a child process to terminate and returns the pid of the deceased process, or -1 if there
are no child processes. The status is return&a.in

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased process, or
-1 if there is no such child process. The status is returrgl inlf you say

use POSIX ":sys_wait_h";

waitpid(-1,&WNOHANG);

then you can do a non-blocking wait for any process. Non-blocking wait is available on
machines supporting either the waitpid(2) or wait4(2) system calls. However, waiting for a
particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the system call by
remembering the status values of processes that have exited but have not been harvested by the

234

Perl Version 5.004 BETA 23—-Mar-1997

perlfunc

Perl Programmers Reference Guide perlfunc

wantarray

warn LIST

Perl script yet.)

Returns TRUE if the context of the currently executing subroutine is looking for a list value.
Returns FALSE if the context is looking for a scalar.

return wantarray ? () : undef;

Produces a message on STDERR justdik¢) , but doesn‘t exit or throw an exception.

No message is printed if there is$8IG{__WARN__} handler installed. It is the handler's
responsibility to deal with the message as it sees fit (like, for instance, converting it into a
die()). Most handlers must therefore make arrangements to actually display the warnings that
they are not prepared to deal with, by callimgrn() again in the handler. Note that this is
quite safe and will not produce an endless loop, SinG&¥ARN__hooks are not called from
inside one.

You will find this behavior is slightly different from that $8I1G{__DIE__} handlers (which
don'‘t suppress the error text, but can insteaddiaf) again to change it).

Using a__ WARN__handler provides a powerful way to silence all warnings (even the so—called
mandatory ones). An example:

wipe out *all* compile-time warnings
BEGIN { $SIG{__WARN__"} = sub { warn $_[0] if SDOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no compile-time or run—time warnings before here
$DOWARN = 1;

run—time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

Seeperlvar for details on settingoSIGentries, and for more examples.

write FILEHANDLE
write EXPR

write

Writes a formatted record (possibly multi-line) to the specified file, using the format associated
with that file. By default the format for a file is the one having the same name is the filehandle,
but the format for the current output channel (seeséhect() function) may be set explicitly

by assigning the name of the format to $hevariable.

Top of form processing is handled automatically: if there is insufficient room on the current
page for the formatted record, the page is advanced by writing a form feed, a special
top—of-page format is used to format the new page header, and then the record is written. By
default the top—of-page format is the name of the filehandle with *_TOP" appended, but it may
be dynamically set to the format of your choice by assigning the name $60 therriable while

the filehandle is selected. The number of lines remaining on the current page is in $arjiable
which can be set to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts
out as STDOUT but may be changed by seéect operator. If the FILEHANDLE is an

EXPR, then the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time. For more on formats, ge=lform

Note that write ilNOT the opposite of read. Unfortunately.

23-Mar-1997

Perl Version 5.004 BETA 235

perlfunc Perl Programmers Reference Guide perlfunc

ylil The translation operator. Sperlop

236 Perl Version 5.004 BETA 23—-Mar-1997

perlvar Perl Programmers Reference Guide perlvar

NAME
perlvar — Perl predefined variables
DESCRIPTION

Predefined Names

The following names have special meaning to Perl. Most of the punctuation names have reasonable
mnemonics, or analogues in one of the shells. Nevertheless, if you wish to use the long variable names, you
just need to say

use English;

at the top of your program. This will alias all the short hames to the long names in the current package.
Some of them even have medium names, generally borrowedirem

To go a step further, those variables that depend on the currently selected filehandle may instead be set by
calling an object method on the FileHandle object. (Summary lines below for this contain the word
HANDLE.) First you must say

use FileHandle;

after which you may use either
method HANDLE EXPR

or
HANDLE->method(EXPR)

Each of the methods returns the old value of the FileHandle attribute. The methods each take an optional
EXPR, which if supplied specifies the new value for the FileHandle attribute in question. If not supplied,
most of the methods do nothing to the current value, excepufoflush() , which will assume a 1 for

you, just to be different.

A few of these variables are considered "read-only". This means that if you try to assign to this variable,
either directly or indirectly through a reference, you'll raise a run—time exception.

$ARG
$_ The default input and pattern—searching space. The following pairs are equivalent:
while (<>) {...} # equivalent in only while!
while ($_=<>){...}
/"Subject:/
$_ =~ /ASubject:/
trla—z/A-2/
$ =~trla-z/IA-Z/
chop
chop($))

Here are the places where Perl will ass$mesven if you don'‘t use it:

e Various unary functions, including functions liked() andint() , as well as the all file
tests ¢f , —d) except for-t , which defaults to STDIN.

e Various list functions likerint() andunlink()

e The pattern matching operatioms// , s/// , and tr//l when used without ar~
operator.

23—-Mar-1997 Perl Version 5.004 BETA 237

perlvar Perl Programmers Reference Guide perlvar

e The default iterator variable infareach loop if no other variable is supplied.
e The implicit iterator variable in thgrep() andmap() functions.

e The default place to put an input record whet&> operation’s result is tested by itself as
the sole criterion of ahile test. Note that outside ofshile test, this will not happen.

(Mnemonic: underline is understood in certain operations.)
$<digit >
Contains the sub—pattern from the corresponding set of parentheses in the last pattern matched,

not counting patterns matched in nested blocks that have been exited already. (Mnemonic: like
\digit.) These variables are all read—only.

$MATCH

$& The string matched by the last successful pattern match (not counting any matches hidden within
a BLOCK oreval() enclosed by the current BLOCK). (Mnemonic: li&én some editors.)
This variable is read—only.

$PREMATCH

$ The string preceding whatever was matched by the last successful pattern match (not counting
any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnerhonic:
often precedes a quoted string.) This variable is read-only.

$POSTMATCH

$ The string following whatever was matched by the last successful pattern match (not counting

any matches hidden within a BLOCK aval() enclosed by the current BLOCK).
(Mnemonic:’ often follows a quoted string.) Example:

$_='abcdefghi’;
/def/;
print "$:$&:$\n"; # prints abc:def:ghi

This variable is read-only.

$LAST_PAREN_MATCH
$+ The last bracket matched by the last search pattern. This is useful if you don‘t know which of a
set of alternative patterns matched. For example:

IVersion: (.*)|Revision: (.*)/ && ($rev = $+);
(Mnemonic: be positive and forward looking.) This variable is read—only.

$MULTILINE_MATCHING

$* Set to 1 to do multi-line matching within a string, O to tell Perl that it can assume that strings
contain a single line, for the purpose of optimizing pattern matches. Pattern matches on strings
containing multiple newlines can produce confusing results wi&h 'is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable influences the interpretation of
only "*"and '$". A literal newline can be searched for even wéenr=0

Use of '$*" is deprecated in modern perls.

input_line_number HANDLE EXPR

$INPUT_LINE_NUMBER

$NR

$. The current input line number for the last file handle from which you read (or perforseet a
ortell on). An explicit close on a filehandle resets the line number. Becax$@éver does
an explicit close, line numbers increase across ARGV files (but see examplesaoifie).
Localizing $. has the effect of also localizing Perl‘'s notion of "the last read filehandle".

(Mnemonic: many programs use "." to mean the current line number.)

238

Perl Version 5.004 BETA 23—-Mar-1997

perlvar Perl Programmers Reference Guide perlvar

input_record_separator HANDLE EXPR

$INPUT_RECORD_SEPARATOR

$RS

$/ The input record separator, newline by default. Worksdikk's RS variable, including treating
empty lines as delimiters if set to the null string. (Note: An empty line cannot contain any
spaces or tabs.) You may set it to a multicharacter string to match a multi—-character delimiter.
Note that setting it t&n\n" means something slightly different than setting it'tq if the file
contains consecutive empty lines. Setting It'towill treat two or more consecutive empty lines
as a single empty line. Setting it'fm\n" will blindly assume that the next input character
belongs to the next paragraph, even if it's a newline. (Mnemonic: / is used to delimit line
boundaries when quoting poetry.)

undef $/;
$ =<FH>; # whole file now here
sA\n[\t]+/ /g;

Remember: the value &f is a string, not a regexp. AWK has to be better for something :-)

autoflush HANDLE EXPR

$OUTPUT_AUTOFLUSH

3| If set to nonzero, forces a flush after every write or print on the currently selected output channel.
Default is O (regardless of whether the channel is actually buffered by the systentprteti
you only whether you've asked Perl explicitly to flush after each write). Note that STDOUT will
typically be line buffered if output is to the terminal and block buffered otherwise. Setting this
variable is useful primarily when you are outputting to a pipe, such as when you are running a
Perl script under rsh and want to see the output as it's happening. This has no effect on input
buffering. (Mnemonic: when you want your pipes to be piping hot.)

output_field_separator HANDLE EXPR

$OUTPUT_FIELD_SEPARATOR

$OFS

$, The output field separator for the print operator. Ordinarily the print operator simply prints out
the comma-separated fields you specify. To get behavior morawikeset this variable as you
would setawk's OFS variable to specify what is printed between fields. (Mnemonic: what is
printed when there is a , in your print statement.)

output_record_separator HANDLE EXPR

$OUTPUT_RECORD_SEPARATOR

$ORS

$\ The output record separator for the print operator. Ordinarily the print operator simply prints out
the comma-separated fields you specify, with no trailing newline or record separator assumed.
To get behavior more likawk, set this variable as you would setk's ORS variable to specify
what is printed at the end of the print. (Mnemonic: you $€t "instead of adding \n at the end
of the print. Also, it's just liké/, but it's what you get "back" from Perl.)

$LIST_SEPARATOR
$" This is like '$," except that it applies to array values interpolated into a double—quoted string
(or similar interpreted string). Default is a space. (Mnemonic: obvious, | think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multi-dimensional array emulation. If you refer to a hash element as

$foo{$a,$b,$c}
it really means
$foo{join($;, $a, $b, $c)}

23—-Mar-1997 Perl Version 5.004 BETA 239

perlvar Perl Programmers Reference Guide perlvar

But don‘t put
@foo{%a,$b,3c} # a slice-—note the @
which means
($foo{$a},Sfoo{$b},$foo{$c})
Default is "\034", the same as SUBSERwk. Note that if your keys contain binary data there

might not be any safe value fd§;". (Mnemonic: comma (the syntactic subscript separator) is
a semi—-semicolon. Yeah, | know, it's pretty lame, 8t " is already taken for something more
important.)

Consider using "real" multi-dimensional arrays.

$OFMT

St The output format for printed numbers. This variable is a half-hearted attempt to eanddste
OFMT variable. There are times, however, whaik and Perl have differing notions of what is
in fact numeric. The initial value is 9@, wheren is the value of the macro DBL_DIG from
your system'dloat.h. This is different fromawk's default OFMT setting of %.6g, so you need
to set $#" explicitly to getawk's value. (Mnemonic: # is the number sign.)

Use of '$#" is deprecated.

format_page_number HANDLE EXPR

$FORMAT_PAGE_NUMBER

$% The current page number of the currently selected output channel. (Mnemonic: % is page
number innroff.)

format_lines_per_page HANDLE EXPR

$FORMAT_LINES_PER_PAGE

$= The current page length (printable lines) of the currently selected output channel. Default is 60.
(Mnemonic: = has horizontal lines.)

format_lines_left HANDLE EXPR

$FORMAT_LINES_LEFT

$- The number of lines left on the page of the currently selected output channel. (Mnemonic:
lines_on_page - lines_printed.)

format_name HANDLE EXPR

$FORMAT_NAME

$~ The name of the current report format for the currently selected output channel. Default is name
of the filehandle. (Mnemonic: brother t§"".)

format_top_name HANDLE EXPR

$FORMAT_TOP_NAME

" The name of the current top—of-page format for the currently selected output channel. Default is
name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

format_line_break characters HANDLE EXPR

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may be broken to fill continuation fields
(starting with 7) in a format. Default is " \n-", to break on whitespace or hyphens. (Mnemonic:
a "colon" in poetry is a part of a line.)

format_formfeed HANDLE EXPR
$FORMAT_FORMFEED
$"L What formats output to perform a form feed. Default is \f.

$ACCUMULATOR

240

Perl Version 5.004 BETA 23—-Mar-1997

perlvar Perl Programmers Reference Guide perlvar

$MA The current value of thevrite() accumulator forformat() lines. A format contains
formline() commands that put their result ifBdA. After calling its formatwrite()
prints out the contents §MA and empties. So you never actually see the conteftsfotinless
you callformline() yourself and then look at it. Sperlformandformline()

$CHILD_ERROR
$? The status returned by the last pipe close, back-tick ¢command, oisystem() operator.
Note that this is the status word returned bywiaé() system call (or else is made up to look
like it). Thus, the exit value of the subprocess is actudlly>> 8), and$? & 255 gives
which signal, if any, the process died from, and whether there was a core dump. (Mnemonic:
similar tosh andksh.)

Note that if you have installed a signal handlerS66CHLD the value of$? will usually be
wrong outside that handler.

Inside anENDsubroutine$? contains the value that is going to be giveexi() . You can
modify $? in anENDsubroutine to change the exit status of the script.
Under VMS, the pragmase vmsish ‘status’ makes$? reflect the actual VMS exit
status, instead of the default emulation of POSIX status.

$0OS_ERROR

$ERRNO

$! If used in a numeric context, yields the current value of errno, with all the usual caveats. (This

means that you shouldn‘t depend on the valu&Bf "to be anything in particular unless you‘ve
gotten a specific error return indicating a system error.) If used in a string context, yields the
corresponding system error string. You can assigfi!to 'to seterrnoif, for instance, you want

"$!" to return the string for errar, or you want to set the exit value for tthe() operator.
(Mnemonic: What just went bang?)

$EXTENDED_OS_ERROR

$"E More specific information about the last system error than that provid&d byf available. (If
not, it's just$! again, except under OS/2.) At the moment, this differs 8bminder only VMS
and OS/2, where it provides the VMS status value from the last system error, and OS/2 error
code of the last call to OS/2 APl which was not directed via CRT. The caveats mentioned in the
description ofp! apply here, too. (Mnemonic: Extra error explanation.)

Note that under OS/3! and $"E do not track each other, so if an OS/2-specific call is
performed, you may need to check both.

$EVAL_ERROR

$@ The Perl syntax error message from thedasi() command. If null, the lagival() parsed
and executed correctly (although the operations you invoked may have failed in the normal
fashion). (Mnemonic: Where was the syntax error "at"?)

Note that warning messages are not collected in this variable. You can, however, set up a routine
to process warnings by setti6@IG{__ WARN__} below.

$PROCESS_ID

$PID

$$ The process number of the Perl running this script. (Mnemonic: same as shells.)
$REAL_USER_ID

$UID

$< The real uid of this process. (Mnemonic: it's the uid you ceR@M, if you're running setuid.)

$EFFECTIVE_USER_ID
$EUID

23—-Mar-1997 Perl Version 5.004 BETA 241

perlvar

Perl Programmers Reference Guide perlvar

$

The effective uid of this process. Example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid

(Mnemonic: it's the uid you wenkQ, if you're running setuid.) Note$%" and '$>" can be
swapped on only machines supportiagreuid()

$REAL_GROUP_ID

$GID
$(

The real gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bgetgid() , and the subsequent onesdgstgroups() , one of which may be

the same as the first number. (Mnemonic: parentheses are W GB®OtdPthings. The real gid

is the group yolLEFT, if you‘re running setgid.)

$EFFECTIVE_GROUP_ID

$EGID
$)

The effective gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bgetegid() , and the subsequent onesdstgroups() , one of which may

be the same as the first number. (Mnemonic: parentheses are US&DtP things. The
effective gid is the group thatRIGHT for you, if you‘re running setgid.)

Note: '$<", "$>", "$(" and'$)" can be set only on machines that support the corresponding
setfre]lug]id() routine. $(" and '$)" can be swapped on only machines supporting
setregid() . Because Perl doesn't currently uisiggroups() , YOu can'‘t set your group
vector to multiple groups.

$PROGRAM_NAME

$0

el

Contains the name of the file containing the Perl script being executed. Assigni®@'to "
modifies the argument area that the ps(1) program sees. This is more useful as a way of
indicating the current program state than it is for hiding the program you‘re running. (Mnemonic:
same ash andksh.)

The index of the first element in an array, and of the first character in a substring. Default is O,
but you could set it to 1 to make Perl behave moreaikke (or Fortran) when subscripting and
when evaluating thmdex() andsubstr() functions. (Mnemonic: [begins subscripts.)

As of Perl 5, assignment t&$[" is treated as a compiler directive, and cannot influence the
behavior of any other file. Its use is discouraged.

$PERL_VERSION

$]

The string printed out when you spgrl —v . (This is currenthyBROKEN. It can be used to
determine at the beginning of a script whether the perl interpreter executing the script is in the
right range of versions. If used in a numeric context, returns the version + patchlevel / 1000.
Example:

see if getc is available
($version,$patchlevel) =
$] =~ /(\d+\.\d+).*\nPatch level: (\d+)/;
print STDERR "(No filename completion available.)\n"
if $version * 1000 + $patchlevel < 2016;

or, used numerically,
warn "No checksumming\n" if $] < 3.019;

(Mnemonic: Is this version of perl in the right bracket?)

242

Perl Version 5.004 BETA 23—-Mar-1997

perlvar Perl Programmers Reference Guide perlvar

$DEBUGGING

$"D The current value of the debugging flags. (Mnemonic: valuéa$witch.)

$SYSTEM_FD_MAX

$F The maximum system file descriptor, ordinarily 2. System file descriptors are passed to

exec() ed processes, while higher file descriptors are not. Also, durimpem() , system

file descriptors are preserved even if thygen() fails. (Ordinary file descriptors are closed
before theopen() is attempted.) Note that the close—on—exec status of a file descriptor will be
decided according to the value®f at the time of the open, not the time of the exec.

$"H The current set of syntax checks enabledis®y strict . See the documentation sifict
for more details.

$INPLACE_EDIT

SN The current value of the inplace—edit extension. Wedef to disable inplace editing.
(Mnemonic: value ofi switch.)

$OSNAME

$0 The name of the operating system under which this copy of Perl was built, as determined during
the configuration process. The value is identic§iGonfig{'osname'}.

$PERLDB

$"P The internal flag that the debugger clears so that it doesn‘t debug itself. You could conceivably
disable debugging yourself by clearing it.

$BASETIME

T The time at which the script began running, in seconds since the epoch (beginning of 1970). The
values returned by theM, —A, and-C filetests are based on this value.

SWARNING

W The current value of the warning switch, either TRUE or FALSE. (Mnemonic: related tathe
switch.)

$EXECUTABLE_NAME

$"X The name that the Perl binary itself was executed as, fromr@/§0]

$ARGV contains the name of the current file when reading from <>,

@ARGV The array @ARGV contains the command line arguments intended for the script. Note that
$#ARGVis the generally number of arguments minus one, becbB&V[0] is the first
argumentNOTthe command name. Se&0" for the command name.

@INC The array @INC contains the list of places to look for Perl scripts to be evaluated diy the
EXPR require , oruse constructs. It initially consists of the arguments to ahgommand
line switches, followed by the default Perl library, probalbisr/local/lib/perl, followed by ".",
to represent the current directory. If you need to modify this at runtime, you should use the

lib pragma to get the machine—dependent library properly loaded also:

use lib '/mypath/libdir/’;
use SomeMod;

%INC The hash %INC contains entries for each filename that has been includkd aigzequire
The key is the filename you specified, and the value is the location of the file actually found. The
require command uses this array to determine whether a given file has already been included.

SENV{expr}
The hash %ENV contains your current environment. Setting a valiENWhchanges the
environment for child processes.

23—-Mar-1997 Perl Version 5.004 BETA 243

perlvar Perl Programmers Reference Guide perlvar
$SIG{expr}
The hash %SIG is used to set signal handlers for various signals. Example:
sub handler { # 1st argument is signal name
local($sig) = @_;
print "Caught a SIG$sig——shutting down\n";
close(LOG);
exit(0);
}
$SIG{INT’} = 'handler’;
$SIG{'QUIT’} = 'handler’;
$SIG{INT’} = 'DEFAULT’; # restore default action
$SIG{'QUIT’} = IGNORE’; # ignore SIGQUIT
The %SIG array contains values for only the signals actually set within the Perl script. Here are
some other examples:
$SIG{PIPE} = Plumber; # SCARY!!
$SIG{"PIPE"} = "Plumber"; # just fine, assumes main::Plumber
$SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??
The one marked scary is problematic because it's a bareword, which means sometimes it's a
string representing the function, and sometimes it's going to call the subroutine call right then
and there! Best to be sure and quote it or take a reference to it. *Plumber works too. See
perlsub
If your system has thgigaction() function then signal handlers are installed using it. This
means you get reliable signal handling. If your system has the SA_RESTART flag it is used
when signals handlers are installed. This means that system calls for which it is supported
continue rather than returning when a signal arrives. If you want your system calls to be
interrupted by signal delivery then do something like this:
use POSIX ":signal_h’;
my $alarm = 0;
sigaction SIGALRM, new POSIX::SigAction sub { $alarm =1}
or die "Error setting SIGALRM handler: $!\n";
SeePOSIX
Certain internal hooks can be also set using the %SIG hash. The routine indicated by
$SIG{__WARN__} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence of a _ WARN__ hook causes the
ordinary printing of warnings to STDERR to be suppressed. You can use this to save warnings
in a variable, or turn warnings into fatal errors, like this:
local $SIG{__WARN__} = sub { die $_[0] };
eval $proggie;
The routine indicated b$SIG{ DIE__} is called when a fatal exception is about to be
thrown. The error message is passed as the first argument. When a _ DIE__ hook routine
returns, the exception processing continues as it would have in the absence of the hook, unless
the hook routine itself exits via goto , a loop exit, or alie() . The__DIE__ handler is
explicitly disabled during the call, so that you can die from BIE__ handler. Similarly for
___WARN__. Sedlie, warn andeval
244 Perl Version 5.004 BETA 23-Mar-1997

perlvar

Perl Programmers Reference Guide perlvar

$"M

By default, running out of memory it is not trappable. However, if compiled for this, Perl may
use the contents &M as an emergency pool af@ie() ing with this message. Suppose that
your Perl were compiled with -DEMERGENCY_SBRK and used Perl‘'s malloc. Then

$"M ='a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. SeNBIEALL file for information
on how to enable this option. As a disincentive to casual use of this advanced feature, there is no
Englishlong name for this variable.

23-Mar-1997

Perl Version 5.004 BETA 245

perlsub Perl Programmers Reference Guide perlsub

NAME

SYNOPSIS

perlsub — Perl subroutines

To declare subroutines:
sub NAME; # A "forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME BLOCK # A declaration and a definition.

sub NAME(PROTO) BLOCK # ditto, but with prototypes
To define an anonymous subroutine at runtime:

$subref = sub BLOCK;
To import subroutines:

use PACKAGE qgw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is optional with parentheses.
NAME LIST,; # Parentheses optional if pre—declared/imported.
&NAME; # Passes current @ __ to subroutine.

DESCRIPTION

Like many languages, Perl provides for user—defined subroutines. These may be located anywhere in the
main program, loaded in from other files via thee, require , oruse keywords, or even generated on the

fly using eval or anonymous subroutines (closures). You can even call a function indirectly using a
variable containing its name or a CODE reference to it, #san= \&function.

The Perl model for function call and return values is simple: all functions are passed as parameters one single
flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any arrays or
hashes in these call and return lists will collapse, losing their identities—but you may always use
pass—-by-reference instead to avoid this. Both call and return lists may contain as many or as few scalar
elements as you'd like. (Often a function without an explicit return statement is called a subroutine, but
there's really no difference from the language's perspective.)

Any arguments passed to the routine come in as the array @_. Thus if you called a function with two
arguments, those would be storedif0] and$_[1]. The array @_is a local array, but its values are
implicit references (predatingerlref) to the actual scalar parameters. The return value of the subroutine is
the value of the last expression evaluated. Alternatively, a return statement may be used to specify the
returned value and exit the subroutine. If you return one or more arrays and/or hashes, these will be flattened
together into one large indistinguishable list.

Perl does not have named formal parameters, but in practice all you do is assigr()toliat of these. Any

variables you use in the function that aren‘t declared private are global variables. For the gory details on
creating private variables, sé®rivate Variables viamy() " and "Temporary Values vidocal() ". To

create protected environments for a set of functions in a separate package (and probably a separate file), see
Packages in perimod

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;

}

return $max;

246

Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

$bestday = max($mon,$tue,$wed, $thu,$fri);
Example:

get a line, combining continuation lines
that start with whitespace

sub get_line {
$thisline = $lookahead; # GLOBAL VARIABLES!
LINE: while ($lookahead = <STDIN>) {
if ($lookahead =~ /[\t]/) {
$thisline .= $lookahead;
}
else {
last LINE;
}
}
$thisline;
}

$lookahead = <STDIN>; # get first line
while ($_ = get_line()) {

}

Use array assignment to a local list to name your formal arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{Skey};
}

This also has the effect of turning call-by-reference into call-by-value, because the assignment copies the
values. Otherwise a function is free to do in—place modifications of @__ and change its caller's values.

upcase_in($vl, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) {tr/la—z/A-2/}
}

You aren‘t allowed to modify constants in this way, of course. If an argument were actually literal and you
tried to change it, you'd take a (presumably fatal) exception. For example, this won'‘t work:

upcase_in("frederick™);

It would be much safer if thepcase_in() function were written to return a copy of its parameters
instead of changing them in place:

($v3, $v4) = upcase($vl, $v2); # this doesn't
sub upcase {
my @parms = @_;
for (@parms) { tr/fa-z/A-2/ }
wantarray checks if we were called in list context
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn‘t care whether it was passed real scalars or arrays. Perl will
see everything as one big long flat @_ parameter list. This is one of the ways where Perl's simple
argument-passing style shines. Tpease() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

23—-Mar-1997 Perl Version 5.004 BETA 247

perlsub Perl Programmers Reference Guide perlsub

@newlist = upcase(@listl, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:
(@a, @b) = upcase(@listl, @list2);

Because like its flat incoming parameter list, the return list is also flat. So all you have managed to do here is
stored everything in @a and made @b an empty list. See for alternatives.

A subroutine may be called using th&""prefix. The &" is optional in modern Perls, and so are the
parentheses if the subroutine has been pre—declared. (Note, however, tigdt th&lOT optional when

you're just naming the subroutine, such as when it's used as an argumiefméol() orundef() . Nor

is it optional when you want to do an indirect subroutine call with a subroutine name or reference using the
&$subref() or &{$Ssubref}() constructs. Segerlreffor more on that.)

Subroutines may be called recursively. If a subroutine is called usingthétm, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!

foo; # like foo() IFF sub foo pre—declared, else "foo"

Not only does the&" form make the argument list optional, but it also disables any prototype checking on
the arguments you do provide. This is partly for historical reasons, and partly for having a convenient way to
cheat if you know what you‘re doing. See the section on Prototypes below.

Private Variables via my()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
A "my" declares the listed variables to be confined (lexically) to the enclosing block, conditional
(iflunless/elsif/else), loop (or/foreach/while/until/continue), subroutine,eval ,
or do/require/use ‘d file. If more than one value is listed, the list must be placed in parentheses. All

listed elements must be legal Ivalues. Only alphanumeric identifiers may be lexically scoped—magical
builtins like$/ must currently be localized with "local" instead.

Unlike dynamic variables created by the "local" statement, lexical variables declared with "my" are totally
hidden from the outside world, including any called subroutines (even if it's the same subroutine called from
itself or elsewhere—every call gets its own copy).

(An eval() , however, can see the lexical variables of the scope it is being evaluated in so long as the
names aren‘t hidden by declarations withingkel() itself. Seeerlref)

The parameter list tmy() may be assigned to if desired, which allows you to initialize your variables. (If
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is used
to name the parameters to a subroutine. Examples:

$arg = "fred"; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

248

Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **= 1/3;
return $arg;

}

The "my" is simply a modifier on something you might assign to. So when you do assign to the variables in
its argument list, the "my" doesn‘t change whether those variables is viewed as a scalar or an array. So

my ($foo) = <STDIN>;
my @FOO = <STDIN>;

both supply a list context to the right—hand side, while
my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:
my $foo, $bar =1,

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,
my $x = $x;

can be used to initialize the n@x with the value of the ol@x, and the expression
my $x = 123 and $x == 123

is false unless the offk happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of the scope, too. Thus in the loop

while (my $line = <>) {
$line = Ic $line;

} continue {
print $line;

}

the scope offline extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similarly, in the conditional

if ((my $answer = <STDIN>) =~ /*yes$/i) {
user_agrees();
} elsif ($answer =~ /*no$/i) {
user_disagrees();
}else {
chomp $answer;
die ""$answer’ is neither 'yes’ nor 'no™;

}

the scope o$fanswer extends from its declaration throughout the rest of the conditional (inclatsifig
andelse clauses, if any), but not beyond it.

(None of the foregoing applies ifitunless or while/until modifiers appended to simple statements.
Such modifiers are not control structures and have no effect on scoping.)

Theforeach loop defaults to scoping its index variable dynamically (in the manriecalf ; see below).
However, if the index variable is prefixed with the keyword "my", then it is lexically scoped instead. Thus

23—-Mar-1997 Perl Version 5.004 BETA 249

perlsub Perl Programmers Reference Guide perlsub

in the loop

for my $i (1, 2, 3) {
some_function();

}

the scope offi extends to the end of the loop, but not beyond it, and so the valiieisfunavailable in
some_function()

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
references to package variables, if you say

use strict 'vars’;

then any variable reference from there to the end of the enclosing block must either refer to a lexical
variable, or must be fully qualified with the package name. A compilation error results otherwise. An inner
block may countermand this with "no strict ‘vars™.

A my() has both a compile-time and a run—time effect. At compile time, the compiler takes notice of it; the
principle usefulness of this is to quiase strict ‘vars’ . The actual initialization doesn‘t happen
until run time, so gets executed every time through a loop.

Variables declared with "my" are not part of any package and are therefore never fully qualified with the
package name. In particular, you're not allowed to try to make a package variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax
my$; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using the fully
qualified :: notation even while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;

print "$x and $::x\n";

That will print out 20 and 10.

You may declare "my" variables at the outermost scope of a file to hide any such identifiers totally from the
outside world. This is similar to C's static variables at the file level. To do this with a subroutine requires
the use of a closure (anonymous function). If a block (such egad) |, function, orpackage) wants to

create a private subroutine that cannot be called from outside that block, it can declare a lexical variable
containing an anonymous sub reference:

my $secret_version ='1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can see the
subroutine, because its name is not in any package‘'s symbol table. Remember thaREAlioY called
$some_pack::secret_version or anything; it's justsecret_version, unqualified and

unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of some
package to be found.

Just because the lexical variable is lexically (also called statically) scoped doesn‘t mean that within a
function it works like a C static. It normally works more like a C auto. But here's a mechanism for giving a
function private variables with both lexical scoping and a static lifetime. If you do want to create something
like C's static variables, just enclose the whole function in an extra block, and put the static variable outside
the function but in the block.

250

Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate filereguire oruse, then this is probably just fine.

If it's all in the main program, you'll need to arrange fortimg) to be executed early, either by putting the
whole block above your pain program, or more likely, placing merely a BEGIN sub around it to make sure it
gets executed before your program starts to run:

sub BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;

}
}

Seeperlrun about the BEGIN function.

Temporary Values via local()

NOTE: In general, you should be using "my" instead of "local", because it's faster and safer. Exceptions to
this include the global punctuation variables, filehandles and formats, and direct manipulation of the Perl
symbol table itself. Format variables often use "local" though, as do other variables whose current value
must be visible to called subroutines.

Synopsis:
local $foo; # declare $foo dynamically local
local (@wid, %get); # declare list of variables local
local $foo = "flurp"; # declare $foo dynamic, and init it
local @oof = @bar; # declare @oof dynamic, and init it
local *FH; # localize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus
@merlyn is really @randal, etc
local *merlyn ='randal’; # SAME THING: promote 'randal’ to *randal

local *merlyn =\$randal; # just alias $merlyn, not @merlyn etc

A local() modifies its listed variables to be local to the enclosing block, (or subroetiak} , ordo)
andany called from within that blockA local() just gives temporary values to global (meaning package)
variables. This is known as dynamic scoping. Lexical scoping is done with "my", which works more like
C's auto declarations.

If more than one variable is given lmcal() , they must be placed in parentheses. All listed elements
must be legal Ivalues. This operator works by saving the current values of those variables in its argument list
on a hidden stack and restoring them upon exiting the block, subroutine, or eval. This means that called
subroutines can also reference the local variable, but not the global one. The argument list may be assigned
to if desired, which allows you to initialize your local variables. (If no initializer is given for a particular
variable, it is created with an undefined value.) Commonly this is used to name the parameters to a
subroutine. Examples:

for$i(0..9){
$digits{$i} = $i;
}

assume this function uses global %digits hash

23—-Mar-1997 Perl Version 5.004 BETA 251

perlsub Perl Programmers Reference Guide perlsub

parse_num();

now temporarily add to %digits hash

if ($basel2) {
(NOTE: not claiming this is efficient!)
local %digits = (%digits, 't' => 10, e’ => 11);
parse_num(); # parse_num gets this new %digits!

}
old %digits restored here

Becausdocal() is a run—time command, it gets executed every time through a loop. In releases of Perl
previous to 5.0, this used more stack storage each time until the loop was exited. Perl now reclaims the
space each time through, but it's still more efficient to declare your variables outside the loop.

A local is simply a modifier on an Ivalue expression. When you assign to a localized variable, the local
doesn't change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right—hand side, while
local $foo = <STDIN>;

supplies a scalar context.

Passing Symbol Table Entries (typeglobs)

[Note: The mechanism described in this section was originally the only way to simulate pass—-by-reference
in older versions of Perl. While it still works fine in modern versions, the new reference mechanism is
generally easier to work with. See below.]

Sometimes you don‘t want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer to all
objects of a particular name by prefixing the name with aftao: . This is often known as a "typeglob",
because the star on the front can be thought of as a wildcard match for all the funny prefix characters on
variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name, including
any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refer to whatever
"*" value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}
}

doubleary(*foo);
doubleary(*bar);

Note that scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly [0] etc. You can modify all the elements of an array by passing all

the elements as scalars, but you have to use the * mechanism (or the equivalent reference mechanism) to
push, pop, or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don't want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, because normally the LIST mechanism will merge all the array values so that you can‘t extract out the
individual arrays. For more on typeglobs, $gpeglobs and Filehandles in perldata

252

Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

Pass by Reference
If you want to pass more than one array or hash into a function—or return them from it—and have them
maintain their integrity, then you‘re going to have to use an explicit pass—by-reference. Before you do that,
you need to understand references as detailgzbrinef. This section may not make much sense to you
otherwise.

Here are a few simple examples. First, let's pass in several arrays to a function and have it pop all of then,
return a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}
return @retlist;

}

Here's how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %$href) {
$seen{$k}++;
}
}
return grep { $seen{$_} == @_ } keys %seen;
}

So far, we're using just the normal list return mechanism. What happens if you want to pass or return a hash?
Well, if you're using only one of them, or you don‘t mind them concatenating, then the normal calling
convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or
(Y%a, %b) = func(%c, %d);

That syntax simply won‘t work. It sets just @a or %a and clears the @b or %b. Plus the function didn‘t get
passed into two separate arrays or hashes: it got one long listin @_, as always.

If you can arrange for everyone to deal with this through references, it's cleaner code, although not so nice to
look at. Here's a function that takes two array references as arguments, returning the two array elements in
order of how many elements they have in them:

($aref, $bref) = func(\@c, \@d);
print "@%aref has more than @$brefin";
sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
}else {
return ($dref, $cref);

}

23—-Mar-1997 Perl Version 5.004 BETA 253

perlsub Perl Programmers Reference Guide perlsub

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";

sub func {
local (*c, *d) = @_;
if (@c > @d) {
return \@c, \@d);
}else {
return \@d, \@c);
}
}

Here we're using the typeglobs to do symbol table aliasing. It's a tad subtle, though, and also won'‘t work if
you'‘re usingmy() variables, because only globals (well, évzhl() s) are in the symbol table.

If you're passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references would be better because they'll still work properly usdestrict ‘refs’

For example:
splutter(*STDOUT);
sub splutter {

my $fh = shift;

print $th "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}
Another way to do this is using *HANDLE{IO}, sqeerlref for usage and caveats.

If you‘re planning on generating new filehandles, you could do this:

sub openit {
my $name = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

}

Although that will actually produce a small memory leak. See the bottoopai() for a somewhat
cleaner way using the 10::Handle package.

Prototypes
As of the 5.002 release of perl, if you declare

sub mypush \@ @)

thenmypush() takes arguments exactly likrish() does. The declaration of the function to be called
must be visible at compile time. The prototype affects only the interpretation of new-style calls to the
function, where new-style is defined as not using&tlvharacter. In other words, if you call it like a builtin
function, then it behaves like a builtin function. If you call it like an old-fashioned subroutine, then it
behaves like an old-fashioned subroutine. It naturally falls out from this rule that prototypes have no
influence on subroutine references likéoo or on indirect subroutine calls lik&{$subref}.

Method calls are not influenced by prototypes either, because the function to be called is indeterminate at
compile time, because it depends on inheritance.

254 Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

Because the intent is primarily to let you define subroutines that work like builtin commands, here are the
prototypes for some other functions that parse almost exactly like the corresponding builtins.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$3%) myvec $var, $offset, 1

sub myindex ($%$;$) myindex &getstring, "substr"

sub mysyswrite ($$%$;%) mysyswrite $buf, 0, length($buf) — $off, $off
sub myreverse (@) myreverse $a,$b,$c

sub myjoin ($@) myjoin ":",%a,$b,$c

sub mypop (\@) mypop @array

sub mysplice (\@$$@) mysplice @array,@array,0,@pushme
sub mykeys (\%) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a,$b,$c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start with that
character. The value passed to the subroutine (as p@r) ofill be a reference to the actual argument given
in the subroutine call, obtained by applyingo that argument.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all the rest of
the arguments, and forces list context. An argument representedobges scalar context. A® requires

an anonymous subroutine, which, if passed as the first argument, does not require the "sub" keyword or a

subsequent comma. A * does whatever it has to do to turn the argument into a reference to a symbol table

entry.

A semicolon separates mandatory arguments from optional arguments. (It is redundant before @ or %.)

Note how the last three examples above are treated specially by thempsigsep() is parsed as a true list
operator,myrand() is parsed as a true unary operator with unary precedence the seand(®s , and
mytime() is truly without arguments, just likeme() . That is, if you say

mytime +2;
you'll getmytime() + 2, not mytime(2), which is how it would be parsed without the prototype.

The interesting thing aboétis that you can generate new syntax with it:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };

if ($@) {
local $ =3$@;
&$catch;
}
}
sub catch (&) {$_[0] }
try {
die "phooey";
} catch {
/phooey/ and print "unphooey\n";
¥

That prints "unphooey”. (Yes, there are still unresolved issues having to do with the visibility of @ _. I'm
ignoring that question for the moment. (But note that if we make @_ lexically scoped, those anonymous

23—-Mar-1997 Perl Version 5.004 BETA 255

perlsub Perl Programmers Reference Guide perlsub

subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))
And here's a reimplementation of grep:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach$_ (@) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechanism's main goal is to let module writers provide better diagnostics for module users. Larry feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that's easy to
swallow.

It's probably best to prototype new functions, not retrofit prototyping into older ones. That's because you
must be especially careful about silent impositions of differing list versus scalar contexts. For example, if
you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";
}
and someone has been calling it with an array or expression returning a list:
func(@foo);

func(split /:/);

Then you'‘ve just supplied an automagialar() in front of their argument, which can be more than a bit
surprising. The old @foo which used to hold one thing doesn't get passed in. Instdadcthe now
gets passed in 1, that is, the number of elements in @foo. Asglitfe gets called in a scalar context
and starts scribbling on your @__ parameter list.

This is all very powerful, of course, and should be used only in moderation to make the world a better place.

Constant Functions

Functions with a prototype @ are potential candidates for inlining. If the result after optimization and
constant folding is a constant then it will be used in place of new-style calls to the function. Old-style calls
(that is, calls made usir&) are not affected.

All of the following functions would be inlined.

sub pi () {3.14159} # Not exact, but close.
sub PI () {4*atan2 1,1} # As good as it gets,
and it's inlined, too!
sub ST_DEV () {0}
sub ST_INO () {1}
sub FLAG_FOO () {1<<8}
sub FLAG_BAR () {1<<9}
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }
sub OPT_BAZ () {1}

sub BAZ_VAL () {

256

Perl Version 5.004 BETA 23—-Mar-1997

perlsub Perl Programmers Reference Guide perlsub

if (OPT_BAZ) {
return 23;

}

else {
return 42;

}
}

If you redefine a subroutine which was eligible for inlining you'll get a mandatory warning. (You can use
this warning to tell whether or not a particular subroutine is considered constant.) The warning is considered
severe enough not to be optional because previously compiled invocations of the function will still be using
the old value of the function. If you need to be able to redefine the subroutine you need to ensure that it isn‘t
inlined, either by dropping thé) prototype (which changes the calling semantics, so beware) or by
thwarting the inlining mechanism in some other way, such as

my $dummy;

sub not_inlined () {
$dummy || 23

}

Overriding Builtin Functions
Many builtin functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing builtin functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module—ordinary predeclaration isn‘t good
enough. However, theubs pragma (compiler directive) lets you, in effect, pre—declare subs via the import
syntax, and these names may then override the builtin ones:

use subs 'chdir’, 'chroot’, ‘chmod’, 'chown’;
chdir $somewhere;
sub chdir { ... }

Library modules should not in general export builtin names like "open" or "chdir" as part of their default
@EXPORT list, because these may sneak into someone else's namespace and change the semantics
unexpectedly. Instead, if the module adds the name to the @EXPORT_OK list, then it's possible for a user
to import the name explicitly, but not implicitly. That is, they could say

use Module 'open’;

and it would import the open override, but if they said
use Module;

they would get the default imports without the overrides.

Autoloading
If you call a subroutine that is undefined, you would ordinarily get an immediate fatal error complaining that
the subroutine doesn‘t exist. (Likewise for subroutines being used as methods, when the method doesn‘t
exist in any of the base classes of the class package.) If, however, thefdJiIEF@NOABubroutine defined
in the package or packages that were searched for the original subroutine, tAehrhaOARubroutine is
called with the arguments that would have been passed to the original subroutine. The fully qualified name
of the original subroutine magically appears in $&UTOLOADvariable in the same package as the
AUTOLOADoutine. The name is not passed as an ordinary argument because, er, well, just because, that's
why...

Most AUTOLOADoutines will load in a definition for the subroutine in question using eval, and then execute
that subroutine using a special form of "goto" that erases the stack frameA\bfTiid OADoutine without a

trace. (See the standafditoLoader module, for example.) But aAUTOLOADoutine can also just
emulate the routine and never define it. For example, let's pretend that a function that wasn'‘t defined should

23—-Mar-1997 Perl Version 5.004 BETA 257

perlsub Perl Programmers Reference Guide perlsub

just callsystem() with those arguments. All you‘d do is this:

sub AUTOLOAD ({
my $program = SAUTOLOAD;
$program =~ s/.*:://;
system($program, @_);

}

date();

who('am’, 'i");

Is(=I);

In fact, if you pre—declare the functions you want to call that way, you don‘t even need the parentheses:

use subs qw(date who Is);

date;

who "am"”, "i";

Is —I;
A more complete example of this is the standard Shell module, which can treat undefined subroutine calls as
calls to Unix programs.

Mechanisms are available for modules writers to help split the modules up into autoloadable files. See the
standard AutoLoader module describedhirtoLoaderand inAutoSplif the standard SelfLoader modules in
SelfLoadeyand the document on adding C functions to perl cogerixs

SEE ALSO

Seeperlref for more on references. Sperixsif you'd like to learn about calling C subroutines from perl.
See perlmodto learn about bundling up your functions in separate files.

258

Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

NAME

perlmod — Perl modules (packages)

DESCRIPTION

Packages

Perl provides a mechanism for alternative nhamespaces to protect packages from stomping on each other's
variables. In fact, apart from certain magical variables, there's really no such thing as a global variable in
Perl. The package statement declares the compilation unit as being in the given namespace. The scope of
the package declaration is from the declaration itself through the end of the enclosing block (the same scope
as thelocal() operator). All further unqualified dynamic identifiers will be in this namespace. A
package statement affects only dynamic variables—including those you‘veoasd(d on—but not

lexical variables created withy() . Typically it would be the first declaration in a file to be included by the
require or use operator. You can switch into a package in more than one place; it influences merely
which symbol table is used by the compiler for the rest of that block. You can refer to variables and
filehandles in other packages by prefixing the identifier with the package name and a double colon:
$Package::Variable. If the package name is null, theain package is assumed. That$ssail

is equivalent tébmain::sail.

(The old package delimiter was a single quote, but double colon is now the preferred delimiter, in part
because it's more readable to humans, and in part because it's more reaeafslestnacros. It also makes
C++ programmers feel like they know what's going on.)

Packages may be nested inside other pack&@4TER::INNER::var. This implies nothing about the

order of name lookups, however. All symbols are either local to the current package, or must be fully
qualified from the outer package name down. For instance, there is nowhere within gackagfethat
$INNER::var refers toSOUTER::INNER::var. It would treat packagtNNER as a totally separate
global package.

Only identifiers starting with letters (or underscore) are stored in a package's symbol table. All other
symbols are kept in packageain, including all of the punctuation variables lige. In addition, the
identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG are forced to be in
packagemain, even when used for other purposes than their built-in one. Note also that, if you have a
package calleth s, ory, then you can‘t use the qualified form of an identifier because it will be interpreted
instead as a pattern match, a substitution, or a translation.

(Variables beginning with underscore used to be forced into package main, but we decided it was more
useful for package writers to be able to use leading underscore to indicate private variables and method
names$_ is still global though.)

Eval() ed strings are compiled in the package in whichehal() was compiled. (Assignments to
$SIG{}, however, assume the signal handler specified is imtia package. Qualify the signal handler
name if you wish to have a signal handler in a package.) For an example, egandbeplin the Perl
library. It initially switches to théB package so that the debugger doesn't interfere with variables in the
script you are trying to debug. At various points, however, it temporarily switches back tuaitihe
package to evaluate various expressions in the context afdhe package (or wherever you came from).
Seeperldebug

Seeperlsubfor other scoping issues relatedng() andlocal() , orperlrefregarding closures.

Symbol Tables

The symbol table for a package happens to be stored in the hash of that name with two colons appended.
The main symbol table's name is thi4gnain:: , or %:: for short. Likewise symbol table for the nested
package mentioned earlier is nand@UTER::INNER:: .

The value in each entry of the hash is what you are referring to when you #ésartiee typeglob notation.
In fact, the following have the same effect, though the first is more efficient because it does the symbol table
lookups at compile time:

23—-Mar-1997 Perl Version 5.004 BETA 259

perimod Perl Programmers Reference Guide perimod

local(*main::foo) = *main::bar; local($main::{'foo’}) =

$main::{’bar’};
You can use this to print out all the variables in a package, for instance. lderagsar.plfrom the Perl
library:

package dumpvar;
sub main::dumpvar {
($package) = @_;
local(*stab) = eval("*${package}::");
while (($key,$val) = each(%stab)) {
local(*entry) = $val;
if (defined $entry) {
print "\$$key = '$entry’\n";
}

if (defined @entry) {
print "\@$key = (\n";
foreach $num ($[.. $#entry) {
print " $num\t™,$entry[$num],"\n";
}
print ")\n";
}
if ($key ne "${package}::" && defined %entry) {
print "\%$key = (\n";
foreach $key (sort keys(%entry)) {
print" $key\t" $entry{$key},"\n";
}
print ")\n";
}
}
}

Note that even though the subroutine is compiled in packaggvar , the name of the subroutine is
qualified so that its name is inserted into package .

Assignment to a typeglob performs an aliasing operation, i.e.,
*dick = *richard;

causes variables, subroutines, and file handles accessible via the ideatified to also be accessible
via the identifierdick . If you want to alias only a particular variable or subroutine, you can assign a
reference instead:

*dick = \$richard;

makes $richard and $dick the same variable, but leaves @richard and @dick as separate arrays.
Tricky, eh?

This mechanism may be used to pass and return cheap references into or from subroutines if you won‘t want
to copy the whole thing.

%some_hash = ();

*some_hash = fn(\%another_hash);

sub fn {
local *hashsym = shift;
now use %hashsym normally, and you
will affect the caller’'s %another_hash
my %nhash = (); # do what you want

260

Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

return \%nhash;

}

On return, the reference will overwrite the hash slot in the symbol table specified by the *some_hash
typeglob. This is a somewhat tricky way of passing around references cheaply when you won'‘t want to have
to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.
*P| =\3.14159265358979;
Now you cannot alteBPl, which is probably a good thing all in all.

You can sayfoo{PACKAGE} and*foo{NAME} to find out what name and package the *foo symbol
table entry comes from. This may be useful in a subroutine which is passed typeglobs as arguments

sub identify_typeglob {
my $glob = shift;
print 'You gave me ', *{$glob}{PACKAGE}, "::’, *{$glob}{NAME}, "\n";
}
identify_typeglob *foo;
identify_typeglob *bar::baz;

This prints

You gave me main::foo
You gave me bar::baz

The *foo{THING} notation can also be used to obtain references to the individual elements of *foo, see
perlref.

Package Constructors and Destructors

There are two special subroutine definitions that function as package constructors and destructors. These are
the BEGIN andENDroutines. Theub is optional for these routines.

A BEGIN subroutine is executed as soon as possible, that is, the moment it is completely defined, even
before the rest of the containing file is parsed. You may have muBp®@N blocks within a file—they

will execute in order of definition. Becaus@BBGIN block executes immediately, it can pull in definitions

of subroutines and such from other files in time to be visible to the rest of the file.

An ENDsubroutine is executed as late as possible, that is, when the interpreter is being exited, even if it is
exiting as a result of die() function. (But not if it's is being blown out of the water by a signal—you
have to trap that yourself (if you can).) You may have muliN®blocks within a file—they will execute

in reverse order of definition; that is: last in, first out (LIFO).

Inside anENDsubroutineb? contains the value that the script is going to pasxit)) . You can modify
$? to change the exit value of the script. Beware of charfyfingy accident (e.g.,, by running something
via system).

Note that when you use then and-p switches to PerBEGIN andENDwork just as they do iawk, as a
degenerate case.
Perl Classes

There is no special class syntax in Perl, but a package may function as a class if it provides subroutines that
function as methods. Such a package may also derive some of its methods from another class package by
listing the other package name in its @ISA array.

For more on this, sqeerlobj.

Perl Modules

A module is just a package that is defined in a library file of the same name, and is designed to be reusable.
It may do this by providing a mechanism for exporting some of its symbols into the symbol table of any

23—-Mar-1997 Perl Version 5.004 BETA 261

perimod Perl Programmers Reference Guide perimod

package using it. Or it may function as a class definition and make its semantics available implicitly through
method calls on the class and its objects, without explicit exportation of any symbols. Or it can do a little of
both.

For example, to start a normal module called Some::Module, create a file called Some/Module.pm and start
with this template:

package Some::Module; # assumes Some/Module.pm
use strict;

BEGIN {
use Exporter ();
use vars gw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

set the version for version checking

$VERSION =1.00;

if using RCS/CVS, this may be preferred

$VERSION = do { my @r = (q$Revision: 2.21 $ =~ Ad+/g); sprintf "%d."."%02d" x

@ISA = gqw(Exporter);
@EXPORT = gw(&funcl &func2 &func4);
%EXPORT_TAGS =(); #eg: TAG =>[gwlnamel name2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = gw($Varl %Hashit &func3);

}
use vars @EXPORT_OK;

non—exported package globals go here
usevars qw(@more $stuff);

initalize package globals, first exported ones
$Varl ="
%Hashit = ();

then the others (which are still accessible as $Some::Module::stuff)
$stuff =",
@more = ();

all file—scoped lexicals must be created before
the functions below that use them.

file—private lexicals go here
my $priv_var =";
my %secret_hash = ();

here’s a file—private function as a closure,
callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {
stuff goes here.
¥
make all your functions, whether exported or not;
remember to put something interesting in the {} stubs
subfuncl {} # no prototype
sub func2() {} # proto’d void
sub func3($$) {} # proto'd to 2 scalars

this one isn't exported, but could be called!
sub func4(\%) {} # proto’d to 1 hash ref

262

Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

END {} # module clean—up code here (global destructor)

Then go on to declare and use your variables in functions without any qualificatiorsxfeter and the
Perl Modules Filefor details on mechanics and style issues in module creation.

Perl modules are included into your program by saying
use Module;
or
use Module LIST;
This is exactly equivalent to
BEGIN { require "Module.pm"; import Module; }
or
BEGIN { require "Module.pm"; import Module LIST; }
As a special case
use Module ();
is exactly equivalent to
BEGIN { require "Module.pm"; }

All Perl module files have the extensiopm. use assumes this so that you don‘t have to spell out
"Module.pnt in quotes. This also helps to differentiate new modules frompbldnd.ph files. Module

names are also capitalized unless they‘'re functioning as pragmas, "Pragmas" are in effect compiler
directives, and are sometimes called "pragmatic modules" (or even "pragmata” if you‘re a classicist).

Because these statement implies BEGIN block, the importation of semantics happens at the moment the

use statement is compiled, before the rest of the file is compiled. This is how it is able to function as a
pragma mechanism, and also how modules are able to declare subroutines that are then visible as list
operators for the rest of the current file. This will not work if you negpiire instead ofuse. With

require you can get into this problem:

require Cwd,; # make Cwd:: accessible
$here = Cwd::getcwd();
use Cwd; # import names from Cwad::
$here = getcwd();
require Cwd,; # make Cwd:: accessible
$here = getcwd(); # oops! no main::getcwd()

In generaluse Module (); is recommended oveequire Module;

Perl packages may be nested inside other package names, so we can have package names:containing
But if we used that package name directly as a filename it would makes for unwieldy or impossible
filenames on some systems. Therefore, if a module's name i§,esdySoundex |, then its definition is
actually found in the library fil&ext/Soundex.pm

Perl modules always have.jam file, but there may also be dynamically linked executables or autoloaded
subroutine definitions associated with the module. If so, these will be entirely transparent to the user of the
module. It is the responsibility of thpm file to load (or arrange to autoload) any additional functionality.

The POSIX module happens to do both dynamic loading and autoloading, but the user canusay just
POSIXto get it all.

For more information on writing extension modules, pedgxsandperlguts

23—-Mar-1997 Perl Version 5.004 BETA 263

perimod Perl Programmers Reference Guide perimod

NOTE

Perl does not enforce private and public parts of its modules as you may have been used to in other
languages like C++, Ada, or Modula-17. Perl doesn‘t have an infatuation with enforced privacy. It would
prefer that you stayed out of its living room because you weren't invited, not because it has a shotgun.

The module and its user have a contract, part of which is common law, and part of which is "written". Part
of the common law contract is that a module doesn‘t pollute any namespace it wasn'‘t asked to. The written
contract for the module (A.K.A. documentation) may make other provisions. But then you know when you
use RedefineTheWorld that you‘re redefining the world and willing to take the consequences.

THE PERL MODULE LIBRARY

A number of modules are included the Perl distribution. These are described below, and aprandriou
may also discover files in the library directory that end in eigbleor .ph. These are old libraries supplied
so that old programs that use them still run. Tidiles will all eventually be converted into standard
modules, and theph files made byh2ph will probably end up as extension modules madé2ys (Some
.ph values may already be available through the POSIX module.)plPpen file in the distribution may
help in your conversion, but it's just a mechanical process and therefore far from bulletproof.

Pragmatic Modules

They work somewhat like pragmas in that they tend to affect the compilation of your program, and thus will
usually work well only when used within i#se, or no. Most of these are locally scoped, so an inner
BLOCK may countermand any of these by saying:

no integer;
no strict 'refs’;

which lasts until the end of that BLOCK.

Unlike the pragmas that effect théH hints variable, theise vars anduse subs declarations are not
BLOCK-scoped. They allow you to pre—declare a variables or subroutines within a pafiieulather

than just a block. Such declarations are effective for the entire file for which they were declared. You
cannot rescind them witho vars ~ orno subs .

The following pragmas are defined (and have their own documentation).

blib manipulate @INC at compile time to use MakeMaker's uninstalled version of a package
diagnostics force verbose warning diagnostics
integer compute arithmetic in integer instead of double
less request less of something from the compiler
lib manipulate @INC at compile time
locale use or ignore current locale for built—in operations (sa#ocale
ops restrict named opcodes when compiling or running Perl code
overload overload basic Perl operations
sigtrap enable simple signal handling
strict restrict unsafe constructs
subs pre—declare sub names
vmsish adopt certain VMS—specific behaviors
vars pre—declare global variable names
264 Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

Standard Modules

Standard, bundled modules are all expected to behave in a well-defined manner with respect to namespace
pollution because they use the Exporter module. See their own documentation for details.

AnyDBM_File provide framework for multiple DBMs

AutoLoader load functions only on demand

AutoSplit split a package for autoloading

Benchmark benchmark running times of code

CPAN interface to Comprehensive Perl Archive Network

CPAN::FirstTime
create a CPAN configuration file

CPAN::Nox run CPAN while avoiding compiled extensions
Carp warn of errors (from perspective of caller)

Class:: Template
struct/member template builder

Config access Perl configuration information
Cwd get pathname of current working directory
DB_File access to Berkeley DB

Devel::SelfStubber
generate stubs for a SelfLoading module

DirHandle supply object methods for directory handles

DynalLoader dynamically load C libraries into Perl code

English use nice English (or awk) names for ugly punctuation variables
Env import environment variables
Exporter implements default import method for modules

ExtUtils::Embed

utilities for embedding Perl in C/C++ applications
ExtUtils::Install install files from here to there
ExtUtils::Liblist determine libraries to use and how to use them
ExtUtils::MM_0S2

methods to override UN*X behaviour in ExtUtils::MakeMaker
ExtUtils::MM__Unix

methods used by ExtUtils::MakeMaker
ExtUtils::MM_VMS

methods to override UN*X behaviour in ExtUtils::MakeMaker
ExtUtils::MakeMaker

create an extension Makefile

ExtUtils::Manifest
utilities to write and check a MANIFEST file

23—-Mar-1997 Perl Version 5.004 BETA 265

perimod Perl Programmers Reference Guide perimod
ExtUtils::Mkbootstrap
make a bootstrap file for use by Dynaloader
ExtUtils::Mksymlists
write linker options files for dynamic extension
ExtUtils::testlib add blib/* directories to @INC
Fentl load the C Fcntl.h defines
File::Basename
split a pathname into pieces
File::CheckTree
run many filetest checks on a tree
File::Compare compare files or filehandles
File::Copy copy files or filehandles
File::Find traverse afile tree
File::Path create or remove a series of directories
File::stat by—-name interface to Perl's built—gtat() functions
FileCache keep more files open than the system permits
FileHandle supply object methods for filehandles
FindBin locate directory of original perl script
GDBM_File access to the gdbm library
Getopt::Long extended processing of command line options
Getopt::Std process single—character switches with switch clustering
I18N::Collate compare 8-bit scalar data according to the current locale
[e) load various 10 modules
10::File supply object methods for filehandles
I0::Handle supply object methods for I/O handles
10::Pipe supply object methods for pipes
I0::Seekable supply seek based methods for I/O objects
10::Select OO interface to the select system call
10::Socket object interface to socket communications
IPC::Open2 open a process for both reading and writing
IPC::Open3 open a process for reading, writing, and error handling
Math::BigFloat arbitrary length float math package
Math::Bigint arbitrary size integer math package
Math::Complex
complex humbers and associated mathematical functions
NDBM_File tied access to ndbm files
266 Perl Version 5.004 BETA 23—-Mar-1997

perimod

Perl Programmers Reference Guide perimod

Net::Ping
Net::hostent
Net::netent
Net::protoent
Net::servent
Opcode
Pod::Text
POSIX
SDBM_File
Safe
Search::Dict
SelectSaver
SelfLoader
Shell

Socket
Symbol

Sys::Hostname

Sys::Syslog
Term::Cap

Term::Complete

Term::ReadLine

Test::Harness

Text::Abbrev

Hello, anybody home?

by—name interface to Perl's built—gethost*() functions
by—-name interface to Perl's built—getnet*() functions
by—name interface to Perl's built—getproto*() functions
by—name interface to Perl's built-getserv*() functions

disable named opcodes when compiling or running perl code
convert POD data to formatted ASCII text

interface to IEEE Standard 1003.1

tied access to sdbm files

compile and execute code in restricted compartments
search for key in dictionary file

save and restore selected file handle

load functions only on demand

run shell commands transparently within perl

load the C socket.h defines and structure manipulators

manipulate Perl symbols and their names

try every conceivable way to get hosthame
interface to the UNIX syslog(3) calls

termcap interface

word completion module

interface to variouseadline packages
run perl standard test scripts with statistics

create an abbreviation table from a list

Text::ParseWords

Text::Soundex

Text::Tabs
Text::Wrap
Tie::Hash
Tie::RefHash

Tie::Scalar

Tie::SubstrHash

parse text into an array of tokens

implementation of the Soundex Algorithm as described by Knuth
expand and unexpand tabs per the unix expand(1) and unexpand(1)
line wrapping to form simple paragraphs

base class definitions for tied hashes

base class definitions for tied hashes with references as keys

base class definitions for tied scalars

fixed—table-size, fixed—key-length hashing

23-Mar-1997

Perl Version 5.004 BETA 267

perimod Perl Programmers Reference Guide perimod

Time::Local efficiently compute time from local and GMT time
Time::gmtime by—-name interface to Perl's built—-gmtime() function

Time::localtime
by—name interface to Perl's built-iacaltime() function

Time::tm internal object used by Time::gmtime and Time::localtime
UNIVERSAL base class for ALL classes (blessed references)
User::grent by—-name interface to Perl's built—getgr*() functions
User::pwent by—-name interface to Perl's built—getpw*() functions

To find outall the modules installed on your system, including those without documentation or outside the
standard release, do this:

find ‘perl —e "print "@INC™* —name *.pm’ —print

They should all have their own documentation installed and accessible via your system man(1) command. If
that fails, try theperldocprogram.

Extension Modules

Extension modules are written in C (or a mix of Perl and C) and get dynamically loaded into Perl if and
when you need them. Supported extension modules include the Socket, Fcntl, and POSIX modules.

Many popular C extension modules do not come bundled (at least, not completely) due to their sizes,
volatility, or simply lack of time for adequate testing and configuration across the multitude of platforms on
which Perl was beta-tested. You are encouraged to look for them in archie(1L), the Perl FAQ or
Meta—-FAQ, the WWW page, and even with their authors before randomly posting asking for their present
condition and disposition.

CPAN

CPAN stands for the Comprehensive Perl Archive Network. This is a globally replicated collection of all
known Perl materials, including hundreds of unbundled modules. Here are the major categories of modules:

° Language Extensions and Documentation Tools

° Development Support

° Operating System Interfaces

° Networking, Device Control (modems) and InterProcess Communication
° Data Types and Data Type Utilities

° Database Interfaces

° User Interfaces

° Interfaces to / Emulations of Other Programming Languages

° File Names, File Systems and File Locking (see also File Handles)

° String Processing, Language Text Processing, Parsing, and Searching
° Option, Argument, Parameter, and Configuration File Processing

° Internationalization and Locale

° Authentication, Security, and Encryption

° World Wide Web, HTML, HTTP, CGI, MIME

268 Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

° Server and Daemon Utilities

° Archiving and Compression

° Images, Pixmap and Bitmap Manipulation, Drawing, and Graphing
° Mail and Usenet News

° Control Flow Utilities (callbacks and exceptions etc)

° File Handle and Input/Output Stream Ultilities

° Miscellaneous Modules

The registered CPAN sites as of this writing include the following. You should try to choose one close to

you:
° Africa

South Africa ftp:/ftp.is.co.za/programming/perl/CPAN/
° Asia

Hong Kong ftp://ftp.hkstar.com/pub/CPAN/

Japan ftp://ftp.jaist.ac.jp/pub/lang/perl/CPAN/

ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/

South Korea ftp://ftp.nuri.net/pub/CPAN/

Taiwan ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.wownet.net/pub2/PERL/

° Australasia

Australia ftp://ftp.netinfo.com.au/pub/perl/CPAN/
New Zealand ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/

° Europe

Austria ftp://ftp.tuwien.ac.at/pub/languages/perl/CPAN/

Belgium ftp://ftp.kulnet.kuleuven.ac.be/pub/mirror/CPAN/

Czech Republic ftp://sunsite.mff.cuni.cz/Languages/Perl/CPAN/

Denmark ftp://sunsite.auc.dk/pub/languages/perl/CPAN/

Finland ftp://ftp.funet.fi/pub/languages/perl/CPAN/

France ftp://ftp.ibp.fr/pub/perl/CPAN/
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/

Germany ftp://ftp.gmd.de/packages/CPAN/
ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.mpi—sb.mpg.de/pub/perl/CPAN/
ftp://ftp.rz.ruhr—uni-bochum.de/pub/CPAN/
ftp://ftp.uni—erlangen.de/pub/source/Perl/CPAN/
ftp://ftp.uni—hamburg.de/pub/soft/lang/perl/CPAN/

Greece ftp://ftp.ntua.gr/pub/lang/perl/

Hungary ftp://ftp.kfki.hu/pub/packages/perl/CPAN/

Italy ftp://cis.utovrm.it/CPAN/

the Netherlands ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.EU.net/packages/cpan/

Norway ftp://ftp.uit.no/pub/languages/perl/cpan/

Poland ftp://ftp.pk.edu.pl/pub/lang/perl/CPAN/
ftp://sunsite.icm.edu.pl/pub/CPAN/

Portugal ftp://ftp.ci.uminho.pt/pub/lang/perl/
ftp://ftp.telepac.pt/pub/CPAN/

Russia ftp://ftp.sai.msu.su/pub/lang/perl/CPAN/

23—-Mar-1997 Perl Version 5.004 BETA 269

perimod Perl Programmers Reference Guide perimod

Slovenia ftp://ftp.arnes.si/software/perl/CPAN/

Spain ftp://ftp.etse.urv.es/pub/mirror/perl/
ftp://ftp.rediris.es/mirror/CPAN/

Sweden ftp://ftp.sunet.se/pub/lang/perl/CPAN/

UK ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/

ftp://sunsite.doc.ic.ac.uk/packages/CPAN/
ftp://unix.hensa.ac.uk/mirrors/perl-CPAN/

° North America

Ontario ftp://ftp.utilis.com/public/ CPAN/
ftp://enterprise.ic.gc.ca/pub/perl/CPAN/
Manitoba ftp://theory.uwinnipeg.ca/pub/CPAN/
California ftp://ftp.digital.com/pub/plan/perl/CPAN/
ftp://ftp.cdrom.com/pub/perl/CPAN/
Colorado ftp://ftp.cs.colorado.edu/pub/perl/CPAN/
Florida ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
lllinois ftp://uiarchive.uiuc.edu/pub/lang/perl/CPAN/
Massachusetts ftp://ftp.iguide.com/pub/mirrors/packages/perl/CPAN/
New York ftp://ftp.rge.com/pub/languages/perl/
North Carolina ftp://ftp.duke.edu/pub/perl/
Oklahoma ftp://ftp.ou.edu/mirrors/CPAN/
Oregon http://www.perl.org/CPAN/
ftp://ftp.orst.edu/pub/packages/CPAN/
Pennsylvania ftp://ftp.epix.net/pub/languages/perl/
Texas ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.metronet.com/pub/perl/

° South America
Chile ftp://sunsite.dcc.uchile.cl/pub/Lang/perl/CPAN/
For an up—to—date listing of CPAN sites, ép://www.perl.com/perl/CPAN ftp://ftp.perl.com/perl!

Modules: Creation, Use, and Abuse

(The following section is borrowed directly from Tim Bunce's modules file, available at your nearest CPAN
site.)

Perl implements a class using a package, but the presence of a package doesn't imply the presence of a class.
A package is just a namespace. A class is a package that provides subroutines that can be used as methods.
A method is just a subroutine that expects, as its first argument, either the name of a package (for "static"
methods), or a reference to something (for "virtual" methods).

A module is a file that (by convention) provides a class of the same name (sans the .pm), plus an import
method in that class that can be called to fetch exported symbols. This module may implement some of its
methods by loading dynamic C or C++ objects, but that should be totally transparent to the user of the
module. Likewise, the module might set up an AUTOLOAD function to slurp in subroutine definitions on
demand, but this is also transparent. Only the .pm file is required to exist.

Guidelines for Module Creation

Do similar modules already exist in some form?

If so, please try to reuse the existing modules either in whole or by inheriting useful features into a new
class. |If this is not practical try to get together with the module authors to work on extending or
enhancing the functionality of the existing modules. A perfect example is the plethora of packages in
perl4 for dealing with command line options.

If you are writing a module to expand an already existing set of modules, please coordinate with the
author of the package. It helps if you follow the same naming scheme and module interaction scheme
as the original author.

270

Perl Version 5.004 BETA 23—-Mar-1997

perimod

Perl Programmers Reference Guide perimod

Try to design the new module to be easy to extend and reuse.

Use blessed references. Use the two argument form of bless to bless into the class name given as the
first parameter of the constructor, e.g.,:

sub new {
my $class = shift;
return bless {}, $class;

}

or even this if you'd like it to be used as either a static or a virtual method.

sub new {
my $self = shift;
my $class = ref($self) || $self;
return bless {}, $class;

}

Pass arrays as references so more parameters can be added later (it's also faster). Convert functions
into methods where appropriate. Split large methods into smaller more flexible ones. Inherit methods
from other modules if appropriate.

Avoid class name tests likdie "Invalid" unless ref $ref eq ‘FOO’ . Generally you
can delete theef) ‘FOO’ " part with no harm at all. Let the objects look after themselves! Generally,
avoid hardwired class names as far as possible.

Avoid $r—>Class::func() where using@ISA=gw(... Class ...) and $r—>func()
would work (seerlbotfor more details).

Use autosplit so little used or newly added functions won‘t be a burden to programs which don‘t use
them. Add test functions to the module after _ END___ either using AutoSplit or by saying:

eval join(”,<main::DATA>) || die $@ unless caller();

Does your module pass the ‘empty subclass’ test? If you@8JUBCLASS::ISA =

gw(YOURCLASS);" your applications should be able to use SUBCLASS in exactly the same way as
YOURCLASS. For example, does your application still work if you chan§ebj = new
YOURCLASSijnto: $obj = new SUBCLASS; ?

Avoid keeping any state information in your packages. It makes it difficult for multiple other packages
to use yours. Keep state information in objects.

Always use-w. Try touse strict; (oruse strict qw(...);). Remember that you can add
no strict qw(...); to individual blocks of code which need less strictness. Always-wse
Always use-w! Follow the guidelines in the perlstyle(1) manual.

Some simple style guidelines

The perlstyle manual supplied with perl has many helpful points.

Coding style is a matter of personal taste. Many people evolve their style over several years as they
learn what helps them write and maintain good code. Here's one set of assorted suggestions that seem
to be widely used by experienced developers:

Use underscores to separate words. It is generally easier tSvaachames_like_this than
$VarNamesLikeThis, especially for non—native speakers of English. It's also a simple rule that
works consistently with VAR_NAMES_LIKE_THIS.

Package/Module names are an exception to this rule. Perl informally reserves lowercase module names
for ‘pragma’ modules like integer and strict. Other modules normally begin with a capital letter and
use mixed case with no underscores (need to be short and portable).

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

23—-Mar-1997 Perl Version 5.004 BETA 271

perimod

Perl Programmers Reference Guide perimod

$ALL_CAPS_HERE constants only (beware clashes with perl vars)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercas&abjgzas_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

Select what to export.

Do NOT export method names!
Do NOT export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_OK in
preference to @EXPORT and avoid short or common names to reduce the risk of name clashes.

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (@blessed_ref->method) syntax. By convention you can use a
leading underscore on names to indicate informally that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by sayimy. $subref = sub { ... };
&S$subref;. But there's no way to call that directly as a method, because a method must have a
name in the symbol table.)

As a general rule, if the module is trying to be object oriented then export nothing. If it's just a
collection of functions then @EXPORT_OK anything but use @EXPORT with caution.

Select a name for the module.

This name should be as descriptive, accurate, and complete as possible. Avoid any risk of ambiguity.
Always try to use two or more whole words. Generally the name should reflect what is special about
what the module does rather than how it does it. Please use nested module names to group informally
or categorize a module. There should be a very good reason for a module not to have a nested name.
Module names should begin with a capital letter.

Having 57 modules all called Sort will not make life easy for anyone (though having 23 called
Sort::Quick is only marginally better :-). Imagine someone trying to install your module alongside
many others. If in any doubt ask for suggestions in comp.lang.perl.misc.

If you are developing a suite of related modules/classes it's good practice to use nested classes with a
common prefix as this will avoid namespace clashes. For example: Xyz::Control, Xyz::View,
Xyz::Model etc. Use the modules in this list as a haming guide.

If adding a new module to a set, follow the original author's standards for naming modules and the
interface to methods in those modules.

To be portable each component of a module hame should be limited to 11 characters. If it might be
used on DOS then try to ensure each is unique in the first 8 characters. Nested modules make this
easier.

Have you got it right?

How do you know that you‘ve made the right decisions? Have you picked an interface design that will
cause problems later? Have you picked the most appropriate name? Do you have any questions?

The best way to know for sure, and pick up many helpful suggestions, is to ask someone who knows.
Comp.lang.perl.misc is read by just about all the people who develop modules and it's the best place to
ask.

All you need to do is post a short summary of the module, its purpose and interfaces. A few lines on
each of the main methods is probably enough. (If you post the whole module it might be ignored by
busy people - generally the very people you want to read it!)

272

Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

Don‘t worry about posting if you can't say when the module will be ready - just say so in the message.
It might be worth inviting others to help you, they may be able to complete it for you!

README and other Additional Files.

It's well known that software developers usually fully document the software they write. If, however,
the world is in urgent need of your software and there is not enough time to write the full
documentation please at least provide a README file containing:

° A description of the module/package/extension etc.

° A copyright notice — see below.

° Prerequisites — what else you may need to have.

° How to build it — possible changes to Makefile.PL etc.

° How to install it.

° Recent changes in this release, especially incompatibilities
° Changes / enhancements you plan to make in the future.

If the README file seems to be getting too large you may wish to split out some of the sections into
separate files: INSTALL, Copying, ToDo etc.

Adding a Copyright Notice.

How you choose to license your work is a personal decision. The general mechanism is to assert
your Copyright and then make a declaration of how others may copy/use/modify your work.

Perl, for example, is supplied with two types of license: The GNU GPL and The Artistic License
(see the files README, Copying, and Artistic). Larry has good reasons for NOT just using the
GNU GPL.

My personal recommendation, out of respect for Larry, Perl, and the perl community at large is
to state something simply like:

Copyright (c) 1995 Your Name. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.

This statement should at least appear in the README file. You may also wish to include it in a
Copying file and your source files. Remember to include the other words in addition to the
Copyright.

Give the module a version/issue/release number.

To be fully compatible with the Exporter and MakeMaker modules you should store your
module’s version number in a non—-my package variable c8#ERSION. This should be a
floating point number with at least two digits after the decimal (i.e., hundredth$V/&BSION

= "0.01"). Don't use a "1.3.2" style version. See Exporter.pm in Perl5.001m or later for
details.

It may be handy to add a function or method to retrieve the number. Use the number in
announcements and archive file names when releasing the module (ModuleName-1.02.tar.Z).
See perldoc ExtUtils::MakeMaker.pm for details.

How to release and distribute a module.

It's good idea to post an announcement of the availability of your module (or the module itself if
small) to the comp.lang.perl.announce Usenet newsgroup. This will at least ensure very wide
once-—off distribution.

If possible you should place the module into a major ftp archive and include details of its
location in your announcement.

23—-Mar-1997 Perl Version 5.004 BETA 273

perimod Perl Programmers Reference Guide perimod

Some notes about ftp archives: Please use a long descriptive file name which includes the
version number. Most incoming directories will not be readable/listable, i.e., you won't be able
to see your file after uploading it. Remember to send your email notification message as soon as
possible after uploading else your file may get deleted automatically. Allow time for the file to
be processed and/or check the file has been processed before announcing its location.

FTP Archives for Perl Modules:

Follow the instructions and links on
http://franz.ww.tu—-berlin.de/modulelist

or upload to one of these sites:

ftp:/ffranz.ww.tu-berlin.de/incoming
ftp://ftp.cis.ufl.edu/incoming

and notify upload@franz.ww.tu-berlin.de

By using the WWW interface you can ask the Upload Server to mirror your modules from your
ftp or WWW site into your own directory on CPAN!

Please remember to send me an updated entry for the Module list!

Take care when changing a released module.

Always strive to remain compatible with previous released versions (see 2.2 above) Otherwise
try to add a mechanism to revert to the old behaviour if people rely on it. Document incompatible
changes.

Guidelines for Converting Perl 4 Library Scripts into Modules

There is no requirement to convert anything.
If it ain‘t broke, don‘t fix it! Perl 4 library scripts should continue to work with no problems. You may
need to make some minor changes (like escaping non-array @'s in double quoted strings) but there is
no need to convert a .pl file into a Module for just that.

Consider the implications.
All the perl applications which make use of the script will need to be changed (slightly) if the script is
converted into a module. Is it worth it unless you plan to make other changes at the same time?

Make the most of the opportunity.
If you are going to convert the script to a module you can use the opportunity to redesign the interface.
The ‘Guidelines for Module Creation’ above include many of the issues you should consider.

The pl2pm utility will get you started.

This utility will read *.pl files (given as parameters) and write corresponding *.pm files. The pl2pm
utilities does the following:

° Adds the standard Module prologue lines
° Converts package specifiers from ' to ::

° Converts die(...) to croak(...)

° Several other minor changes

Being a mechanical process pl2pm is not bullet proof. The converted code will need careful checking,
especially any package statements. Don‘t delete the original .pl file till the new .pm one works!

Guidelines for Reusing Application Code

Complete applications rarely belong in the Perl Module Library.

274 Perl Version 5.004 BETA 23—-Mar-1997

perimod Perl Programmers Reference Guide perimod

Many applications contain some perl code which could be reused.
Help save the world! Share your code in a form that makes it easy to reuse.
Break-out the reusable code into one or more separate module files.

Take the opportunity to reconsider and redesign the interfaces.
In some cases the ‘application’ can then be reduced to a small

fragment of code built on top of the reusable modules. In these cases the application could invoked as:
perl —e 'use Module::Name; method(@ARGV)' ...

or
perl -mModule::Name ... (in perl5.002)

23—-Mar-1997 Perl Version 5.004 BETA 275

perlform Perl Programmers Reference Guide perlform

NAME

perlform — Perl formats

DESCRIPTION

Perl has a mechanism to help you generate simple reports and charts. To facilitate this, Perl helps you code
up your output page close to how it will look when it's printed. It can keep track of things like how many
lines on a page, what page you‘re on, when to print page headers, etc. Keywords are borrowed from
FORTRAN:format() to declare anevrite() to execute; see their entriesgarlfunc Fortunately, the

layout is much more legible, more like BASIC's PRINT USING statement. Think of it as a poor man's
nroff(1).

Formats, like packages and subroutines, are declared rather than executed, so they may occur at any point in
your program. (Usually it's best to keep them all together though.) They have their own namespace apart
from all the other "types" in Perl. This means that if you have a function named "Foo", it is not the same
thing as having a format named "Foo". However, the default name for the format associated with a given
filehandle is the same as the name of the filehandle. Thus, the default format for STDOUT is name
"STDOUT", and the default format for filehandle TEMP is name "TEMP". They just look the same. They
aren't.

Output record formats are declared as follows:

format NAME =
FORMLIST

If name is omitted, format "STDOUT" is defined. FORMLIST consists of a sequence of lines, each of which
may be of one of three types:

1. A comment, indicated by putting a ‘#’ in the first column.
2. A'picture” line giving the format for one output line.
3. Anargument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they look, except for certain fields that substitute values into the line.
Each field in a picture line starts with either "@" (at) or """ (caret). These lines do not undergo any kind of
variable interpolation. The at field (not to be confused with the array marker @) is the normal kind of field,;
the other kind, caret fields, are used to do rudimentary multi-line text block filling. The length of the field is
supplied by padding out the field with multiple "<", ">", or "|" characters to specify, respectively, left
justification, right justification, or centering. If the variable would exceed the width specified, it is truncated.

As an alternate form of right justification, you may also use "#" characters (with an optional ".") to specify a
numeric field. This way you can line up the decimal points. If any value supplied for these fields contains a
newline, only the text up to the newline is printed. Finally, the special field "@*" can be used for printing
multi-line, non—truncated values; it should appear by itself on a line.

The values are specified on the following line in the same order as the picture fields. The expressions
providing the values should be separated by commas. The expressions are all evaluated in a list context
before the line is processed, so a single list expression could produce multiple list elements. The expressions
may be spread out to more than one line if enclosed in braces. If so, the opening brace must be the first
token on the first line. If an expression evaluates to a number with a decimal part, and if the corresponding
picture specifies that the decimal part should appear in the output (that is, any picture except multiple "#"
charactersvithout an embedded "."), the character used for the decimal pahwvéys determined by the

current LC_NUMERIC locale. This means that, if, for example, the run-time environment happens to
specify a German locale, "," will be used instead of the default ".". p&dlecale and"WARNINGS"for

more information.

Picture fields that begin with » rather than @ are treated specially. With a # field, the field is blanked out if
the value is undefined. For other field types, the caret enables a kind of fill mode. Instead of an arbitrary

276

Perl Version 5.004 BETA 23—-Mar-1997

perlform Perl Programmers Reference Guide perlform

expression, the value supplied must be a scalar variable name that contains a text string. Perl puts as much
text as it can into the field, and then chops off the front of the string so that the next time the variable is
referenced, more of the text can be printed. (Yes, this means that the variable itself is altered during
execution of thewrite() call, and is not returned.) Normally you would use a sequence of fields in a
vertical stack to print out a block of text. You might wish to end the final field with the text "...", which will
appear in the output if the text was too long to appear in its entirety. You can change which characters are
legal to break on by changing the variaBle (that's $SFORMAT_LINE_BREAK_CHARACTERS/ou‘re

using the English module) to a list of the desired characters.

Using caret fields can produce variable length records. If the text to be formatted is short, you can suppress
blank lines by putting a "~" (tilde) character anywhere in the line. The tilde will be translated to a space
upon output. If you put a second tilde contiguous to the first, the line will be repeated until all the fields on
the line are exhausted. (If you use a field of the at variety, the expression you supply had better not give the
same value every time forever!)

Top-of-form processing is by default handled by a format with the same name as the current filehandle
with "_TOP" concatenated to it. It's triggered at the top of each pagewrBee

Examples:

a report on the /etc/passwd file
format STDOUT _TOP =
Passwd File
Name Login Office Uid Gid Home

format STDOUT =
@<<<<<<< @||[|]]] @<L L@ >>>> @>>>> @ <<LKLKLKLKLKLKLKLKLLKLL LKL
$name, $login, $office,$uid,$gid, $home

a report from a bug report form
format STDOUT _TOP =
Bug Reports

@<<<KKKLILIKLLILLLL L L << @]]| @>>>>>>>>>>>>>5>>5>>>>>>
$system, $%, $date
format STDOUT =
Subject: @<<<LLKL
$subject
Index: @<<<<LLLLLLLLLLLLLLLLLLLLLLLL ML
$index, $description

Priority: @<<<<<<<<<< Date: @<<<<<<< A<<<<LLLLLLLLLLLLLLLLLLLLLLLL
$priority, $date, S$description
From: @<<<<<<<<<<<<<<<LLLLLLLLLLLLLLL ALLLLLLLLLLLLLLLLLLLLLLLLLLLL

$from, $description
Assigned t0: @<<<<<KLKKLLLKLKLLKLLLLLLLLL ALLLLLLLLLLLLLLLLLLLLLLLLLLLL
$programmer, $description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

23—-Mar-1997 Perl Version 5.004 BETA 277

perlform Perl Programmers Reference Guide perlform

~ NLLLLLLLLLLLLLLLLLLLLLLL, .
$description

It is possible to intermiprint() s withwrite() s on the same output channel, but you'll have to handle
$- (JFORMAT_LINES_LEFT)yourself.

Format Variables

The current format name is stored in the varigbte(SFORMAT_NAME),and the current top of form
format name is in$" ($FORMAT_TOP_NAME).The current output page number is stored$#
(SFORMAT_PAGE_NUMBER3Nd the number of lines on the page i$3n
($FORMAT_LINES_PER_PAGE) Whether to autoflush output on this handle is store] in
($OUTPUT_AUTOFLUSH). The string output before each top of page (except the first) is stofd in
($FORMAT_FORMFEED).These variables are set on a per—filehandle basis, so you'll neelg¢t()

into a different one to affect them:

select((select(OUTF),
$~ = "My_Other_Format",
$" ="My_Top_Format"

)I0D);

Pretty ugly, eh? It's a common idiom though, so don't be too surprised when you see it. You can at least
use a temporary variable to hold the previous filehandle: (this is a much better approach in general, because
not only does legibility improve, you now have intermediary stage in the expression to single-step the

debugger through):

$ofth = select(OUTF);

$~ ="My_Other_Format";
$" = "My_Top_Format";
select($ofh);

If you use the English module, you can even read the variable names:

use English;

$ofth = select(OUTF);

$FORMAT_NAME ="My _Other_Format";
$FORMAT_TOP_NAME ="My_Top_Format";
select($ofh);

But you still have those funrgelect() s. So just use the FileHandle module. Now, you can access these
special variables using lowercase method names instead:

use FileHandle;
format_name OUTF "My_Other_Format";
format_top_name OUTF "My_Top_Format";

Much better!

NOTES
Because the values line may contain arbitrary expressions (for at fields, not caret fields), you can farm out
more sophisticated processing to other functions slkantf() or one of your own. For example:
format Ident =
@<<<LLLLLLLLLLLL
&commify($n)

To get a real at or caret into the field, do this:

format ldent =
| have an @ here.

278 Perl Version 5.004 BETA 23—-Mar-1997

perlform Perl Programmers Reference Guide perlform

"@"

To center a whole line of text, do something like this:

format ldent =

TR

"Some text line"

There is no builtin way to say "float this to the right hand side of the page, however wide it is." You have to

specify where it goes. The truly desperate can generate their own format on the fly, based on the current
number of columns, and thewal() it

$format = "format STDOUT = \n";
NV < x $eols . "\n';

.'$entry’ . "\n";
UL "< X (Beols—8) . "~~\n";
.'$entry’ . "\n";

Il.\nll;

print $format if $Debugging;
eval $format;

die $@ if $@;
Which would generate a format looking something like this:

format STDOUT =

NLL
$entry

NCLL LKL~ ~
$entry

Here's a little program that's somewhat like fmt(1):

format =
NLL ~~

$

$/=",

while (<>) {
sN\s*\n\s*/ /g;
write;

}

Footers

While $SFORMAT_TOP_NAMébntains the name of the current header format, there is no corresponding

mechanism to automatically do the same thing for a footer. Not knowing how big a format is going to be
until you evaluate it is one of the major problems. It's on the TODO list.

Here's one strategy: If you have a fixed-size footer, you can get footers by checking
$FORMAT_LINES_LEFThefore eachwrite() and print the footer yourself if necessary.

Here's another strategy; open a pipe to yourself, ugiemp(MESELF, "|-") (seeopen()) and always
write() to MESELF instead of STDOUT. Have your child process massage its STDIN to rearrange
headers and footers however you like. Not very convenient, but doable.

23—-Mar-1997 Perl Version 5.004 BETA 279

perlform Perl Programmers Reference Guide perlform

Accessing Formatting Internals

For low-level access to the formatting mechanism. you mayfarsdine() and acces$"A (the
$SACCUMULATOWRariable) directly.

For example:
$str = formline <<’END’, 1,2,3;
@<<< @l @>>>
END
print "Wow, | just stored ‘$"A’ in the accumulator'\n";
Or to make amswrite() subroutine which is tarite() whatsprintf() is toprintf() , do this:
use Carp;
sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;
my $format = shift;

A=

formline($format,@_);

return $"A;

}

$string = swrite(<<’END’, 1, 2, 3);
Check me out

@<<< @l @>>>
END
print $string;
WARNINGS

The lone dot that ends a format can also prematurely end an email message passing through a misconfigured
Internet mailer (and based on experience, such misconfiguration is the rule, not the exception). So when
sending format code through email, you should indent it so that the format-ending dot is not on the left
margin; this will prevent email cutoff.

Lexical variables (declared with "my") are not visible within a format unless the format is declared within
the scope of the lexical variable. (They weren't visible at all before version 5.001.)

Formats are the only part of Perl which unconditionally use information from a program's locale; if a
program's environment specifies an LC_NUMERIC locale, it is always used to specify the decimal point
character in formatted output. Perl ignores all other aspects of locale handling unless theale

pragma is in effect. Formatted output cannot be controllassbylocale because the pragma is tied to

the block structure of the program, and, for historical reasons, formats exist outside that block structure. See
perllocalefor further discussion of locale handling.

280 Perl Version 5.004 BETA 23—-Mar-1997

perllocale Perl Programmers Reference Guide perllocale

NAME
perllocale — Perl locale handling (internationalization and localization)

DESCRIPTION

Perl supports language—specific notions of data such as "is this a letter", "what is the uppercase equivalent of
this letter”, and "which of these letters comes first". These are important issues, especially for languages

other than English — but also for English: it would be very naive to thinkAhZb—-z defines all the

"letters”. Perl is also aware that some character other than ’."” may be preferred as a decimal point, and that
output date representations may be language-specific. The process of making an application take account of
its users’ preferences in such matters is cafiggtnationalization (often abbreviated @%8n); telling such

an application about a particular set of preferences is knolaeaization (110n).

Perl can understand language-specific data via the standardized (ISO C, XPG4, POSIX 1.c) method called
"the locale system". The locale system is controlled per application using one pragma, one function call, and
several environment variables.

NOTE: This feature is new in Perl 5.004, and does not apply unless an application specifically requests it —
seeBackward compatibilityThe one exception is thatrite() now always uses the current locale - see
"NOTES"

PREPARING TO USE LOCALES

If Perl applications are to be able to understand and present your data correctly according a locale of your
choice,all of the following must be true:

° Your operating system must support the locale system If it does, you should find that the
setlocale() function is a documented part of its C library.

° Definitions for the locales which you use must be installed You, or your system administrator,
must make sure that this is the case. The available locales, the location in which they are kept, and the
manner in which they are installed, vary from system to system. Some systems provide only a few,
hard-wired, locales, and do not allow more to be added; others allow you to add "canned" locales
provided by the system supplier; still others allow you or the system administrator to define and add
arbitrary locales. (You may have to ask your supplier to provide canned locales which are not
delivered with your operating system.) Read your system documentation for further illumination.

° Perl must believe that the locale system is supportedif it does,perl —V:d_setlocale will
say that the value fat_setlocale is define

If you want a Perl application to process and present your data according to a particular locale, the
application code should include thse locale pragma (see L<The use locale pragma) where
appropriate, andt least oneof the following must be true:

° The locale—determining environment variables (see(ENVIRONMENT) must be correctly set up
either by yourself, or by the person who set up your system account, at the time the application is
started.

° The application must set its own local@ising the method describedTihe setlocale function
USING LOCALES

The use locale pragma

By default, Perl ignores the current locale. Tise locale pragma tells Perl to use the current locale for
some operations:

° The comparison operators(lt , le , cmp, ge, andgt) and the POSIX string collation functions
strcoll() andstrxfrm() useLC_COLLATE sort() is also affected if it is used without an
explicit comparison function because it useg by default.

Note: eq andne are unaffected by the locale: they always perform a byte—by-byte comparison of
their scalar operands. What's morecifip finds that its operands are equal according to the collation

23—-Mar-1997 Perl Version 5.004 BETA 281

perllocale Perl Programmers Reference Guide perllocale

sequence specified by the current locale, it goes on to perform a byte—-by-byte comparison, and only
returns (equal) if the operands are bit—for-bit identical. If you really want to know whether two
strings — whicheq andcmp may consider different — are equal as far as collation in the locale is
concerned, see the discussioiCamegory LC_COLLATE: Collatian

. Regular expressions and case—modification functior(sic() ,lc() , ucfirst() , and
Icfirst()) useLC_CTYPE

° The formatting functions (printf() , sprintf() andwrite()) useLC_NUMERIC
° The POSIX date formatting function (strftime()) used.C_TIME.
LC_COLLATELC_CTYPE and so on, are discussed furthet@CALE CATEGORIES

The default behavior returns witio locale or on reaching the end of the enclosing block.

Note that the string result of any operation that uses locale information is tainted, as it is possible for a locale
to be untrustworthy. SESECURITY"

The setlocale function

You can switch locales as often as you wish at run time witR@®IX::setlocale() function:

This functionality not usable prior to Perl 5.004
require 5.004;

Import locale—-handling tool set from POSIX module.
This example uses: setlocale —- the function call

LC_CTYPE —- explained below

use POSIX qw(locale_h);

query and save the old locale
$old_locale = setlocale(LC_CTYPE);

setlocale(LC_CTYPE, "fr_CA.ISO8859-1");
LC_CTYPE now in locale "French, Canada, codeset ISO 8859-1"

setlocale(LC_CTYPE, ™);
#LC_CTYPE now reset to default defined by LC_ALL/LC_CTYPE/LANG
environment variables. See below for documentation.

restore the old locale
setlocale(LC_CTYPE, $old_locale);

The first argument ofetlocale() gives thecategory, the second thiecale The category tells in what

aspect of data processing you want to apply locale-specific rules. Category names are discussed in
LOCALE CATEGORIE&Nd"ENVIRONMENT! The locale is the name of a collection of customization
information corresponding to a particular combination of language, country or territory, and codeset. Read
on for hints on the naming of locales: not all systems name locales as in the example.

If no second argument is provided, the function returns a string naming the current locale for the category.
You can use this value as the second argument in a subsequent szdlotale() . If a second
argument is given and it corresponds to a valid locale, the locale for the category is set to that value, and the
function returns the now—current locale value. You can use this in a subsequernsetidicae() . (In

some implementations, the return value may sometimes differ from the value you gave as the second
argument — think of it as an alias for the value that you gave.)

As the example shows, if the second argument is an empty string, the category's locale is returned to the
default specified by the corresponding environment variables. Generally, this results in a return to the

default which was in force when Perl started up: changes to the environment made by the application after
start—up may or may not be noticed, depending on the implementation of your system's C library.

If the second argument does not correspond to a valid locale, the locale for the category is not changed, and
the function returnsndef

282

Perl Version 5.004 BETA 23—-Mar-1997

perllocale Perl Programmers Reference Guide perllocale

For further information about the categories, consettocale(3) For the locales available in your system,
also consulsetlocale(3)and see whether it leads you to the list of the available locales (search $&Bhe
ALSOsection). If that fails, try the following command lines:

locale —a
nisinfo
Is /ust/lib/nis/loc
Is /ust/lib/locale
Is /ust/lib/nls
and see whether they list something resembling these
en_US.ISO8859-1 de DE.ISO8859-1 ru_RU.ISO8859-5

en_US de DE ru_RU
en de ru
english german russian

english.iso88591 german.iso88591 russian.iso88595

Sadly, even though the calling interface setlocale() has been standardized, the names of the locales
and the directories where the configuration is, have not. The basic form of the name is
language_country/territorgodesetbut the latter parts are not always present.

Two special locales are worth particular mention: "C" and "POSIX". Currently these are effectively the same
locale: the difference is mainly that the first one is defined by the C standard and the second by the POSIX
standard. What they define is tdefault locale in which every program starts in the absence of locale
information in its environment. (The default default locale, if you will.) Its language is (American) English
and its character codeset ASCII.

NOTE: Not all systems have the "POSIX" locale (hot all systems are POSIX-conformant), so use "C" when
you need explicitly to specify this default locale.

The localeconv function
The POSIX::localeconv() function allows you to get particulars of the locale-dependent numeric
formatting information specified by the currdof®_NUMERICand LC_MONETARYocales. (If you just
want the name of the current locale for a particular categoryPO&X::setlocale() with a single
parameter — seEhe setlocale functiop

use POSIX qw(locale_h);

Get a reference to a hash of locale—dependent info
$locale_values = localeconv();

Output sorted list of the values
for (sort keys %$locale_values) {
printf "%—-20s = %s\n", $_, $locale_values—>{$ _}

}
localeconv() takes no arguments, and returmsreference toa hash. The keys of this hash are
formatting variable names such aecimal_point and thousands_sep ; the values are the

corresponding values. Skealeconvfor a longer example, which lists all the categories an implementation
might be expected to provide; some provide more and others fewer, however. Note that you dois# need
locale : as a function with the job of querying the locdtealeconv() always observes the current
locale.

Here's a simple-minded example program which rewrites its command line parameters as integers formatted
correctly in the current locale:

See comments in previous example
require 5.004;

23—-Mar-1997 Perl Version 5.004 BETA 283

perllocale Perl Programmers Reference Guide perllocale

use POSIX qw(locale_h);

Get some of locale’s numeric formatting parameters
my ($thousands_sep, $grouping) =
@{localeconv()}{'thousands_sep’, 'grouping’};

Apply defaults if values are missing
$thousands_sep ="', unless $thousands_sep;
$grouping = 3 unless $grouping;

Format command line params for current locale

for (@ARGV) {
$_=int; # Chop non-integer part
1 while
s/(\d)(\d{$grouping}($|$thousands_sep))/$1$thousands_sep$2/;
print "$_";

}

print "\n";

LOCALE CATEGORIES

The subsections which follow describe basic locale categories. As well as these, there are some combination
categories which allow the manipulation of more than one basic category at a timM&ENSERONMENT"
for a discussion of these.

Category LC_COLLATE: Collation

When in the scope afse locale , Perl looks to th€ C_COLLATE environment variable to
determine the application's notions on the collation (ordering) of

characters. (‘b’ follows ‘a’ in Latin alphabets, but where do ‘a’ and

‘&’ belong?)

Here is a code snippet that will tell you what are the alphanumeric characters in the current locale, in the
locale order:

use locale;
print +(sort grep Aw/, map { chr() } 0..255), "\n";

Compare this with the characters that you see and their order if you state explicitly that the locale should be
ignored:

no locale;
print +(sort grep Aw/, map { chr() } 0..255), "\n";

This machine—native collation (which is what you get unlesslocale has appeared earlier in the same
block) must be used for sorting raw binary data, whereas the locale-dependent collation of the first example
is useful for natural text.

As noted inUSING LOCALEScmp compares according to the current collation locale wisenlocale
is in effect, but falls back to a byte—by—byte comparison for strings which the locale says are equal. You can
usePOSIX::strcoll() if you don'‘t want this fall-back:

use POSIX qw(strcoll);
$equal_in_locale =
Istrcoll("space and case ignored”, "SpaceAndCaselgnored");

$equal_in_locale will be true if the collation locale specifies a dictionary-like ordering which ignores
space characters completely, and which folds case.

If you have a single string which you want to check for "equality in locale" against several others, you might
think you could gain a little efficiency by usiPSIX::strxfrm() in conjunction witheq:

use POSIX gqw(strxfrm);
$xfrm_string = strxfrm("Mixed—-case string");

284

Perl Version 5.004 BETA 23—-Mar-1997

perllocale Perl Programmers Reference Guide perllocale

print "locale collation ignores spaces\n"

if $xfrm_string eq strxfrm("Mixed-casestring");
print "locale collation ignores hyphens\n”

if $xfrm_string eq strxfrm("Mixedcase string");
print "locale collation ignores case\n"

if $xfrm_string eq strxfrm("mixed-case string");

strxfrm() takes a string and maps it into a transformed string for use in byte—by-byte comparisons
against other transformed strings during collation. "Under the hood", locale—affected Perl comparison
operators calstrxfrm() for both their operands, then do a byte-by—byte comparison of the transformed
strings. By callingstrxfrm() explicitly, and using a non locale—affected comparison, the example
attempts to save a couple of transformations. In fact, it doesn‘'t save anything: Perl magic (see
Magic Variable$ creates the transformed version of a string the first time it's needed in a comparison, then
keeps it around in case it's needed again. An example rewritten the easy wagnwithns just about as

fast. It also copes with null characters embedded in strings; if yostodhim() directly, it treats the

first null it finds as a terminator. And don'‘t expect the transformed strings it produces to be portable across
systems — or even from one revision of your operating system to the next. In short, detrkfcail)

directly: let Perl do it for you.

Note: use locale isn‘t shown in some of these examples, as it isn't neededoll() and
strxfrm() exist only to generate locale—-dependent results, and so always obey thelcir@®i_ LATE
locale.

Category LC_CTYPE: Character Types

When in the scope ofuselocale , Perl obeystheC_CTYPE locale setting. This
controls the application's notion of which characters are alphabetic.

This affects Perl's \w regular expression metanotation, which stands for

alphanumeric characters - that is, alphabetic and numeric characters.

(Consult perlre for more information about regular expressions.) Thanks

to LC_CTYPE, depending on your locale setting, characters like ‘ae’, ‘0',

“, and ‘g’ may be understood as \w characters.

The LC_CTYPElocale also provides the map used in translating characters between lower and uppercase.
This affects the case—mapping functionslef) , Icfirst, uc() and ucfirst() ; case—mapping
interpolation with\l , \L, \u or <\U in double-quoted strings and ®&// substitutions; and
case-independent regular expression pattern matching usingrtbdifier.

Finally, LC_CTYPEaffects the POSIX character—class test functiomsatlpha() , islower() and so
on. For example, if you move from the "C" locale to a 7-bit Scandinavian one, you may find — possibly to
your surprise — that "|" moves from tispunct() class tdsalpha()

Note: A broken or malicious C_CTYPElocale definition may result in clearly ineligible characters being
considered to be alphanumeric by your application. For strict matching of (unaccented) letters and digits -
for example, in command strings — locale—aware applications shouldvuseside ano locale block.
See"'SECURITY?

Category LC_NUMERIC: Numeric Formatting

When in the scope afse locale , Perl obeys theC_NUMERIC locale information, which
controls application's idea of how numbers should be formatted for human

readability by the printf(), sprintf(), and write() functions. String to

numeric conversion by the POSIX::strtod() function is also affected. In

most implementations the only effect is to change the character used for

the decimal point — perhaps from '’ to ‘,: these functions aren‘t

aware of such niceties as thousands separation and so on. (See

The localeconv function if you care about these things.)

Note that output produced Ipyint() is never affected by the current locale: it is independent of whether
use locale orno locale s in effect, and corresponds to what you‘d get frmintf() in the "C"

23—-Mar-1997 Perl Version 5.004 BETA 285

perllocale Perl Programmers Reference Guide perllocale

locale. The same is true for Perl's internal conversions between numeric and string formats:

use POSIX qw(strtod);
use locale;

$n =5/2; # Assign numeric 2.5 to $n

$a =" $n"; # Locale-independent conversion to string
print "half five is $n\n"; # Locale-independent output
printf "half five is %g\n", $n; # Locale—-dependent output

print "DECIMAL POINT IS COMMA\n"
if $n == (strtod("2,5"))[0]; # Locale-dependent conversion

Category LC_MONETARY: Formatting of monetary amounts

The C standard defines th€ MONETAR¥ategory, but no function that is affected by its contents. (Those
with experience of standards committees will recognize that the working group decided to punt on the issue.)

Consequently, Perl takes no notice of it. If you really want toLGSEMONETARYyou can query its
contents — se@he localeconv functior and use the information that it returns in your application‘s own
formatting of currency amounts. However, you may well find that the information, though voluminous and
complex, does not quite meet your requirements: currency formatting is a hard nut to crack.

LC_TIME

The output produced bPOSIX::strftime() , which builds a formatted human-readable date/time
string, is affected by the curreb€_TIME locale. Thus, in a French locale, the output produced byohe
format element (full month name) for the first month of the year would be "janvier". Here's how to get a list
of the long month names in the current locale:

use POSIX qw(strftime);
for (0..11) {
$long_month_name[$_] =
stritime("%B", 0, 0, 0, 1, $_, 96);
}

Note: use locale isn‘t needed in this example: as a function which exists only to generate
locale—dependent resultrftime() always obeys the curren€_TIME locale.

Other categories

The remaining locale categotyC MESSAGE®ossibly supplemented by others in particular
implementations) is not currently used by Perl — except possibly to affect the behavior of library functions
called by extensions which are not part of the standard Perl distribution.

SECURITY

While the main discussion of Perl security issues can be foupeérlse¢ a discussion of Perl's locale
handling would be incomplete if it did not draw your attention to locale—dependent security issues. Locales -
particularly on systems which allow unprivileged users to build their own locales — are untrustworthy. A
malicious (or just plain broken) locale can make a locale—aware application give unexpected results. Here
are a few possibilities:

° Regular expression checks for safe file names or mail addresses\wsimgy be spoofed by an
LC_CTYPElocale which claims that characters such as ">" and "[" are alphanumeric.

° String interpolation with case—-mapping, as in, $est = "C:\U$name.$ext", may produce
dangerous results if a bogus LC_CTYPE case—mapping table is in effect.

° If the decimal point character in th€ NUMERIClocale is surreptitiously changed from a dot to a
comma, sprintf("%g", 0.123456e3) produces a string result of "123,456". Many people

would interpret this as one hundred and twenty—three thousand, four hundred and fifty—six.

286

Perl Version 5.004 BETA 23—-Mar-1997

perllocale Perl Programmers Reference Guide perllocale

° A sneakyLC_COLLATElocale could result in the names of students with "D" grades appearing ahead
of those with "A"s.

° An application which takes the trouble to use the informatidtCnMONETARYhay format debits as
if they were credits and vice versa if that locale has been subverted. Or it make may make payments in
US dollars instead of Hong Kong dollars.

. The date and day names in dates formattestiftyme() could be manipulated to advantage by a
malicious user able to subvert th€ DATElocale. ("Look - it says | wasn't in the building on
Sunday.")

Such dangers are not peculiar to the locale system: any aspect of an application's environment which may
maliciously be modified presents similar challenges. Similarly, they are not specific to Perl: any
programming language which allows you to write programs which take account of their environment
exposes you to these issues.

Perl cannot protect you from all of the possibilities shown in the examples - there is no substitute for your
own vigilance - but, whense locale is in effect, Perl uses the tainting mechanism g&elsed to mark
string results which become locale—dependent, and which may be untrustworthy in consequence. Here is a
summary of the tainting behavior of operators and functions which may be affected by the locale:
Comparison operators (It ,le , ge, gt and cmp):

Scalar true/false (or less/equal/greater) result is never tainted.

Case—-mapping interpolation (with \l ,\L ,\u or <\U)
Result string containing interpolated material is taintedé locale s in effect.

Matching operator (m//):
Scalar true/false result never tainted.
Subpatterns, either delivered as an array—context result$dr ef. are tainted ifise locale isin
effect, and the subpattern regular expression contain@o match an alphanumeric charact&vy,
(non—alphanumeric charactey, (white—space character), 8 (non white—space character). The
matched pattern variabl$&, $' (pre-match)$’ (post-match), an@+ (last match) are also tainted
if use locale s in effect and the regular expression contsins\W, \s , or\S .

Substitution operator (s//):

Has the same behavior as the match operator. Also, the left operandh@fomes tainted wherse
locale in effect, if it is modified as a result of a substitution based on a regular expression match
involving\w ,\W, \s , or\S ; or of case-mapping witth ,\L \u or <\U.

In-memory formatting function (sprintf()):
Result is tainted if "use locale" is in effect.

Output formatting functions (printf() and write()):
Success/failure result is never tainted.

Case—-mapping functions (Ic() , Icfirst() ,uc() , ucfirst()):
Results are tainted ifse locale is in effect.

POSIX locale-dependent functions (localeconv() , strcoll() ,
strftime() , strxfrm()):

Results are never tainted.

POSIX character class tests (isalnum() , isalpha() , isdigit() ,

isgraph() ,islower() ,isprint() Jispunct() ,isspace() ,isupper() ,
isxdigit()):

True/false results are never tainted.

23—-Mar-1997 Perl Version 5.004 BETA 287

perllocale

Perl Programmers Reference Guide perllocale

Three examples illustrate locale—dependent tainting. The first program, which ignores its locale, won't run: a
value taken directly from the command-line may not be used to name an output file when taint checks are

enabled.

#lusr/local/bin/perl =T
Run with taint checking

Command-line sanity check omitted...
$tainted_output_file = shift;

open(F, ">$tainted_output_file")
or warn "Open of $untainted_output_file failed: $!\n";

The program can be made to run by "laundering" the tainted value through a regular expression: the second
example — which still ignores locale information — runs, creating the file named on its command-line if it

can.

#lusr/local/bin/perl =T

$tainted_output_file = shift;
$tainted_output_file =~ m%[\w/]+%;
$untainted_output_file = $&;

open(F, ">$untainted_output_file")
or warn "Open of $untainted_output_file failed: $!\n";

Compare this with a very similar program which is locale—aware:

#lusr/local/bin/perl =T

$tainted_output_file = shift;

use locale;

$tainted_output_file =~ m%[\w/]+%;
$localized_output_file = $&;

open(F, ">$localized_output_file")
or warn "Open of $localized_output_file failed: $1\n";

This third program fails to run becau$& is tainted: it is the result of a match involvig whenuse
locale is in effect.

ENVIRONMENT
PERL_BADLANG

A string that can suppress Perl‘'s warning about failed locale settings at start-up. Failure
can occur if the locale support in the operating system is lacking (broken) is some way — or
if you mistyped the name of a locale when you set up your environment. If this
environment variable is absent, or has a value which does not evaluate to integer zero -
that is "0" or "™ — Perl will complain about locale setting failures.

NOTE: PERL_BADLANG only gives you a way to hide the warning message. The
message tells about some problem in your system's locale support, and you should
investigate what the problem is.

The following environment variables are not specific to Perl: They are part of the standardized (ISO C,
XPG4, POSIX 1.cyetlocale() method for controlling an application‘s opinion on data.

LC_ALL

LC_CTYPE

LC_ALL is the "override—all" locale environment variable. If it is set, it overrides all the
rest of the locale environment variables.

In the absence dfC_ALL, LC_CTYPEchooses the character type locale. In the absence
of bothLC_ALL andLC_CTYPE LANGchooses the character type locale.

288

Perl Version 5.004 BETA 23—-Mar-1997

perllocale Perl Programmers Reference Guide perllocale

LC_COLLATE In the absence dfiC_ALL, LC_COLLATEchooses the collation (sorting) locale. In the
absence of bothC_ALL andLC_COLLATELANGchooses the collation locale.

LC_MONETARY

In the absence diC_ALL, LC_MONETARYXhooses the monetary formatting locale. In
the absence of bottC_ALL andLC_MONETARY.ANGchooses the monetary formatting
locale.

LC_NUMERIC In the absence ofC_ALL, LC_NUMERICchooses the numeric format locale. In the
absence of bothC_ALL andLC_NUMERICLANGchooses the numeric format.

LC_TIME In the absence dafC_ALL, LC_TIME chooses the date and time formatting locale. In the
absence of botlhC_ALL andLC_TIME, LANG chooses the date and time formatting
locale.

LANG LANGiIs the "catch—-all" locale environment variable. If it is set, it is used as the last resort

after the overalLC_ALL and the category—specificC_...
NOTES

Backward compatibility

Versions of Perl prior to 5.00#0stly ignored locale information, generally behaving as if something similar

to the "C" locale (seeThe setlocale functignwas always in force, even if the program environment
suggested otherwise. By default, Perl still behaves this way so as to maintain backward compatibility. If
you want a Perl application to pay attention to locale informationpyast use the

use locale pragma (see L<The use locale Pragma) to instruct it to do so.

Versions of Perl from 5.002 to 5.003 did useltkie CTYPEinformation if that was available, that \s; did
understand what are the letters according to the locale environment variables. The problem was that the user
had no control over the feature: if the C library supported locales, Perl used them.

118N:Collate obsolete

In versions of Perl prior to 5.004 per-locale collation was possible using.8he:Collate library
module. This module is now mildly obsolete and should be avoided in new applications. The
LC_COLLATEfunctionality is now integrated into the Perl core language: One can use locale—specific scalar
data completely normally witluse locale , so there is no longer any need to juggle with the scalar
references ofl8N::Collate

Sort speed and memory use impacts

Comparing and sorting by locale is usually slower than the default sorting; slow—downs of two to four times
have been observed. It will also consume more memory: once a Perl scalar variable has participated in any
string comparison or sorting operation obeying the locale collation rules, it will take 3-15 times more
memory than before. (The exact multiplier depends on the string‘s contents, the operating system and the
locale.) These downsides are dictated more by the operating system's implementation of the locale system
than by Perl.

write() and LC_NUMERIC
Formats are the only part of Perl which unconditionally use information from a program'‘s locale; if a
program's environment specifies an LC_NUMERIC locale, it is always used to specify the decimal point
character in formatted output. Formatted output cannot be controligseldpcale because the pragma
is tied to the block structure of the program, and, for historical reasons, formats exist outside that block
structure.

Freely available locale definitions
There is a large collection of locale definitiondtpt//dkuug.dk/i18n/WG15-collection . You
should be aware that it is unsupported, and is not claimed to be fit for any purpose. If your system allows the
installation of arbitrary locales, you may find the definitions useful as they are, or as a basis for the
development of your own locales.

23—-Mar-1997 Perl Version 5.004 BETA 289

perllocale Perl Programmers Reference Guide perllocale

118n and 110n

"Internationalization" is often abbreviated i&8n because its first and last letters are separated by eighteen
others. (You may guess why the internalin ... internaliti ... i18n tends to get abbreviated.) In the same way,
"localization" is often abbreviated tbOn.

An imperfect standard

Internationalization, as defined in the C and POSIX standards, can be criticized as incomplete, ungainly, and
having too large a granularity. (Locales apply to a whole process, when it would arguably be more useful to
have them apply to a single thread, window group, or whatever.) They also have a tendency, like standards
groups, to divide the world into nations, when we all know that the world can equally well be divided into
bankers, bikers, gamers, and so on. But, for now, it's the only standard we‘ve got. This may be construed as
a bug.

BUGS

Broken systems

In certain system environments the operating system's locale support is broken and cannot be fixed or used
by Perl. Such deficiencies can and will result in mysterious hangs and/or Perl core dumps wisen the
locale is in effect. When confronted with such a system, please report in excruciating detail to
<perlbug@perl.comand complain to your vendor: maybe some bug fixes exist for these problems in your
operating system. Sometimes such bug fixes are called an operating system upgrade.

SEE ALSO

isalnum isalpha isdigit, isgraph islower, isprint, ispunct isspace isupper isxdigit, localecony setlocale
strcoll, strftime strtod, strxfrm

HISTORY
Jarkko Hietaniemi‘s origingberlil8n.podheavily hacked by Dominic Dunlop, assisted by the perl5-porters.

Last update: Wed Jan 22 11:04:58 EST 1997

290 Perl Version 5.004 BETA 23—-Mar-1997

perlref Perl Programmers Reference Guide perlref

NAME
perlref — Perl references and nested data structures

DESCRIPTION

Before release 5 of Perl it was difficult to represent complex data structures, because all references had to be
symbolic, and even that was difficult to do when you wanted to refer to a variable rather than a symbol table
entry. Perl not only makes it easier to use symbolic references to variables, but lets you have "hard"
references to any piece of data. Any scalar may hold a hard reference. Because arrays and hashes contain
scalars, you can now easily build arrays of arrays, arrays of hashes, hashes of arrays, arrays of hashes of
functions, and so on.

Hard references are smart—they keep track of reference counts for you, automatically freeing the thing
referred to when its reference count goes to zero. (Note: The reference counts for values in self-referential
or cyclic data structures may not go to zero without a little help; see

Two-Phased Garbage Collection in perldby a detailed explanation. If that thing happens to be an object,

the object is destructed. Seerlobjfor more about objects. (In a sense, everything in Perl is an object, but
we usually reserve the word for references to objects that have been officially "blessed" into a class
package.)

A symbolic reference contains the name of a variable, just as a symbolic link in the filesystem contains
merely the name of a file. Thglob notation is a kind of symbolic reference. Hard references are more
like hard links in the file system: merely another way at getting at the same underlying object, irrespective of
its name.

"Hard" references are easy to use in Perl. There is just one overriding principle: Perl does no implicit
referencing or dereferencing. When a scalar is holding a reference, it always behaves as a scalar. It doesn't
magically start being an array or a hash unless you tell it so explicitly by dereferencing it.

References can be constructed several ways.

1. By using the backslash operator on a variable, subroutine, or value. (This works much Bke the
(address—of) operator works in C.) Note that this typically crest&3THERreference to a variable,
because there's already a reference to the variable in the symbol table. But the symbol table reference
might go away, and you'll still have the reference that the backslash returned. Here are some
examples:

$scalarref = \$foo;
$arrayref = \@ARGV;,
$hashref =\%ENV;
$coderef =\&handler;
$globref =*foo;

It isn‘t possible to create a true reference to an 10 handle (filehandle or dirhandle) using the backslash
operator. See the explanation of the *foo{ THING} syntax below. (However, you're apt to find Perl
code out there using globrefs as though they were 10 handles, which is grandfathered into continued
functioning.)

2. Areference to an anonymous array can be constructed using square brackets:
$arrayref = [1, 2, ['a’, 'b’, 'c'];

Here we've constructed a reference to an anonymous array of three elements whose final element is
itself reference to another anonymous array of three elements. (The multidimensional syntax described
later can be used to access this. For example, after the &aorsref->[2][1] would have

the value "b".)

Note that taking a reference to an enumerated list is not the same as using square brackets—instead it's
the same as creating a list of references!

@list = (\$a, \@b, \%oc);

23—-Mar-1997 Perl Version 5.004 BETA 291

perlref

Perl Programmers Reference Guide perlref

@list = \($a, @b, %c); # same thing!

As a special cas&@foo) returns a list of references to the contents@dbo, not a reference to
@foo itself. Likewise for%foo.

A reference to an anonymous hash can be constructed using curly brackets:

$hashref = {
'Adam’ =>'Eve’,
'Clyde’ =>'Bonnie’,
¥
Anonymous hash and array constructors can be intermixed freely to produce as complicated a structure
as you want. The multidimensional syntax described below works for these too. The values above are
literals, but variables and expressions would work just as well, because assignment operators in Perl
(even withinlocal() ormy()) are executable statements, not compile-time declarations.

Because curly brackets (braces) are used for several other things including BLOCKSs, you may
occasionally have to disambiguate braces at the beginning of a statement by putting r&turn

in front so that Perl realizes the opening brace isn't starting a BLOCK. The economy and mnemonic
value of using curlies is deemed worth this occasional extra hassle.

For example, if you wanted a function to make a new hash and return a reference to it, you have these
options:

sub hashem { {@_1}} # silently wrong
sub hashem { H@_}} #o0k
sub hashem {return{ @_}} # ok

A reference to an anonymous subroutine can be constructed bysubingthout a subname:
$coderef = sub { print "Boink!\n" };

Note the presence of the semicolon. Except for the fact that the code inside isn‘t executed
immediately, asub {} is not so much a declaration as it is an operator,dikg¢ or eval{}

(However, no matter how many times you execute that line (unless you‘reemafh..")),
$coderef will still have a reference to tf@AMEanonymous subroutine.)

Anonymous subroutines act as closures with respechy) variables, that is, variables visible
lexically within the current scope. Closure is a notion out of the Lisp world that says if you define an
anonymous function in a particular lexical context, it pretends to run in that context even when it's
called outside of the context.

In human terms, it's a funny way of passing arguments to a subroutine when you define it as well as
when you call it. It's useful for setting up little bits of code to run later, such as callbacks. You can
even do object-oriented stuff with it, though Perl provides a different mechanism to do that
already—seeerlobj.

You can also think of closure as a way to write a subroutine template without using eval. (In fact, in
version 5.000, eval was tloaly way to get closures. You may wish to use "require 5.001" if you use
closures.)

Here's a small example of how closures works:

sub newprint {
my $x = shift;
return sub { my $y = shift; print "$x, $yl\n"; };
}
$h = newprint("Howdy");
$g = newprint("Greetings");

Time passes...

292

Perl Version 5.004 BETA 23—-Mar-1997

perlref

Perl Programmers Reference Guide perlref

&3$h("world");
&3$g("earthlings");

This prints

Howdy, world!
Greetings, earthlings!

Note particularly tha$x continues to refer to the value passed mawprint() despitethe fact that
the "my $x" has seemingly gone out of scope by the time the anonymous subroutine runs. That's
what closure is all about.

This applies to only lexical variables, by the way. Dynamic variables continue to work as they have
always worked. Closure is not something that most Perl programmers need trouble themselves about
to begin with.

References are often returned by special subroutines called constructors. Perl objects are just
references to a special kind of object that happens to know which package it's associated with.
Constructors are just special subroutines that know how to create that association. They do so by
starting with an ordinary reference, and it remains an ordinary reference even while it's also being an
object. Constructors are customarily nameud() , but don‘t have to be:

$objref = new Doggie (Tail => 'short’, Ears => 'long’);

References of the appropriate type can spring into existence if you dereference them in a context that
assumes they exist. Because we haven't talked about dereferencing yet, we can‘t show you any
examples yet.

A reference can be created by using a special syntax, lovingly known as the *foo{THING} syntax.
*foo{THING} returns a reference to the THING slot in *foo (which is the symbol table entry which
holds everything known as foo).

$scalarref = *foo{SCALAR};
$arrayref = *ARGV{ARRAY};
$hashref =*ENV{HASH};
$coderef =*handler{CODE};
$ioref =*STDIN{IO};
$globref = *foo{GLOB};

All of these are self-explanatory except for *foo{lO}. It returns the 10 handle, used for file handles
(open, sockets gocketand socketpaiy, and directory handlesojendi). For compatibility with
previous versions of Perl, *foo{FILEHANDLE} is a synonym for *foo{lO}.

*foo{THING} returns undef if that particular THING hasn‘t been used yet, except in the case of
scalars. *foo{SCALAR} returns a reference to an anonymous scafodf hasn‘t been used yet.
This might change in a future release.

The use of *foo{lO} is the best way to pass bareword filehandles into or out of subroutines, or to store
them in larger data structures.

splutter(*STDOUT{I0});
sub splutter {
my $fh = shift;

print $th "her um well a hmmm\n";

}

$rec = get_rec(*STDIN{IO});
sub get_rec {
my $fh = shift;
return scalar <$fh>;

23—-Mar-1997 Perl Version 5.004 BETA 293

perlref

Perl Programmers Reference Guide perlref

Beware, though, that you can‘t do this with a routine which is going to open the filehandle for you,
because *HANDLE{IO} will be undef if HANDLE hasn't been used yet. Use *HANDLE for that
sort of thing instead.

Using *HANDLE (or *HANDLE) is another way to use and store non-bareword filehandles (before
perl version 5.002 it was the only way). The two methods are largely interchangeable, you can do

splutter(*STDOUT);
$rec = get_rec(*STDIN);

with the above subroutine definitions.

That's it for creating references. By now you'‘re probably dying to know how to use references to get back to
your long-lost data. There are several basic methods.

Anywhere you'd put an identifier (or chain of identifiers) as part of a variable or subroutine name, you
can replace the identifier with a simple scalar variable containing a reference of the correct type:

$bar = $$scalarref;
push(@$arrayref, $filename);
$$arrayref[0] = "January";
$Shashref{"KEY"} = "VALUE";
&$coderef(1,2,3);

print $globref "output\n”;

It's important to understand that we are specificadlDT dereferencing$arrayref[0] or
$hashref{"KEY"} there. The dereference of the scalar variable hagpiER©OREIt does any key
lookups. Anything more complicated than a simple scalar variable must use methods 2 or 3 below.
However, a "simple scalar" includes an identifier that itself uses method 1 recursively. Therefore, the
following prints "howdy".

$refrefref = W'howdy";
print $$$$refrefref;

Anywhere you'd put an identifier (or chain of identifiers) as part of a variable or subroutine name, you
can replace the identifier with a BLOCK returning a reference of the correct type. In other words, the
previous examples could be written like this:

$bar = ${$scalarref}

push(@{$arrayref}, $filename);

${$arrayref}[0] = "January";

${$hashref{"KEY"} = "VALUE";

&{$coderef}(1,2,3);

$globref->print("output\n"); # iff 10::Handle is loaded

Admittedly, it's a little silly to use the curlies in this case, but the BLOCK can contain any arbitrary
expression, in particular, subscripted expressions:

&{ $dispatch{$index} }(1,2,3); # call correct routine

Because of being able to omit the curlies for the simple cak®xof people often make the mistake of
viewing the dereferencing symbols as proper operators, and wonder about their precedence. If they
were, though, you could use parentheses instead of braces. That's not the case. Consider the difference
below; case 0 is a short—hand version of ca®QIl case 2:

$$hashref{"KEY"} ="VALUE"; # CASE 0
${$hashref}{"KEY"} = "VALUE"; # CASE 1
${$hashref{"KEY"}} = "VALUE"; # CASE 2
${$hashref—>{"KEY"}} = "VALUE"; # CASE 3

Case 2 is also deceptive in that you'‘re accessing a variable called %hashref, not dereferencing through
$hashref to the hash it's presumably referencing. That would be case 3.

294

Perl Version 5.004 BETA 23—-Mar-1997

perlref Perl Programmers Reference Guide perlref

3. The case of individual array elements arises often enough that it gets cumbersome to use method 2. As
a form of syntactic sugar, the two lines like that above can be written:

$arrayref->[0] = "January";
$hashref->{"KEY"} = "VALUE";

The left side of the array can be any expression returning a reference, including a previous dereference.
Note thatbarray[$x] is NOTthe same thing #array—>[$x] here:

Sarray[$x]->{"f00"}->[0] = "January";

This is one of the cases we mentioned earlier in which references could spring into existence when in
an lvalue context. Before this stateme®array[$x] may have been undefined. If so, it's
automatically defined with a hash reference so that we can looKfag'} in it. Likewise
$array[$x]—>{"foo"} will automatically get defined with an array reference so that we can look
up[0] init.

One more thing here. The arrow is optioBEITWEENbrackets subscripts, so you can shrink the
above down to

$array[$x]{"foo"}[0] = "January";
Which, in the degenerate case of using only ordinary arrays, gives you multidimensional arrays just
like C's:

$score[$x][$y][$z] += 42;

Well, okay, not entirely like C's arrays, actually. C doesn‘t know how to grow its arrays on demand.
Perl does.

4. If a reference happens to be a reference to an object, then there are probably methods to access the
things referred to, and you should probably stick to those methods unless you're in the class package
that defines the object's methods. In other words, be nice, and don't violate the object’'s encapsulation
without a very good reason. Perl does not enforce encapsulation. We are not totalitarians here. We do
expect some basic civility though.

Theref() operator may be used to determine what type of thing the reference is pointing perlfoee

Thebless() operator may be used to associate a reference with a package functioning as an object class.
Seeperlobj.

A typeglob may be dereferenced the same way a reference can, because the dereference syntax always
indicates the kind of reference desired $8doo} and${\$foo} both indicate the same scalar variable.

Here's a trick for interpolating a subroutine call into a string:
print "My sub returned @{[mysub(1,2,3)]} that time.\n",

The way it works is that when th@{...} is seen in the double—quoted string, it's evaluated as a block.
The block creates a reference to an anonymous array containing the results of theysuibi@d,2,3)

So the whole block returns a reference to an array, which is then dereferer@éd.by and stuck into the
double—quoted string. This chicanery is also useful for arbitrary expressions:

print "That yields @{[$n + 5]} widgets\n";

Symbolic references

We said that references spring into existence as necessary if they are undefined, but we didn‘t say what
happens if a value used as a reference is already definet§Nvilita hard reference. If you use it as a
reference in this case, it'll be treated as a symbolic reference. That is, the value of the scalar is taken to be
the NAME of a variable, rather than a direct link to a (possibly) anonymous value.

People frequently expect it to work like this. So it does.

23—-Mar-1997 Perl Version 5.004 BETA 295

perlref Perl Programmers Reference Guide perlref
$name = "foo";
$$name = 1; # Sets $foo
${$name} = 2; # Sets $foo
${$name x 2} =3; # Sets $foofoo
$name—>[0] = 4; # Sets $foo[0]
@%name = (); # Clears @foo
&$name(); # Calls &foo() (as in Perl 4)

$pack = "THAT";
${"${pack}::$name"} = 5; # Sets $THAT::foo without eval

This is very powerful, and slightly dangerous, in that it's possible to intend (with the utmost sincerity) to use
a hard reference, and accidentally use a symbolic reference instead. To protect against that, you can say

use strict 'refs’;

and then only hard references will be allowed for the rest of the enclosing block. An inner block may
countermand that with

no strict 'refs’;

Only package variables are visible to symbolic references. Lexical variables (declarag/(vijraren‘t in
a symbol table, and thus are invisible to this mechanism. For example:

local($value) = 10;

$ref = \$value;

{
my $value = 20;
print $$ref;

}

This will still print 10, not 20. Remember tHatal() affects package variables, which are all "global" to
the package.

Not-so—symbolic references

A new feature contributing to readability in perl version 5.001 is that the brackets around a symbolic
reference behave more like quotes, just as they always have within a string. That is,

$push ="pop on ";
print "${push}over";

has always meant to print "pop on over", despite the fact that push is a reserved word. This has been
generalized to work the same outside of quotes, so that

print ${push} . "over";
and even
print ${ push } . "over";

will have the same effect. (This would have been a syntax error in Perl 5.000, though Perl 4 allowed it in the
spaceless form.) Note that this construahas considered to be a symbolic reference when you're using
strict refs:

use strict 'refs’;
${ bareword }; # Okay, means $bareword.
${ "bareword" }; # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single words, we've applied the same rule to any
bareword that is used for subscripting a hash. So now, instead of writing

$array{ "aaa" H{ "bbb" ¥ "ccc"

you can write just

296

Perl Version 5.004 BETA 23—-Mar-1997

perlref Perl Programmers Reference Guide perlref

$array{ aaa }{ bbb Y ccc }
and not worry about whether the subscripts are reserved words. In the rare event that you do wish to do
something like
Sarray{ shift }
you can force interpretation as a reserved word by adding anything that makes it more than a bareword:
Sarray{ shift() }

$array{ +shift }
$array{ shift @_}

The—w switch will warn you if it interprets a reserved word as a string. But it will no longer warn you about
using lowercase words, because the string is effectively quoted.

WARNING
You may not (usefully) use a reference as the key to a hash. It will be converted into a string:
$x{\$a } = $a;

If you try to dereference the key, it won‘t do a hard dereference, and you won'‘t accomplish what you‘re
attempting. You might want to do something more like

$r=\@a;
$x{ $r } = $r;
And then at least you can use tsdues() , which will be real refs, instead of thkeys() , which won't.
SEE ALSO

Besides the obvious documents, source code can be instructive. Some rather pathological examples of the
use of references can be found intilep/ref.tregression test in the Perl source directory.

See alsgerldscandperllol for how to use references to create complex data structuregedaolj for how
to use them to create objects.

23—-Mar-1997 Perl Version 5.004 BETA 297

perldsc Perl Programmers Reference Guide perldsc

NAME

perldsc — Perl Data Structures Cookbook

DESCRIPTION

The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was complex
data structures. Even without direct language support, some valiant programmers did manage to emulate
them, but it was hard work and not for the faint of heart. You could occasionally get away with the
$m{$LoL,$b} notation borrowed fromawk in which the keys are actually more like a single concatenated
string "LoLb", but traversal and sorting were difficult. More desperate programmers even hacked
Perl's internal symbol table directly, a strategy that proved hard to develop and maintain—to put it mildly.

The 5.0 release of Perl let us have complex data structures. You may now write something like this and all
of a sudden, you'‘d have a array with three dimensions!

for $x (1 .. 10) {
for $y (1 .. 10) {
for $z (1 .. 10) {
SLoL[$X][By][$z] =
X ** By + $z;

}

Alas, however simple this may appear, underneath it's a much more elaborate construct than meets the eye!

How do you print it out? Why can‘t you say jusint @LoL ? How do you sort it? How can you pass it
to a function or get one of these back from a function? Is is an object? Can you save it to disk to read back
later? How do you access whole rows or columns of that matrix? Do all the values have to be numeric?

As you see, it's quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference—based implementation, it's really more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of data
structures you might want to develop. It should also serve as a cookbook of examples. That way, when you
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop—in example
from here.

Let's look at each of these possible constructs in detail. There are separate sections on each of the following:

e arrays of arrays

¢ hashes of arrays

e arrays of hashes

e hashes of hashes

e more elaborate constructs

But for now, let's look at some of the general issues common to all of these types of data structures.

REFERENCES

The most important thing to understand about all data structures in Perl — including multidimensional
arrays—is that even though they might appear otherwise,@RRRAS and%HASESs are all internally
one-dimensional. They can hold only scalar values (meaning a string, number, or a reference). They cannot
directly contain other arrays or hashes, but instead camti@rencedo other arrays or hashes.

You can't use a reference to a array or hash in quite the same way that you would a real array or hash. For C
or C++ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

298

Perl Version 5.004 BETA 23—-Mar-1997

perldsc Perl Programmers Reference Guide perldsc

You can (and should) read more about references in the perlref(1) man page. Briefly, references are rather
like pointers that know what they point to. (Objects are also a kind of reference, but we won'‘t be needing
them right away—if ever.) This means that when you have something which looks to you like an access to a
two—or—-more—dimensional array and/or hash, what's really going on is that the base type is merely a
one—dimensional entity that contains references to the next level. It's just that yosegaas though it

were a two—dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$list[7][12] # array of arrays
$list[7]{string} # array of hashes
$hash{string}{7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you'll get something that doesn't look very nice, like this:

@LoL =([2, 3], [4,5,7],[0]);
print $LoL[1][2];
7
print @LoL;
ARRAY (0x83c38)ARRAY (0x8b194)ARRAY (0x8b1d0)

That's because Perl doesn't (ever) implicitly dereference your variables. If you want to get at the thing a
reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, liga—>[3],

$h—>{fred}, or evenfob—>method()—>[3]

COMMON MISTAKES

The two most common mistakes made in constructing something like an array of arrays is either accidentally
counting the number of elements or else taking a reference to the same memory location repeatedly. Here's
the case where you just get the count instead of a nested array:

for $i (1..10) {

@list = somefunc($i);

$LoL[$i] = @list; # WRONG!
}

That's just the simple case of assigning a list to a scalar and getting its element count. If that's what you
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

for $i (1..10) {
@list = somefunc($i);
$counts[$i] = scalar @list;

}

Here's the case of taking a reference to the same memory location again and again:

for $i (1..10) {

@list = somefunc($i);

$LoL[$i] = \@list; # WRONG!
}

So, what's the big problem with that? It looks right, doesn't it? After all, | just told you that you need an
array of references, so by golly, you‘'ve made me one!

Unfortunately, while this is true, it's still broken. All the references in @LoL refer tvghesame plage
and they will therefore all hold whatever was last in @list! It's similar to the problem demonstrated in the
following C program:

#include <pwd.h>
main() {
struct passwd *getpwnam(), *rp, *dp;

23—-Mar-1997 Perl Version 5.004 BETA 299

perldsc Perl Programmers Reference Guide perldsc

rp = getpwnam('root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp—>pw_name, rp—>pw_name);
}
Which will print

daemon name is daemon
root name is daemon

The problem is that bottp anddp are pointers to the same location in memory! In C, you'd have to
remember tanalloc() yourself some new memory. In Perl, you'll want to use the array constfuctar
the hash construct§y instead. Here's the right way to do the preceding broken code fragments:

for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = [@list];

}

The square brackets make a reference to a new array witpyeof what's in @list at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it's much harder to read:

for $i (1..10) {
@list=0 .. $i;
@{$SLoL[$i]} = @list;
}

Is it the same? Well, maybe so—and maybe not. The subtle difference is that when you assign something in
square brackets, you know for sure it's always a brand new reference withcapyaf the data. Something

else could be going on in this new case with@¥$LoL[$i]}} dereference on the left-hand-side of the
assignment. It all depends on whetfieoL[$i] had been undefined to start with, or whether it already
contained a reference. If you had already populated @LoL with references, as in

$LoL[3] = \@another_list;

Then the assignment with the indirection on the left—-hand-side would use the existing reference that was
already there:

@{$LoL[3]} = @list;

Of course, thisvould have the "interesting" effect of clobbering @another_list. (Have you ever noticed how
when a programmer says something is "interesting”, that rather than meaning "intriguing”, they‘re
disturbingly more apt to mean that it's "annoying", "difficult”", or both? :-)

So just remember always to use the array or hash constructor§ with{} , and you'll be fine, although
it's not always optimally efficient.

Surprisingly, the following dangerous—-looking construct will actually work out fine:

for $i (1..10) {
my @list = somefunc($i);
$LoL[$i] = \@list;

}

That's becauseny() is more of a run—time statement than it is a compile-time declana¢giose This
means that theny() variable is remade afresh each time through the loop. So even thdagksigs
though you stored the same variable reference each time, you actually did not! This is a subtle distinction
that can produce more efficient code at the risk of misleading all but the most experienced of programmers.
So | usually advise against teaching it to beginners. In fact, except for passing arguments to functions, |

300

Perl Version 5.004 BETA 23—-Mar-1997

perldsc Perl Programmers Reference Guide perldsc

seldom like to see the gimme—-a-reference operator (backslash) used much at all in code. Instead, | advise
beginners that they (and most of the rest of us) should try to use the much more easily understood
constructorg] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference—counting

to do the right thing behind the scenes.

In summary:
$LoL[$i] = [@list]; # usually best
$LoL[$i] = \@list; # perilous; just how my() was that list?
@{ $LoL[$i] } = @list; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things liké&{$SLoL[S$i]}, the following are actually the same thing:

Slistref->[2][2] # clear
$$listref[2][2] # confusing

That's because Perl's precedence rules on its five prefix dereferencers (which look like someone $wvearing:
@ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This will no
doubt come as a great shock to the C or C++ programmer, who is quite accustomed*afilisintp mean
what's pointed to by théth element ofa. That is, they first take the subscript, and only then dereference
the thing at that subscript. That's fine in C, but this isn‘t C.

The seemingly equivalent construct in P&8listref[$i] first does the deref dflistref, making
it take $listref as a reference to an array, and then dereference that, and finally tell ydu Wadie of
the array pointed to b$LoL. If you wanted the C notion, you‘d have to widSLoL[$i]} to force the
$LoL[$i] to get evaluated first before the lead$hdereferencer.

WHY YOU SHOULD ALWAYS use strict

If this is starting to sound scarier than it's worth, relax. Perl has some features to help you avoid its most
common pitfalls. The best way to avoid getting confused is to start every program like this:

#l/usr/bin/perl —w
use strict;

This way, you'll be forced to declare all your variables witia) and also disallow accidental "symbolic
dereferencing". Therefore if you'd done this:

my $listref = [
["fred", "barney", "pebbles”, "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george”, "jane", "elroy", "judy"”,],

I;

print $listref[2][2];

The compiler would immediately flag that as an ermmbrcompile time because you were accidentally
accessing@listref , an undeclared variable, and it would thereby remind you to write instead:

print $listref->[2][2]
DEBUGGING

Before version 5.002, the standard Perl debugger didn‘t do a very nice job of printing out complex data
structures. With 5.002 or above, the debugger includes several new features, including command line editing
as well as th& command to dump out complex data structures. For example, given the assigriheht to

above, here's the debugger output:

DB<1> X $LoL
$LoL = ARRAY(0x13b5a0)
0 ARRAY(0x1f0a24)
0 'fred’

23—-Mar-1997 Perl Version 5.004 BETA 301

perldsc Perl Programmers Reference Guide perldsc

1 ’barney’
2 ’pebbles’
3 ’hambany’
4 ’'dino’

1 ARRAY(0x13b558)
0 ’homer’
1 ’bart’
2 'marge’
3 'maggie’

2 ARRAY(0x13b540)
0 'george’
1 ’jane’
2 ’elroy’
3 ’judy’

There's also a lowercagecommand which is nearly the same.

CODE EXAMPLES

Presented with little comment (these will get their own man pages someday) here are short code examples
illustrating access of various types of data structures.

LISTS OF LISTS

Declaration of a LIST OF LISTS

@LoL =(
["fred", "barney"],

["george”, "jane", "elroy"],
["homer", "marge", "bart"],
);
Generation of a LIST OF LISTS

reading from file
while (<>) {

push @LoL, [split];
}

calling a function
for$i(1..10)¢{
$LoL[$i] = [somefunc($i)];
}
using temp vars
for$i(1..10)¢{
@tmp = somefunc($i);
$SLoL[$i] =[@tmp];
}

add to an existing row

push @{ $LoL[0] }, "wilma", "betty";
Access and Printing of a LIST OF LISTS

one element

$LoL[0][0] = "Fred™;

another element

$LoL[1][1] =~ s/(\Ww)\u$1/;

print the whole thing with refs
for $aref (@LoL) {

302 Perl Version 5.004 BETA 23—-Mar-1997

perldsc Perl Programmers Reference Guide

perldsc

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#LoL) {
print "\t [@{$LoL[$i]}].\n";

print the whole thing one at a time
for $i (0 .. $#LoL) {
for $j (0 .. $#{ $LoL[$i] }) {
print "elt $i $j is $LoL[$i][$j]\n";
}

}
HASHES OF LISTS

Declaration of a HASH OF LISTS
%HoL = (
flintstones => ["fred", "barney" |,
jetsons =>["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],
)i
Generation of a HASH OF LISTS

reading from file
flintstones: fred barney wilma dino
while (<>) {
next unless s/M(.*?):\s*//;
$HoL{$1} = [split];
}

reading from file; more temps

flintstones: fred barney wilma dino

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split ' *, $rest;
$HoL{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons", "jetsons", "flintstones") {
$HoL{$group} = [get_family($group) ;

}

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {
@members = get_family($group);
$HoL{$group} = [@members];

append new members to an existing family
push @{ $HoL{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF LISTS

one element
$HoL{flintstones}[0] = "Fred";

another element

23—-Mar-1997 Perl Version 5.004 BETA

303

perldsc Perl Programmers Reference Guide perldsc

$HoL{simpsons}[1] =~ s/(\Ww)\u$1/;

print the whole thing
foreach $family (keys %HoL) {

print "$family: @{ $HoL{$family} \n"
}

print the whole thing with indices
foreach $family (keys %HoL) {
print "family: ";
foreach $i (0 .. $#{ SHoL{$family} }) {
print " $i = $HoL{$family}[$i]";
}
print "\n";
}
print the whole thing sorted by number of members
foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$a}} } keys %HoL) {
print "$family: @{ $HoL{$family} \n"
}

print the whole thing sorted by number of members and name
foreach $family (sort {

@{$HoL{$h}} <=> @{$HoL{$a}}
I

$a cmp $b
} keys %HolL)
{
print "$family: ", join(", ", sort @{ $HoL{$family}), "\n";
}

LISTS OF HASHES

Declaration of a LIST OF HASHES
@LoH = (
{
Lead =>"fred",
Friend =>"barney",

2

{
Lead =>"george",
Wife =>"jane",
Son =>"elroy",

2

{
Lead =>"homer",
Wife =>"marge",
Son => "bart",
}
);
Generation of a LIST OF HASHES

reading from file
format: LEAD=fred FRIEND=barney
while (<>) {
$rec = {};
for $field (split) {
(Skey, $value) = split /=/, $field;

304 Perl Version 5.004 BETA 23—-Mar-1997

perldsc Perl Programmers Reference Guide perldsc

$rec—>{$key} = $value;
}
push @LoH, $rec;

}

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {
push @LoH, { split \s+=]/ };
}

calling a function that returns a key,value list, like
"lead","fred","daughter”,"pebbles"”
while (%fields = getnextpairset()) {
push @LoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @LoH, { parsepairs($_) };
}

add key/value to an element
$LoH[O0]{pet} = "dino";
$LoH[2]{pet} = "santa’s little helper";

Access and Printing of a LIST OF HASHES

one element
$LoH[0]{lead} = "fred";

another element
$LoH[1}{lead} =~ s/(\w)\u$1/;

print the whole thing with refs
for $href (@LoH) {

print "{ *;

for $role (keys %S$href) {

print "$role=$href->{$role} ";

}

print "A\n";
}

print the whole thing with indices
for $i (0 .. $#LoH) {
print "$iis { *;
for $role (keys %{ $LoH[$i] }) {
print "$role=$LoH[$i]{$role} ";
}
print "An";
}

print the whole thing one at a time
for $i (0 .. $#LoH) {
for $role (keys %{ $LoH[$i] }) {
print "elt $i $role is $LoH[$i]{$role}\n";
}
}

23—-Mar-1997 Perl Version 5.004 BETA 305

perldsc Perl Programmers Reference Guide

perldsc

HASHES OF HASHES

Declaration of a HASH OF HASHES

%HoH = (
flintstones => {

lead =>"fred",
pal => "barney",
h
jetsons =>{
lead =>"george",
wife =>"jane",
"his boy" => "elroy",
h
simpsons => {
lead =>"homer",
wife =>"marge",
kid => "bart",

);
Generation of a HASH OF HASHES

reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {
next unless s/™(.*?):\s*//;
$who = $1;
for $field (split) {
(Skey, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

reading from file; more temps
while (<>) {
next unless s/™(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {
(Skey, $value) = split /=/, $field;
$rec—>{$key} = $value;
}
}

calling a function that returns a key,value hash

for $group ("simpsons", "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };

}

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {
%members = get_family($group);
$HoH{$group} = { Yomembers };

}

append new members to an existing family
%new_folks = (
wife => "wilma",

306 Perl Version 5.004 BETA

23-Mar-1997

perldsc Perl Programmers Reference Guide perldsc

pet =>"dino";

)i

for $what (keys %new_folks) {
$HoH({flintstonesH{$what} = $new_folks{$what};

}

Access and Printing of a HASH OF HASHES

one element
$HoH({flintstonesH{wife} = "wilma";

another element
$HoH{simpsons}{lead} =~ s/(\w)\u$1/;

print the whole thing
foreach $family (keys %HoH) {
print "$family: { *;
for $role (keys %{ $HoH{$family} }) {
print "$role=$HoH{$family{$role} ";
}
print "An";
}

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {

print "$family: { *;

for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family{$role} *;

}

print "A\n";
}

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {
print "$family: { *;
for $role (sort keys %{ $HoH{$family} }) {
print "$role=$HoH{$family{$role} ";
}
print "A\n";
}

establish a sort order (rank) for each role

$i=0;

for (gw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH) {
print "$family: { *;
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ SHoH{Sfamily} }) {

print "$role=$HoH{$family{$role} ";

}
print "A\n";

}

MORE ELABORATE RECORDS

Declaration of MORE ELABORATE RECORDS
Here's a sample showing how to create and use a record whose fields are of many different sorts:

23—-Mar-1997 Perl Version 5.004 BETA 307

perldsc Perl Programmers Reference Guide

perldsc

$rec ={
TEXT => $string,
SEQUENCE =>[@old_values],
LOOKUP =>{%some_table },
THATCODE =>\&some_function,
THISCODE =>sub {$_[0] **$_[1] },
HANDLE =>*STDOUT,

%

print $rec—>{TEXT};

print $rec—>{LIST}[O];
$last = pop @ { $rec—>{SEQUENCE} };

print $rec—>{LOOKUPH"key"};
($first_k, $first_v) = each %{ $rec—>{LOOKUP} };

$answer = &{ $rec—>{THATCODE} }($arg);
$answer = &{ $rec—>{THISCODE} }($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec—>{HANDLE} } "a string\n";

use FileHandle;
$rec—>{HANDLE}->autoflush(1);
$rec—>{HANDLE}->print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
%TV = (
flintstones => {
series => "flintstones”,
nights =>[qw(monday thursday friday)],
members =>|
{name => "fred", role =>"lead", age => 36, },
{ name => "wilma", role =>"wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4,1},
1,
h

jetsons =>{
series => "jetsons",
nights =>[qw(wednesday saturday)],
members =>|
{ name => "george", role =>"lead", age =>41,},
{ name => "jane", role =>"wife", age => 39, },
{ name => "elroy", role =>"kid", age => 9, },
1,
h

simpsons => {
series => "simpsons",
nights =>[qw(monday)],
members =>|
{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role =>"kid", age => 11, },

308 Perl Version 5.004 BETA

23-Mar-1997

perldsc Perl Programmers Reference Guide perldsc

Generation of a HASH OF COMPLEX RECORDS

reading from file

this is most easily done by having the file itself be

in the raw data format as shown above. perl is happy
to parse complex data structures if declared as data, so
sometimes it's easiest to do that

here’s a piece by piece build up
$rec = {};

$rec—>{series} = "flintstones";
$rec—>{nights} = [find_days()];

@members = ();
assume this file in field=value syntax
while (<>) {
%fields = split /\s=]+/;
push @members, { %fields };
}

$rec—>{members} = [@members];

now remember the whole thing
$TV{ $rec—>{series} } = $rec;

TR R R B B B B B T T B T A
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for examples
if you wanted a {kids} field that was an array reference
to a list of the kids’ records without having duplicate
records and thus update problems.
TR R R B B B B B T T B T R
foreach $family (keys %TV) {
$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{ $rec—>{members} }) {
if ($person—>{role} =~ /kid|son|daughter/) {
push @kids, $person;
}

}
REMEMBER: $rec and $TV{$family} point to same data!!

$rec—>{kids} = [@kids];
}

you copied the list, but the list itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {
print "the $family";

23—-Mar-1997 Perl Version 5.004 BETA 309

perldsc

Perl Programmers Reference Guide perldsc

}

print " is on during @{ $TV{$family{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {
print " $who—->{name} ($who—>{role}), age $who->{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}kids} }), " kids named ";
print join (", ", map { $_—>{name} } @{ $TV{$familyH{kids} });
print "\n";

Database Ties

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem is
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is the MLDBM module. Check your nearest CPAN site as descpiéchaufor source

code to MLDBM.

SEE ALSO

perlref(1), perllol(1), perldata(1), perlobj(1)

AUTHOR

Tom Christiansentchrist@perl.com

Last update: Wed Oct 23 04:57:50 MET DST 1996

310

Perl Version 5.004 BETA 23—-Mar-1997

perllol Perl Programmers Reference Guide perliol

NAME
perlLoL — Manipulating Lists of Lists in Perl

DESCRIPTION

Declaration and Access of Lists of Lists

The simplest thing to build is a list of lists (sometimes called an array of arrays). It's reasonably easy to
understand, and almost everything that applies here will also be applicable later on with the fancier data
structures.

A list of lists, or an array of an array if you would, is just a regular old array @LoL that you can get at with
two subscripts, lik&LoL[3][2]. Here's a declaration of the array:

assign to our array a list of list references
@LoL =(

["fred", "barney"],

["george”, "jane", "elroy"],

["homer", "marge", "bart"],
)i
print $LoL[2][2];
bart

Now you should be very careful that the outer bracket type is a round one, that is, parentheses. That's
because you're assigning to an @list, so you need parentheses. If you wantedttieebe an @LoL, but
rather just a reference to it, you could do something more like this:

assign a reference to list of list references

$ref to_LoL =]
["fred", "barney", "pebbles”, "bambam", "dino",],
["homer", "bart", "marge", "maggie",],

alroy", "judy",],

["george”, "jane",
I;
print $ref_to_LoL->[2][2];

Notice that the outer bracket type has changed, and so our access syntax has also changed. That's because
unlike C, in perl you can't freely interchange arrays and references th&refoto_LoL is a reference to

an array, whereas @LoL is an array proper. Likevfikel[2] is not an array, but an array ref. So how

come you can write these:

$LoL[2][2]
$ref_to_LoL—>[2][2]

instead of having to write these:

$LoL[2]->[2]
$ref_to_LoL—>[2]->[2]

Well, that's because the rule is that on adjacent brackets only (whether square or curly), you are free to omit
the pointer dereferencing arrow. But you cannot do so for the very first one if it's a scalar containing a
reference, which means tt#ref to LoL always needs it.

Growing Your Own

That's all well and good for declaration of a fixed data structure, but what if you wanted to add new elements
on the fly, or build it up entirely from scratch?

First, let's look at reading it in from a file. This is something like adding a row at a time. We'll assume that
there's a flat file in which each line is a row and each word an element. If you're trying to develop an @LoL
list containing all these, here's the right way to do that:

23—-Mar-1997 Perl Version 5.004 BETA 311

perllol Perl Programmers Reference Guide perliol

while (<>) {

@tmp = split;

push @LoL, [@tmp];
}

You might also have loaded that from a function:

for$i(1..10){
$LoL[$i] = [somefunc($i) ;
}

Or you might have had a temporary variable sitting around with the list in it.

for$i(1..10){
@tmp = somefunc($i);
$SLoL[$i] =[@tmp];

}

It's very important that you make sure to use [fhelist reference constructor. That's because this will be
very wrong:

$LoL[$i] = @tmp;

You see, assigning a named list like that to a scalar just counts the number of elements in @tmp, which
probably isn‘t what you want.

If you are running undarse strict , you'll have to add some declarations to make it happy:

use strict;
my(@LoL, @tmp),
while (<>) {
@tmp = split;
push @LoL, [@tmp];
}

Of course, you don‘t need the temporary array to have a name at all:

while (<>) {
push @LoL, [split];
}

You also don‘t have to useush() . You could just make a direct assignment if you knew where you
wanted to put it:

my (@LoL, $i, $line);
for$i (0..10){

$line = <>;

$SLoL[$i] = [split’’, $line ;
}

or even just

my (@LoL, $i);
for $i (0..10){

SLoOL[$i] =[split’’, <> 1;
}

You should in general be leery of using potential list functions in a scalar context without explicitly stating
such. This would be clearer to the casual reader:

my (@LoL, $i);
for$i (0..10){
$SLoL[$i] = [split *’, scalar(<>)];

312 Perl Version 5.004 BETA 23—-Mar-1997

perllol Perl Programmers Reference Guide perliol

}
If you wanted to have $ref_to_LoL variable as a reference to an array, you'd have to do something like
this:
while (<>) {
push @$ref_to_LolL, [split];
}

Actually, if you were using strict, you'd have to declare not érigf to_ LoL as you had to declare
@LoL, but you'dalso having to initialize it to a reference to an empty list. (This was a bug in perl version
5.001m that's been fixed for the 5.002 release.)

my $ref to_LoL =T];
while (<>) {

push @$ref_to_LoL, [split];
}

Ok, now you can add new rows. What about adding new columns? If you‘re dealing with just matrices, it's
often easiest to use simple assignment:

for $x (1 .. 10) {
for $y (1 .. 10) {
SLoL[$x][By] = func($x, By);
}
}
for $x (3,7,9){
$LoL[$x][20] += func2($x);
}
It doesn't matter whether those elements are already there or not: it'll gladly create them for you, setting
intervening elements tendef as need be.

If you wanted just to append to a row, you‘d have to do something a bit funnier looking:

add new columns to an existing row
push @{ $LoL[0] }, "wilma", "betty";

Notice that Icouldn‘t say just:
push $LoL[0], "wilma", "betty"; # WRONG!

In fact, that wouldn‘t even compile. How come? Because the argumamhi¢) must be a real array, not
just a reference to such.

Access and Printing

Now it's time to print your data structure out. How are you going to do that? Well, if you want only one of
the elements, it's trivial:

print $LoL[0][0];
If you want to print the whole thing, though, you can'‘t say
print @LoL; # WRONG

because you'll get just references listed, and perl will never automatically dereference things for you.
Instead, you have to roll yourself a loop or two. This prints the whole structure, using the shell-style
for() construct to loop across the outer set of subscripts.

for $aref (@LoL) {
print "\t [@$aref] \n";
}

23—-Mar-1997 Perl Version 5.004 BETA 313

perllol Perl Programmers Reference Guide perliol

If you wanted to keep track of subscripts, you might do this:

for $i (0 .. $#LoL) {
print "\t elt $i is [@{$LoL[$i]}].\n";
}

or maybe even this. Notice the inner loop.

for $i (0 .. $#LoL) {
for $j (0 .. $#{$LoL[$i]}) {
print "elt $i $j is $SLoL[Si][$j]\n";
}
}

As you can see, it's getting a bit complicated. That's why sometimes is easier to take a temporary on your
way through:

for $i (0 .. $#LoL) {
$aref = $LoL[S$i];
for $j (0 .. $#{$aref}) {
print "elt $i $j is $LoL[$i][$j]\n";
}
}

Hmm... that's still a bit ugly. How about this:

for $i (0 .. $#LoL) {
$aref = $LoL[S$i];
$n = @%aref - 1;
for $j (0..%n){
print "elt $i $j is $LoL[$i][$j]\n";
}

Slices
If you want to get at a slice (part of a row) in a multidimensional array, you're going to have to do some
fancy subscripting. That's because while we have a nice synonym for single elements via the pointer arrow
for dereferencing, no such convenience exists for slices. (Remember, of course, that you can always write a
loop to do a slice operation.)

Here's how to do one operation using a loop. We'll assume an @LoL variable as before.

@part = ();
$x = 4;
for (By = 7; Sy < 13; $y++) {
push @part, SLoL[$xX][$By];
}

That same loop could be replaced with a slice operation:
@part = @{ $LoL[4] }[7..12];
but as you might well imagine, this is pretty rough on the reader.

Ah, but what if you wanted ®vo—-dimensional slicesuch as havin§jx run from 4..8 an&y run from 7 to
12? Hmm... here's the simple way:

@newLoL = ();
for ($startx = $x = 4; $x <= 8; $x++) {
for ($starty = By = 7; $x <= 12; $y++) {
$newLoL[$x — $startx][$y — $starty] = $SLoL[$X][$y];
}

314 Perl Version 5.004 BETA 23—-Mar-1997

perllol Perl Programmers Reference Guide perliol

}

We can reduce some of the looping through slices

for ($x = 4; $x <= 8; $x++) {
push @newLoL, [@{ $LoL[$x]}[7..121]];
}

If you were into Schwartzian Transforms, you would probably have selected map for that
@newlLoL =map {[@{ $LoL[$_]}[7..12]]}4 .. 8;

Although if your manager accused of seeking job security (or rapid insecurity) through inscrutable code, it
would be hard to argue. :-) If | were you, I'd put that in a function:

@newlLol = splice_2D(\@LoL,4=>8,7 =>12);
sub splice_2D {
my $lrr = shift; # ref to list of list refs!
my ($x_lo, $x_hi,
$y_lo, $y_hi) = @_;

return map {

[@{S$Irr—>[$_]}[$y_lo..$y _hi]]

} $x_lo .. $x_hi;
}
SEE ALSO
perldata(1), perlref(1), perldsc(1)
AUTHOR

Tom Christiansentchrist@perl.com

Last udpate: Sat Oct 7 19:35:26 MDT 1995

23—-Mar-1997 Perl Version 5.004 BETA 315

perlobj Perl Programmers Reference Guide perlobj

NAME
perlobj — Perl objects

DESCRIPTION

First of all, you need to understand what references are in PepeBe# for that. Second, if you still find
the following reference work too complicated, a tutorial on object—oriented programming in Perl can be
found inperltoot

If you're still with us, then here are three very simple definitions that you should find reassuring.
1. Anobjectis simply a reference that happens to know which class it belongs to.
2. Aclass is simply a package that happens to provide methods to deal with object references.

3. A method is simply a subroutine that expects an object reference (or a package name, for class
methods) as the first argument.

We'll cover these points now in more depth.

An Object is Simply a Reference

Unlike say C++, Perl doesn‘t provide any special syntax for constructors. A constructor is merely a
subroutine that returns a reference to something "blessed" into a class, generally the class that the subroutine
is defined in. Here is a typical constructor:

package Critter;
sub new { bless {} }

The{} constructs a reference to an anonymous hash containing no key/value paitdes$f)e takes

that reference and tells the object it references that it's now a Critter, and returns the reference. This is for
convenience, because the referenced object itself knows that it has been blessed, and its reference to it could
have been returned directly, like this:

sub new {
my $self = {};
bless $self;
return $self;

}

In fact, you often see such a thing in more complicated constructors that wish to call methods in the class as
part of the construction:

sub new {
my $self = {}
bless $self;
$self->initialize();
return $self;

}

If you care about inheritance (and you should;Medules: Creation, Use, and Abuse in perlfndbden you
want to use the two-arg form of bless so that your constructors may be inherited:

sub new {
my $class = shift;
my $self = {};
bless $self, $class
$self->initialize();
return $self;

}

Or if you expect people to call not JUSLASS—>new() but also$obj—>new() , then use something like
this. Theinitialize() method used will be of whatevclass we blessed the object into:

316 Perl Version 5.004 BETA 23—-Mar-1997

perlobj Perl Programmers Reference Guide perlobj

sub new {
my $this = shift;
my $class = ref($this) || $this;
my $self = {};

bless $self, $class
$self->initialize();
return $self;

}

Within the class package, the methods will typically deal with the reference as an ordinary reference.
Outside the class package, the reference is generally treated as an opaque value that may be accessed only
through the class's methods.

A constructor may re-bless a referenced object currently belonging to another class, but then the new class is
responsible for all cleanup later. The previous blessing is forgotten, as an object may belong to only one
class at a time. (Although of course it's free to inherit methods from many classes.)

A clarification: Perl objects are blessed. References are not. Objects know which package they belong to.
References do not. ThHeess() function uses the reference to find the object. Consider the following

example:
$a={}
$b = $a;

bless $a, BLAH;
print "\$b is a ", ref($b), "\n";

This reportspb as being a BLAH, so obviousbless() operated on the object and not on the reference.

A Class is Simply a Package

Unlike say C++, Perl doesn‘t provide any special syntax for class definitions. You use a package as a class
by putting method definitions into the class.

There is a special array within each package called @ISA which says where else to look for a method if you
can't find it in the current package. This is how Perl implements inheritance. Each element of the @ISA
array is just the name of another package that happens to be a class package. The classes are searched (depth
first) for missing methods in the order that they occur in @ISA. The classes accessible through @ISA are
known as base classes of the current class.

If a missing method is found in one of the base classes, it is cached in the current class for efficiency.
Changing @ISA or defining new subroutines invalidates the cache and causes Perl to do the lookup again.

If a method isn‘t found, but an AUTOLOAD routine is found, then that is called on behalf of the missing
method.

If neither a method nor an AUTOLOAD routine is found in @ISA, then one last try is made for the method
(or an AUTOLOAD routine) in a class called UNIVERSAL. (Several commonly used methods are
automatically supplied in the UNIVERSAL class; s&efault UNIVERSAL method$tr more details.) If

that doesn‘t work, Perl finally gives up and complains.

Perl classes do only method inheritance. Data inheritance is left up to the class itself. By and large, this is

not a problem in Perl, because most classes model the attributes of their object using an anonymous hash,
which serves as its own little namespace to be carved up by the various classes that might want to do

something with the object.

A Method is Simply a Subroutine

Unlike say C++, Perl doesn't provide any special syntax for method definition. (It does provide a little
syntax for method invocation though. More on that later.) A method expects its first argument to be the
object or package it is being invoked on. There are just two types of methods, which we'll call class and
instance. (Sometimes you'll hear these called static and virtual, in honor of the two C++ method types they
most closely resemble.)

23—-Mar-1997 Perl Version 5.004 BETA 317

perlobj Perl Programmers Reference Guide perlobj

A class method expects a class name as the first argument. It provides functionality for the class as a whole,
not for any individual object belonging to the class. Constructors are typically class methods. Many class
methods simply ignore their first argument, because they already know what package they‘re in, and don't
care what package they were invoked via. (These aren‘t necessarily the same, because class methods follow
the inheritance tree just like ordinary instance methods.) Another typical use for class methods is to look up
an object by name:

sub find {
my ($class, $name) = @_;
$objtable{$name};

}

An instance method expects an object reference as its first argument. Typically it shifts the first argument
into a "self" or "this" variable, and then uses that as an ordinary reference.

sub display {
my $self = shift;
my @keys = @_ ? @_ : sort keys %$self;
foreach $key (@keys) {
print "\t$key => $self->{$key\n";
}
}

Method Invocation

There are two ways to invoke a method, one of which you‘re already familiar with, and the other of which
will look familiar. Perl 4 already had an "indirect object" syntax that you use when you say

print STDERR "help!'\n";

This same syntax can be used to call either class or instance methods. We'll use the two methods defined
above, the class method to lookup an object reference and the instance method to print out its attributes.

$fred = find Critter "Fred";
display $fred 'Height’, "Weight’;

These could be combined into one statement by using a BLOCK in the indirect object slot:
display {find Critter "Fred"} 'Height’, 'Weight’;

For C++ fans, there's also a syntax using —> notation that does exactly the same thing. The parentheses are
required if there are any arguments.

$fred = Critter—>find("Fred");
$fred—>display('Height’, "Weight’);

or in one statement,
Critter—>find("Fred")—>display('Height’, 'Weight’);

There are times when one syntax is more readable, and times when the other syntax is more readable. The
indirect object syntax is less cluttered, but it has the same ambiguity as ordinary list operators. Indirect object
method calls are parsed using the same rule as list operators: "If it looks like a function, it is a function".
(Presuming for the moment that you think two words in a row can look like a function name. C++
programmers seem to think so with some regularity, especially when the first word is "new".) Thus, the
parentheses of

new Critter ('Barney’, 1.5, 70)
are assumed to surround ALL the arguments of the method call, regardless of what comes after. Saying
new Critter 'Bam’ x 2), 1.4, 45

would be equivalent to

318

Perl Version 5.004 BETA 23—-Mar-1997

perlobj Perl Programmers Reference Guide perlobj

Critter—>new('Bam’ x 2), 1.4, 45
which is unlikely to do what you want.

There are times when you wish to specify which class's method to use. In this case, you can call your
method as an ordinary subroutine call, being sure to pass the requisite first argument explicitly:

$fred = MyCritter::find("Critter", "Fred");
MyCritter::display($fred, 'Height’, "Weight’);

Note however, that this does not do any inheritance. If you wish merely to specify that PerlSShoRIb
looking for a method in a particular package, use an ordinary method call, but qualify the method name with
the package like this:

$fred = Critter—>MyCritter::find("Fred");
$fred—>MyCritter::display('Height’, "Weight’);

If you're trying to control where the method search begmsyou‘re executing in the class itself, then you
may use the SUPER pseudo class, which says to start looking in your base class's @ISA list without having
to name it explicitly:

$self->SUPER::display('Height’, 'Weight');
Please note that tt®UPER:: construct is meaningfanly within the class.

Sometimes you want to call a method when you don‘t know the method name ahead of time. You can use
the arrow form, replacing the method name with a simple scalar variable containing the method name:

$method = $fast ? "findfirst" : "findbest";
$fred—>$method(@args);
Default UNIVERSAL methods

The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa(CLASS)
isa returnstrueif its object is blessed into a subclas€bASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to check
what a reference points to. Example

use UNIVERSAL gw(isa);
if(isa($ref, ' ARRAY")) {

}
can(METHOD)

can checks to see if its object has a method cadE@HODIf it does then a reference to the sub is
returned, if it does not thamdefis returned.

VERSION([NEED])

VERSIONTreturns the version number of the class (package). If the NEED argument is given then it
will check that the current version (as defined by $W&RSIONvariable in the given package) not

less than NEED; it will die if this is not the case. This method is normally called as a class method.
This method is called automatically by MERSIONform of use .

use A 1.2 gw(some imported subs);
implies:
A->VERSION(1.2);

NOTE: can directly uses Perl‘s internal code for method lookup,iaad uses a very similar method and
cache-ing strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any

23—-Mar-1997 Perl Version 5.004 BETA 319

perlobj Perl Programmers Reference Guide perlobj

package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not nesel to
UNIVERSALIn order to make these methods available to your program. This is necessary only if you wish
to haveisa available as a plain subroutine in the current package.

Destructors
When the last reference to an object goes away, the object is automatically destroyed. (This may even be
after you exit, if you‘ve stored references in global variables.) If you want to capture control just before the
object is freed, you may define a DESTROY method in your class. It will automatically be called at the
appropriate moment, and you can do any extra cleanup you need to do.

Perl doesn‘t do nested destruction for you. If your constructor re-blessed a reference from one of your base
classes, your DESTROY may need to call DESTROY for any base classes that need it. But this applies to
only re-blessed objects—an object reference that is mE@NTAINEDIn the current object will be freed

and destroyed automatically when the current object is freed.

WARNING
An indirect object is limited to a name, a scalar variable, or a block, because it would have to do too much
lookahead otherwise, just like any other postfix dereference in the language. The left side of —> is not so
limited, because it's an infix operator, not a postfix operator.

That means that below, A and B are equivalent to each other, and C and D are equivalent, but AB and CD
are different:

A: method $obref->{"fieldname"}

B: (method $obref)—>{"fieldname"}
C: $obref->{"fieldname"}->method()
D: method {$obref->{"fieldname"}}

Summary
That's about all there is to it. Now you need just to go off and buy a book about object-oriented design
methodology, and bang your forehead with it for the next six months or so.

Two—-Phased Garbage Collection
For most purposes, Perl uses a fast and simple reference—based garbage collection system. For this reason,
there's an extra dereference going on at some level, so if you haven‘t built your Perl executable using your C
compiler's-0 flag, performance will suffer. If yobavebuilt Perl withcc —O , then this probably won‘t
matter.

A more serious concern is that unreachable memory with a non-zero reference count will not normally get
freed. Therefore, this is a bad idea:

{
my $a;
$a = \$a;
}

Even thoughta shouldgo away, it can‘t. When building recursive data structures, you'll have to break the
self-reference yourself explicitly if you don‘t care to leak. For example, here's a self-referential node such
as one might use in a sophisticated tree structure:

sub new_node {

my $self = shift;
my $class = ref($self) || $self;
my $node = {};

$node—>{LEFT} = $node->{RIGHT} = $node;
$node—>{DATA}=[@_;
return bless $node => $class;

320 Perl Version 5.004 BETA 23—-Mar-1997

perlobj Perl Programmers Reference Guide perlobj

If you create nodes like that, they (currently) won't go away unless you break their self reference yourself.
(In other words, this is not to be construed as a feature, and you shouldn‘t depend on it.)

Almost.

When an interpreter thread finally shuts down (usually when your program exits), then a rather costly but
complete mark—-and-sweep style of garbage collection is performed, and everything allocated by that thread
gets destroyed. This is essential to support Perl as an embedded or a multi-threadable language. For
example, this program demonstrates Perl‘s two—phased garbage collection:

#1/usr/bin/perl
package Subtle;

sub new {
my $test;
$test = \$test;
warn "CREATING " . \$test;
return bless \$test;

}
sub DESTROY {

my $self = shift;

warn "DESTROYING $self";
}

package main;

warn "starting program";

{
my $a = Subtle->new;
my $b = Subtle->new;
$$a = 0; # break selfref
warn "leaving block";

}

warn "just exited block";
warn "time to die...";
exit;

When run agtmp/test the following output is produced:

starting program at /tmp/test line 18.

CREATING SCALAR(0x8e5b8) at /tmp/test line 7.

CREATING SCALAR(0x8e57c) at /tmp/test line 7.

leaving block at /tmp/test line 23.

DESTROYING Subtle=SCALAR(0x8e5b8) at /tmp/test line 13.

just exited block at /tmp/test line 26.

time to die... at /tmp/test line 27.

DESTROYING Subtle=SCALAR(0x8e57c) during global destruction.

Notice that "global destruction" bit there? That's the thread garbage collector reaching the unreachable.

Objects are always destructed, even when regular refs aren‘t and in fact are destructed in a separate pass
before ordinary refs just to try to prevent object destructors from using refs that have been themselves
destructed. Plain refs are only garbage—collected if the destruct level is greater than 0. You can test the
higher levels of global destruction by setting the PERL_DESTRUCT_LEVEL environment variable,
presuming-DDEBUGGIN®as enabled during perl build time.

A more complete garbage collection strategy will be implemented at a future date.

23—-Mar-1997 Perl Version 5.004 BETA 321

perlobj Perl Programmers Reference Guide perlobj

SEE ALSO

A kinder, gentler tutorial on object—oriented programming in Perl can be foym®ilinot You should also
check outperlbot for other object tricks, traps, and tips, as wellpagmodfor some style guides on
constructing both modules and classes.

322 Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

NAME
perltie — how to hide an object class in a simple variable

SYNOPSIS
tie VARIABLE, CLASSNAME, LIST

$object = tied VARIABLE
untie VARIABLE

DESCRIPTION

Prior to release 5.0 of Perl, a programmer coulddiseopen() to connect an on-disk database in the
standard Unix dbm(3x) format magically to a %HASH in their program. However, their Perl was either built
with one particular dbm library or another, but not both, and you couldn't extend this mechanism to other
packages or types of variables.

Now you can.

Thetie() function binds a variable to a class (package) that will provide the implementation for access
methods for that variable. Once this magic has been performed, accessing a tied variable automatically
triggers method calls in the proper class. All of the complexity of the class is hidden behind magic methods
calls. The method names are in ALL CAPS, which is a convention that Perl uses to indicate that they‘'re
called implicitly rather than explicitly—just like tH#EGIN() andEND() functions.

In thetie() call, VARIABLE is the name of the variable to be enchant€dASSNAMES the name of a
class implementing objects of the correct type. Any additional arguments inSHheare passed to the
appropriate constructor method for that class—meahlB$SCALAR() , TIEARRAY() , TIEHASH() , or
TIEHANDLE() . (Typically these are arguments such as might be passed dbrttieit() function of

C.) The object returned by the "new" method is also returned liefhe function, which would be useful

if you wanted to access other method€CIPASSNAMEYou don't actually have to return a reference to a
right "type" (e.g., HASH o€£LASSNAMESo long as it's a properly blessed object.) You can also retrieve a
reference to the underlying object usingtied() function.

Unlike dbmopen() , thetie() function will notuse orrequire a module for you—you need to do that
explicitly yourself.

Tying Scalars

A class implementing a tied scalar should define the following methods: TIESCALAR, FETCH, STORE,
and possibly DESTROY.

Let's look at each in turn, using as an example a tie class for scalars that allows the user to do something
like:

tie $his_speed, 'Nice’, getppid();
tie $my_speed, 'Nice’, $3;

And now whenever either of those variables is accessed, its current system priority is retrieved and returned.
If those variables are set, then the process's priority is changed!

We'll use Jarkko HietaniemiJarkko.Hietaniemi@hut.fis BSD::Resource class (hot included) to access the
PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants from your system, as well as the
getpriority() andsetpriority() system calls. Here's the preamble of the class.

package Nice;

use Carp;

use BSD::Resource;

use strict;

$Nice::DEBUG = 0 unless defined $Nice::DEBUG;

23—-Mar-1997 Perl Version 5.004 BETA 323

perltie Perl Programmers Reference Guide perltie

TIESCALAR classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference to a new
scalar (probably anonymous) that it's creating. For example:

sub TIESCALAR {
my $class = shift;
my $pid = shift || $$; # 0 means me

if ($pid !~ /MN\d+$/) {
carp "Nice::Tie::Scalar got non—numeric pid $pid" if $MW;
return undef;

}

unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
carp "Nice::Tie::Scalar got bad pid $pid: $!" if $"W;
return undef;

}

return bless \$pid, $class;

}

This tie class has chosen to return an error rather than raising an exception if its constructor should fail.
While this is howndbmopen() works, other classes may well not wish to be so forgiving. It checks
the global variabl§"Wto see whether to emit a bit of noise anyway.

FETCH this

This method will be triggered every time the tied variable is accessed (read). It takes no arguments
beyond its self reference, which is the object representing the scalar we're dealing with. Because in
this case we're using just a SCALAR ref for the tied scalar object, a siBgkdf allows the

method to get at the real value stored there. In our example below, that real value is the process ID to
which we've tied our variable.

sub FETCH {
my $self = shift;
confess "wrong type" unless ref $self;
croak "usage error" if @_;
my $nicety;
local($!) = 0;
$nicety = getpriority(PRIO_PROCESS, $$self);
if ($!) { croak "getpriority failed: $!" }
return $nicety;

}

This time we've decided to blow up (raise an exception) if the renice fails—there's no place for us to
return an error otherwise, and it's probably the right thing to do.

STORE this, value

This method will be triggered every time the tied variable is set (assigned). Beyond its self reference,
it also expects one (and only one) argument—the new value the user is trying to assign.

sub STORE {
my $self = shift;
confess "wrong type" unless ref $self;
my $new_nicety = shift;
croak "usage error" if @_;
if ($new_nicety < PRIO_MIN) {
carp sprintf
"WARNING: priority %d less than minimum system priority %d",

324 Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

$new_nicety, PRIO_MIN if $"W;
$new_nicety = PRIO_MIN;
}

if ($new_nicety > PRIO_MAX) {
carp sprintf
"WARNING: priority %d greater than maximum system priority %d",
$new_nicety, PRIO_MAX if $"W;
$new_nicety = PRIO_MAX;
}

unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {
confess "setpriority failed: $!";
}

return $new_nicety;

}
DESTROY this

This method will be triggered when the tied variable needs to be destructed. As with other object
classes, such a method is seldom necessary, because Perl deallocates its moribund object's memory for
you automatically—this isn‘t C++, you know. We'll use a DESTROY method here for debugging
purposes only.

sub DESTROY {

my $self = shift;

confess "wrong type" unless ref $self;

carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;
}

That's about all there is to it. Actually, it's more than all there is to it, because we‘ve done a few nice things
here for the sake of completeness, robustness, and general aesthetics. Simpler TIESCALAR classes are
certainly possible.

Tying Arrays

A class implementing a tied ordinary array should define the following methods: TIEARRAY, FETCH,
STORE, and perhaps DESTROY.

WARNING : Tied arrays arencomplete They are also distinctly lacking something for 8#ARRAY
access (which is hard, as it's an Ivalue), as well as the other obvious array functigmssti@Qe , pop() ,
shift() , unshift() , andsplice()

For this discussion, we'll implement an array whose indices are fixed at its creation. If you try to access
anything beyond those bounds, you'll take an exception. (Well, if you access an individual element; an
aggregate assignment would be missed.) For example:

require Bounded_Array;
tie @ary, 'Bounded_Array’, 2;
$|=1;
for $i (0 .. 10) {
print "setting index $i: ";
$ary[$i] = 10 * $i;
$ary[$i] = 10 * $i;
print "value of elt $i now $ary[$i]\n";

}

The preamble code for the class is as follows:

package Bounded_Array;
use Carp;
use strict;

23—-Mar-1997 Perl Version 5.004 BETA 325

perltie Perl Programmers Reference Guide perltie

TIEARRAY classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference through
which the new array (probably an anonymous ARRAY ref) will be accessed.

In our example, just to show you that you do@ally have to return an ARRAY reference, we'll
choose a HASH reference to represent our object. A HASH works out well as a generic record type:
the {BOUND]} field will store the maximum bound allowed, and {ARRAY} field will hold the true
ARRAY ref. If someone outside the class tries to dereference the object returned (doubtless thinking it
an ARRAY ref), they'll blow up. This just goes to show you that you should respect an object's
privacy.

sub TIEARRAY {

my $class = shift;

my $bound = shift;

confess "usage: tie(\@ary, 'Bounded_Array’, max_subscript)"
if @_ || $bound =~ \D/;

return bless {
BOUND => $bound,
ARRAY =>1],

}, $class;

}

FETCH this, index

This method will be triggered every time an individual element the tied array is accessed (read). It
takes one argument beyond its self reference: the index whose value we're trying to fetch.

sub FETCH {
my($self,$idx) = @_;
if ($idx > $self->{BOUND}) {
confess "Array OOB: $idx > $self->{BOUND}";
}

return $self->{ARRAY}[$idx];
}

As you may have noticed, the name of the FETCH method (et al.) is the same for all accesses, even
though the constructors differ in names (TIESCALAR vs TIEARRAY). While in theory you could
have the same class servicing several tied types, in practice this becomes cumbersome, and it's easiest
to keep them at simply one tie type per class.

STORE this, index, value

This method will be triggered every time an element in the tied array is set (written). It takes two
arguments beyond its self reference: the index at which we're trying to store something and the value
we're trying to put there. For example:

sub STORE {
my($self, $idx, $value) = @_;
print "[STORE $value at $idx]\n" if _debug;
if ($idx > $self->{BOUND}) {
confess "Array OOB: $idx > $self->{BOUND}";
}
return $self->{ARRAY}[$idx] = $value;

}
DESTROY this

This method will be triggered when the tied variable needs to be destructed. As with the scalar tie
class, this is almost never needed in a language that does its own garbage collection, so this time we'll
just leave it out.

326 Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

The code we presented at the top of the tied array class accesses many elements of the array, far more than
we've set the bounds to. Therefore, it will blow up once they try to access beyond the 2nd element of @ary,
as the following output demonstrates:

setting index O: value of elt 0 now 0

setting index 1: value of elt 1 now 10

setting index 2: value of elt 2 now 20

setting index 3: Array OOB: 3 > 2 at Bounded_Array.pm line 39
Bounded_Array::FETCH called at testba line 12

Tying Hashes
As the first Perl data type to be tied (slBnopen()), hashes have the most complete and usief)!
implementation. A class implementing a tied hash should define the following methods: TIEHASH is the
constructor. FETCH and STORE access the key and value pairs. EXISTS reports whether a key is present in
the hash, and DELETE deletes one. CLEAR empties the hash by deleting all the key and value pairs.
FIRSTKEY and NEXTKEY implement thikeys() andeach() functions to iterate over all the keys. And
DESTROY is called when the tied variable is garbage collected.

If this seems like a lot, then feel free to inherit from merely the standard Tie::Hash module for most of your
methods, redefining only the interesting ones. BeeHashfor details.

Remember that Perl distinguishes between a key not existing in the hash, and the key existing in the hash but
having a corresponding value ohdef . The two possibilities can be tested with thests() and
defined() functions.

Here's an example of a somewhat interesting tied hash class: it gives you a hash representing a particular
user's dot files. You index into the hash with the name of the file (minus the dot) and you get back that dot
file's contents. For example:

use DotFiles;

tie %dot, 'DotFiles’;

if ($dot{profile} =~ /IMANPATH/ ||
$dot{login} =~ /MANPATH/ ||
$dot{cshrc} =~/MANPATH/)

{

}

Or here's another sample of using our tied class:

print "you seem to set your MANPATH\n";

tie %him, 'DotFiles’, 'daemon’;
foreach $f (keys %him) {
printf "daemon dot file %s is size %d\n",
$f, length $him{$f};
}

In our tied hash DotFiles example, we use a regular hash for the object containing several important fields, of
which only the{LIST} field will be what the user thinks of as the real hash.

USER

whose dot files this object represents
HOME

where those dot files live

CLOBBER
whether we should try to change or remove those dot files

23—-Mar-1997 Perl Version 5.004 BETA 327

Tie::Hash

perltie

Perl Programmers Reference Guide perltie

LIST the hash of dot file names and content mappings

Here's the start dDotfiles.pm

package DotFiles;

use Carp;

sub whowasi { (caller(1))[3] . '()’ }
my $DEBUG = 0;
sub debug { $DEBUG = @_ ? shift: 1}

For our example, we want to be able to emit debugging info to help in tracing during development. We keep
also one convenience function around internally to help print out warniviggwasi() returns the
function name that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference through
which the new object (probably but not necessarily an anonymous hash) will be accessed.

Here's the constructor:
sub TIEHASH {

}

my $self = shift;
my $user = shift || $>;
my $dotdir = shift || ;
croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
$user = getpwuid($user) if user =~ /N\d+$/;
my $dir = (getpwnam($user))[7]
|| croak "@{[&whowasil}: no user $user";
$dir .= "/$dotdir" if $dotdir;

my $node = {
USER => $user,
HOME => %dir,
LIST =>{},

CLOBBER => 0,
%
opendir(DIR, $dir)
|| croak "@{[&whowasi]}: can’t opendir $dir: $!";
foreach $dot (grep /N\./ && —f "$dir/$_", readdir(DIR)) {
$dot =~ s/M\.JI;
$node—>{LISTH$dot} = undef;
}
closedir DIR;
return bless $node, $self;

It's probably worth mentioning that if you‘re going to filetest the return values out of a readdir, you‘d
better prepend the directory in question. Otherwise, because wedtidin() there, it would have
been testing the wrong file.

FETCH this, key

This method will be triggered every time an element in the tied hash is accessed (read). It takes one
argument beyond its self reference: the key whose value we're trying to fetch.

Here's the fetch for our DotFiles example.

sub FETCH {

328

Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

carp &whowasi if $DEBUG;
my $self = shift;

my $dot = shift;

my $dir = $self->{HOME};
my $file = "$dir/.$dot";

unless (exists $self->{LIST}->{$dot} || —f $file) {
carp "@{[&whowasi]}: no $dot file" if SDEBUG;
return undef;

}

if (defined $self->{LIST}->{$dot}) {
return $self—->{LIST}->{$dot};
}else {
return $self->{LIST}->{$dot} = ‘cat $dir/.$dot’;
}
}

It was easy to write by having it call the Unix cat(1) command, but it would probably be more portable
to open the file manually (and somewhat more efficient). Of course, because dot files are a Unixy
concept, we're not that concerned.

STORE this, key, value

This method will be triggered every time an element in the tied hash is set (written). It takes two
arguments beyond its self reference: the index at which we're trying to store something, and the value
we're trying to put there.

Here in our DotFiles example, we'll be careful not to let them try to overwrite the file unless they‘ve
called theclobber() method on the original object reference returnetidgy

sub STORE {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $value = shift;
my $file = $self->{HOME} . "/.$dot";
my $user = $self->{USER};

croak "@{[&whowasi]}: $file not clobberable"
unless $self->{CLOBBER};

open(F, "> $file") || croak "can't open $file: $!";
print F $value;
close(F);

}
If they wanted to clobber something, they might say:

$ob = tie %daemon_dots, 'daemon’;
$ob—>clobber(1);
$daemon_dots{signature} = "A true daemon\n";

Another way to lay hands on a reference to the underlying object is to usede function, so
they might alternately have set clobber using:

tie %daemon_dots, 'daemon’;
tied(%odaemon_dots)—>clobber(1);

The clobber method is simply:
sub clobber {

23—-Mar-1997 Perl Version 5.004 BETA 329

perltie Perl Programmers Reference Guide perltie

my $self = shift;
$self->{CLOBBER} = @_ ? shift : 1;
}

DELETE this, key

This method is triggered when we remove an element from the hash, typically by using the
delete() function. Again, we'll be careful to check whether they really want to clobber files.

sub DELETE {
carp &whowasi if $DEBUG;

my $self = shift;
my $dot = shift;
my $file = $self->{HOME} . "/.$dot";
croak "@{[&whowasi]}: won't remove file $file"
unless $self->{CLOBBER};
delete $self->{LIST}->{$dot};
my $success = unlink($file);
carp "@{[&whowasi]}: can’t unlink $file: $!" unless $success;
$success;

}

The value returned by DELETE becomes the return value of the addléte() . If you want to
emulate the normal behavior délete() , you should return whatever FETCH would have returned

for this key. In this example, we have chosen instead to return a value which tells the caller whether
the file was successfully deleted.

CLEAR this
This method is triggered when the whole hash is to be cleared, usually by assigning the empty list to it.

In our example, that would remove all the user's dot files! It's such a dangerous thing that they'll have
to set CLOBBER to something higher than 1 to make it happen.

sub CLEAR {
carp &whowasi if $DEBUG;
my $self = shift;

croak "@{[&whowasi]}: won't remove all dot files for $self->{USER}"
unless $self->{CLOBBER} > 1;
my $dot;
foreach $dot (keys %{$self->{LIST}}) {
$self->DELETE($dot);
}
}

EXISTS this, key

This method is triggered when the user usesetists() function on a particular hash. In our
example, we'll look at th@ IST} hash element for this:

sub EXISTS {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

return exists $self->{LIST}->{$dot};
}

FIRSTKEY this

This method will be triggered when the user is going to iterate through the hash, suchkeys(a a
oreach() call

330 Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

sub FIRSTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
my $a = keys %{$self->{LIST}}; # reset each() iterator
each %{$self->{LIST}}
}

NEXTKEY this, lastkey

This method gets triggered durindgeys() oreach() iteration. It has a second argument which is
the last key that had been accessed. This is useful if you‘re carrying about ordering or calling the
iterator from more than one sequence, or not really storing things in a hash anywhere.

For our example, we're using a real hash so we'll do just the simple thing, but we'll have to go through
the LIST field indirectly.

sub NEXTKEY ({
carp &whowasi if $DEBUG;
my $self = shift;
return each %{ $self->{LIST} }
}

DESTROY this

This method is triggered when a tied hash is about to go out of scope. You don'‘t really need it unless
you're trying to add debugging or have auxiliary state to clean up. Here's a very simple function:

sub DESTROY {
carp &whowasi if $DEBUG;
}

Note that functions such d&®ys() andvalues() ~may return huge array values when used on large
objects, like DBM files. You may prefer to use #aeh() function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, 'fusr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =, unpack('L’,$val), "\n";
}
untie(%HIST);

Tying FileHandles

This is partially implemented now.

A class implementing a tied filehandle should define the following methods: TIEHANDLE, at least one of
PRINT, READLINE, GETC, or READ, and possibly DESTROY.

It is especially useful when perl is embedded in some other program, where output to STDOUT and
STDERR may have to be redirected in some special way. See nvi and the Apache module for examples.

In our example we're going to create a shouting handle.
package Shout;

TIEHANDLE classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference of some
sort. The reference can be used to hold some internal information.

sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }

23—-Mar-1997 Perl Version 5.004 BETA 331

perltie

Perl Programmers Reference Guide perltie

PRINT this, LIST

This method will be triggered every time the tied handle is printed to. Beyond its self reference it also
expects the list that was passed to the print function.

sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\}

READ this LIST
This method will be called when the handle is read from viagthe orsysread functions.
sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";

}
READLINE this
This method will be called when the handle is read from via <HANDLE. The method should return
undef when there is no more data.
sub READLINE { $r = shift; "PRINT called $$r times\n"; }

GETC this
This method will be called when tigetc function is called.

sub GETC { print "Don’t GETC, Get Perl"; return "a";

DESTROY this

As with the other types of ties, this method will be called when the tied handle is about to be destroyed.
This is useful for debugging and possibly cleaning up.

sub DESTROY { print "</shout>\n" }
Here's how to use our little example:

tie(*FOO, Shout’);

print FOO "hello\n";

$a =4; $b = 6;

print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
print <FOO>;

The untie Gotcha

If you intend making use of the object returned from eitie€y ortied() , and if the tie's target class
defines a destructor, there is a subtle gotchanyestguard against.

As setup, consider this (admittedly rather contrived) example of a tie; all it does is use a file to keep a log of
the values assigned to a scalar.

package Remember;

use strict;
use |0::File;

sub TIESCALAR {
my $class = shift;
my $filename = shift;
my $handle = new 10::File "> $filename"
or die "Cannot open $filename: $\n";

print $handle "The Start\n";
bless {FH => $handle, Value => 0}, $class;

332

Perl Version 5.004 BETA 23—-Mar-1997

perltie Perl Programmers Reference Guide perltie

sub FETCH {
my $self = shift;
return $self->{Value};

}

sub STORE {
my $self = shift;
my $value = shift;
my $handle = $self->{FH}
print $handle "$value\n”;
$self->{Value} = $value;

}

sub DESTROY {
my $self = shift;
my $handle = $self->{FH}
print $handle "The End\n";
close $handle;

}
1
Here is an example that makes use of this tie:

use strict;
use Remember;

my $fred;

tie $fred, 'Remember’, ‘'myfile.txt’;
$fred = 1,

$fred = 4;

$fred = 5;

untie $fred,;

system "cat myfile.txt";

This is the output when it is executed:

The Start
1

4

5

The End

So far so good. Those of you who have been paying attention will have spotted that the tied object hasn't
been used so far. So lets add an extra method to the Remember class to allow comments to be included in
the file — say, something like this:

sub comment {
my $self = shift;
my $text = shift;
my $handle = $self->{FH}
print $handle $text, "\n";
}

And here is the previous example modified to usetilmment method (which requires the tied object):

use strict;
use Remember;

my ($fred, $x);
$x = tie $fred, 'Remember’, 'myfile.txt’;

23—-Mar-1997 Perl Version 5.004 BETA 333

perltie

Perl Programmers Reference Guide perltie

$fred = 1;

$fred = 4;

comment $x "changing...";
$fred = 5;

untie $fred,;

system "cat myfile.txt";

When this code is executed there is no output. Here's why:

When a variable is tied, it is associated with the object which is the return value of the TIESCALAR,
TIEARRAY, or TIEHASH function. This object normally has only one reference, namely, the implicit
reference from the tied variable. Whemtie() is called, that reference is destroyed. Then, as in the first
example above, the object's destructor (DESTROQY) is called, which is normal for objects that have no more
valid references; and thus the file is closed.

In the second example, however, we have stored another reference to the tied $kjecTimat means that
whenuntie() gets called there will still be a valid reference to the object in existence, so the destructor is
not called at that time, and thus the file is not closed. The reason there is no output is because the file buffers
have not been flushed to disk.

Now that you know what the problem is, what can you do to avoid it? Well, the goetvdliag will spot
any instances where you calitie() and there are still valid references to the tied object. If the second
script above is run with thew flag, Perl prints this warning message:

untie attempted while 1 inner references still exist

To get the script to work properly and silence the warning make sure there are no valid references to the tied
objectbeforeuntie() is called:

undef $x;
untie $fred;

SEE ALSO

BUGS

SeeDB_File or Configfor some interestinge() implementations.

Tied arrays aréencomplete They are also distinctly lacking something for $##\RRAYaccess (which is
hard, as it's an Ivalue), as well as the other obvious array functionspu®) , pop() , shift() ,
unshift() , andsplice()

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem is
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does attempt to address this
need partially is the MLDBM module. Check your nearest CPAN site as descripedritodfor source

code to MLDBM.

AUTHOR

Tom Christiansen

TIEHANDLE by Sven Verdoolaegeskimo@dns.ufsia.ac.be

334

Perl Version 5.004 BETA 23—-Mar-1997

perlbot Perl Programmers Reference Guide perlbot

NAME
perlbot — Bag‘o Object Tricks (the BOT)

DESCRIPTION

The following collection of tricks and hints is intended to whet curious appetites about such things as the use
of instance variables and the mechanics of object and class relationships. The reader is encouraged to
consult relevant textbooks for discussion of Object Oriented definitions and methodology. This is not
intended as a tutorial for object-oriented programming or as a comprehensive guide to Perl‘s object oriented
features, nor should it be construed as a style guide.

The Perl motto still holds: There's more than one way to do it.
OO SCALING TIPS

1 Do not attempt to verify the type 8&elf. That'll break if the class is inherited, when the type of
$self is valid but its package isn‘t what you expect. See rule 5.

2 If an object-oriented (OO) or indirect—object (I0) syntax was used, then the object is probably the
correct type and there's no need to become paranoid about it. Perlisn't a paranoid language anyway.
If people subvert the OO or IO syntax then they probably know what they‘re doing and you should
let them do it. See rule 1.

3 Use the two—argument form bfess() . Let a subclass use your constructor. See
INHERITING A CONSTRUCTOR

4 The subclass is allowed to know things about its immediate superclass, the superclass is allowed to
know nothing about a subclass.

5 Don't be trigger happy with inheritance. A "using", "containing”, or "delegation” relationship (some
sort of aggregation, at least) is often more appropriate. GBEECT RELATIONSHIRS
USING RELATIONSHIP WITH SDBMNd"DELEGATION'

6 The object is the namespace. Make package globals accessible via the object. This will remove the
guess work about the symbol‘s home package C:#¢S CONTEXT AND THE OBJECT

7 IO syntax is certainly less noisy, but it is also prone to ambiguities that can cause difficult—to—find
bugs. Allow people to use the sure—thing OO syntax, even if you don't like it.

8 Do not use function—call syntax on a method. You‘re going to be bitten someday. Someone might
move that method into a superclass and your code will be broken. On top of that you‘re feeding the
paranoia in rule 2.

9 Don‘t assume you know the home package of a method. You‘re making it difficult for someone to
override that method. S&#INKING OF CODE REUSE
INSTANCE VARIABLES
An anonymous array or anonymous hash can be used to hold instance variables. Named parameters are also
demonstrated.

package Foo;

sub new {
my $type = shift;
my %params = @_;
my $self = {};
$self->{’High’} = $params{’High'};
$self->{’Low’} = $params{'Low’};
bless $self, $type;

}

package Bar;

23—-Mar-1997 Perl Version 5.004 BETA 335

perlbot Perl Programmers Reference Guide perlbot

sub new {
my $type = shift;
my %params = @_;
my $self = [];
$self->[0] = $params{’Left’};
$self->[1] = $params{'Right’};
bless $self, $type;

}

package main;

$a = Foo—>new('High’ => 42, 'Low’ => 11);
print "High=$a—>{"High"\n";
print "Low=$a—->{"Low\n";
$b = Bar—>new('Left’ => 78, 'Right’ => 40);
print "Left=$b—>[0]\n";
print "Right=$b—>[1]\n";

SCALAR INSTANCE VARIABLES

An anonymous scalar can be used when only one instance variable is needed.

package Foo;

sub new {
my $type = shift;
my $self;
$self = shift;
bless \$self, $type;
}

package main;
$a = Foo—>new(42);
print "a=$$a\n";

INSTANCE VARIABLE INHERITANCE

This example demonstrates how one might inherit instance variables from a superclass for inclusion in the
new class. This requires calling the superclass's constructor and adding one's own instance variables to the
new object.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{'buz’} = 42;
bless $self, $type;
}

package Foo;
@ISA = gw(Bar);

sub new {
my $type = shift;
my $self = Bar—>new;
$self->{'biz’} = 11,
bless $self, $type;

}

package main;

336 Perl Version 5.004 BETA 23—-Mar-1997

perlbot Perl Programmers Reference Guide perlbot

$a = Foo—>new;
print "buz =", $a->{'buz’}, "\n";
print "biz = ", $a->{'biz’}, "\n";
OBJECT RELATIONSHIPS
The following demonstrates how one might implement "containing” and "using" relationships between
objects.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{'buz’} = 42;
bless $self, $type;

}

package Foo;

sub new {
my $type = shift;
my $self = {};
$self->{'Bar’} = Bar—>new;
$self->{'biz’} = 11,
bless $self, $type;

}

package main;

$a = Foo—>new;
print "buz =", $a—>{'Bar’}->{’buz’}, "\n";
print "biz = ", $a->{'biz’}, "\n";
OVERRIDING SUPERCLASS METHODS
The following example demonstrates how to override a superclass method and then call the overridden

method. The&SUPER pseudo-class allows the programmer to call an overridden superclass method without
actually knowing where that method is defined.

package Buz;
sub goo { print "here’s the goo\n" }

package Bar; @ISA = qw(Buz);
sub google { print "google here\n" }

package Baz;
sub mumble { print "mumbling\n" }

package Foo;
@ISA = qw(Bar Baz);

sub new {
my $type = shift;
bless [], $type;

}

sub grr { print "grumble\n" }

sub goo {
my $self = shift;
$self->SUPER::goo();

sub mumble {
my $self = shift;

23—-Mar-1997 Perl Version 5.004 BETA 337

perlbot Perl Programmers Reference Guide perlbot

$self->SUPER::mumble();

}
sub google {
my $self = shift;
$self->SUPER::google();
}

package main;

$foo = Foo—>new;
$foo—>mumble;
$foo—>grr;
$foo—>goo;
$foo—>google;

USING RELATIONSHIP WITH SDBM

This example demonstrates an interface for the SDBM class. This creates a "using" relationship between the
SDBM class and the new class Mydbm.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = gw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File->new(@_);
bless {'dom’ => $ref}, $type;
}
sub FETCH {
my $self = shift;
my $ref = $self->{’dbm’};
$ref->FETCH(@_);
}
sub STORE {
my $self = shift;
if (defined $_[0]){
my $ref = $self->{’dbm’};
$ref->STORE(@);
}else {
die "Cannot STORE an undefined key in Mydbm\n";

}
}

package main;
use Fentl gw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "Sdbm", O_ RDWR|O_CREAT, 0640;
$foo{'bar’} = 123;

print "foo—bar = $foo{’bar’\n";

tie %bar, "Mydbm", "Sdbm?2", O_RDWR|O_CREAT, 0640;
$bar{'Cathy’} = 456;

print "bar—Cathy = $bar{’Cathy’\n";

338 Perl Version 5.004 BETA 23—-Mar-1997

perlbot

Perl Programmers Reference Guide

perlbot

THINKING OF CODE REUSE

One strength of Object-Oriented languages is the ease with which old code can use new code.

The

following examples will demonstrate first how one can hinder code reuse and then how one can promote

code reuse.

This first example illustrates a class which uses a fully—qualified method call to access the "private” method
BAZ() . The second example will show that it is impossible to overridBAz€) method.

package FOO;

sub new {

my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self->FOO::private::BAZ;

}
package FOO::private;
sub BAZ {

print "in BAZ\n";

}
package main;

$a = FOO—>new;
$a—>bar:;

Now we try to override thBAZ() method. We would lik&OO::bar()

cannot happen becaus®0O::bar()
package FOO;

sub new {

explicitly callsFOO::private::BAZ()

my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self->FOO::private::BAZ;

}
package FOO::private;
sub BAZ {

print "in BAZ\n";

}

package GOOP;
@ISA = gw(FOO);
sub new {

my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";

}

to call GOOP::BAZ() , but this

23-Mar-1997

Perl Version 5.004 BETA

339

perlbot Perl Programmers Reference Guide perlbot

package main;

$a = GOOP—>new;
$a—>bar;

To create reusable code we must modify class FOO, flattening class FOO::private. The next example shows
a reusable class FOO which allows the metB@DP::BAZ() to be used in place 6000::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}

sub bar {
my $self = shift;
$self->BAZ;

}

sub BAZ {
print "in BAZ\n";
}

package GOOP;
@ISA = gw(FOO);

sub new {
my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";
}

package main;

$a = GOOP->new;
$a—>bar;

CLASS CONTEXT AND THE OBJECT

Use the object to solve package and class context problems. Everything a method needs should be available
via the object or should be passed as a parameter to the method.

A class will sometimes have static or global data to be used by the methods. A subclass may want to
override that data and replace it with new data. When this happens the superclass may not know how to find
the new copy of the data.

This problem can be solved by using the object to define the context of the method. Let the method look in
the object for a reference to the data. The alternative is to force the method to go hunting for the data ("Is it
in my class, or in a subclass? Which subclass?"), and this can be inconvenient and will lead to hackery. It is
better just to let the object tell the method where that data is located.

package Bar;

%fizzle = ("Password’ => 'XYZZY");

sub new {
my $type = shift;
my $self = {};
$self->{fizzle'} = \%fizzle;
bless $self, $type;

}

340

Perl Version 5.004 BETA 23—-Mar-1997

perlbot Perl Programmers Reference Guide perlbot

sub enter {
my $self = shift;

Don't try to guess if we should use %Bar::fizzle
or %Foo::fizzle. The object already knows which
we should use, so just ask it.

#

my $fizzle = $self->{fizzle'};

print "The word is ", $fizzle->{'Password’}, "\n";

}

package Foo;
@ISA = gw(Bar);

%fizzle = ("Password’ => 'Rumple’);

sub new {
my $type = shift;
my $self = Bar—>new;
$self->{fizzle'} = \%fizzle;
bless $self, $type;

}

package main;

$a = Bar->new;
$b = Foo—>new;
$a—>enter;
$b—>enter;

INHERITING A CONSTRUCTOR

An inheritable constructor should use the second forilesfs() which allows blessing directly into a
specified class. Notice in this example that the object will be a BAR not a FOO, even though the constructor
is in class FOO.

package FOO;

sub new {
my $type = shift;
my $self = {};
bless $self, $type;
}

sub baz {
print "in FOO::baz()\n";
}

package BAR;
@ISA = gw(FOO);

sub baz {
print "in BAR::baz()\n";
}

package main;

$a = BAR—>new;
$a—>baz;

23—-Mar-1997 Perl Version 5.004 BETA 341

perlbot Perl Programmers Reference Guide perlbot

DELEGATION

Some classes, such as SDBM_File, cannot be effectively subclassed because they create foreign objects.
Such a class can be extended with some sort of aggregation technique such as the "using" relationship
mentioned earlier or by delegation.

The following example demonstrates delegation usinglAROLOAD() function to perform
message-forwarding. This will allow the Mydbm object to behave exactly like an SDBM_File object. The
Mydbm class could now extend the behavior by adding cus®NCH() andSTORE() methods, if this is
desired.

package Mydbm;

require SDBM_File;

require Tie::Hash;

@ISA = gw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File->new(@_);
bless {'delegate’ => $ref};

}

sub AUTOLOAD {
my $self = shift;

The Perl interpreter places the name of the
message in a variable called $AUTOLOAD.

DESTROY messages should never be propagated.
return if BAUTOLOAD =~ /::DESTROY$/;

Remove the package name.
$AUTOLOAD =~ s/"Mydbm:://;

Pass the message to the delegate.
$self->{'delegate’}->$AUTOLOAD(@_);

}

package main;

use Fentl gw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;

$foo{'bar’} = 123;

print “foo—bar = $foo{’bar’\n";

342

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

NAME
perltoot — Tom's object-oriented tutorial for perl

DESCRIPTION

Object-oriented programming is a big seller these days. Some managers would rather have objects than
sliced bread. Why is that? What's so special about an object? Just aumabject anyway?

An object is nothing but a way of tucking away complex behaviours into a neat little easy-to—use bundle.
(This is what professors call abstraction.) Smart people who have nothing to do but sit around for weeks on
end figuring out really hard problems make these nifty objects that even regular people can use. (This is what
professors call software reuse.) Users (well, programmers) can play with this little bundle all they want, but
they aren‘t to open it up and mess with the insides. Just like an expensive piece of hardware, the contract
says that you void the warranty if you muck with the cover. So don‘t do that.

The heart of objects is the class, a protected little private namespace full of data and functions. A class is a
set of related routines that addresses some problem area. You can think of it as a user—defined type. The Perl
package mechanism, also used for more traditional modules, is used for class modules as well. Objects
"live" in a class, meaning that they belong to some package.

More often than not, the class provides the user with little bundles. These bundles are objects. They know
whose class they belong to, and how to behave. Users ask the class to do something, like "give me an
object." Or they can ask one of these objects to do something. Asking a class to do something for you is
calling aclass methodAsking an object to do something for you is callingobject methodAsking either a

class (usually) or an object (sometimes) to give you back an object is caflongstauctor which is just a

kind of method.

That's all well and good, but how is an object different from any other Perl data type? Just what is an object
really; that is, what's its fundamental type? The answer to the first question is easy. An object is different
from any other data type in Perl in one and only one way: you may dereference it using not merely string or
numeric subscripts as with simple arrays and hashes, but with named subroutine calls. In a word, with
methods

The answer to the second question is that it's a reference, and not just any reference, mind you, but one
whose referent has beéfess () ed into a particular class (read: package). What kind of reference? Well,

the answer to that one is a bit less concrete. That's because in Perl the designer of the class can employ any
sort of reference they'd like as the underlying intrinsic data type. It could be a scalar, an array, or a hash
reference. It could even be a code reference. But because of its inherent flexibility, an object is usually a
hash reference.

Creating a Class

Before you create a class, you need to decide what to name it. That's because the class (package) name
governs the name of the file used to house it, just as with regular modules. Then, that class (package) should
provide one or more ways to generate objects. Finally, it should provide mechanisms to allow users of its
objects to indirectly manipulate these objects from a distance.

For example, let's make a simple Person class module. It gets stored in the file Person.pm. If it were called
a Happy::Person class, it would be stored in the file Happy/Person.pm, and its package would become
Happy::Person instead of just Person. (On a personal computer not running Unix or Plan 9, but something
like MacOS or VMS, the directory separator may be different, but the principle is the same.) Do not assume
any formal relationship between modules based on their directory names. This is merely a grouping
convenience, and has no effect on inheritance, variable accessibility, or anything else.

For this module we aren‘t going to use Exporter, because we're a well-behaved class module that doesn't
export anything at all. In order to manufacture objects, a class needs to hawmstraictor methad A
constructor gives you back not just a regular data type, but a brand—new object in that class. This magic is
taken care of by theless() function, whose sole purpose is to enable its referent to be used as an object.
Remember: being an object really means nothing more than that methods may now be called against it.

23—-Mar-1997 Perl Version 5.004 BETA 343

perltoot Perl Programmers Reference Guide perltoot

While a constructor may be named anything you'd like, most Perl programmers seem to like to call theirs
new() . Howevernew() is not a reserved word, and a class is under no obligation to supply such. Some
programmers have also been known to use a function with the same name as the class as the constructor.

Object Representation

By far the most common mechanism used in Perl to represent a Pascal record, a C struct, or a C++ class an
anonymous hash. That's because a hash has an arbitrary number of data fields, each conveniently accessed
by an arbitrary name of your own devising.

If you were just doing a simple struct-like emulation, you would likely go about it something like this:

$rec ={
name =>"Jason",
age =>23,
peers => ["Norbert", "Rhys", "Phineas"],
¥
If you felt like it, you could add a bit of visual distinction by up—casing the hash keys:
$rec ={
NAME =>"Jason",
AGE =>23,

PEERS => ["Norbert", "Rhys", "Phineas"],
¥

And so you could get &rec—>{NAME} to find "Jason", o@{ $rec->{PEERS}} to get at "Norbert",
"Rhys", and "Phineas". (Have you ever noticed how many 23-year—old programmers seem to be named
"Jason" these days? :-)

This same model is often used for classes, although it is not considered the pinnacle of programming
propriety for folks from outside the class to come waltzing into an object, brazenly accessing its data
members directly. Generally speaking, an object should be considered an opaque cookie thaibjeatuse
methoddo access. Visually, methods look like you‘re dereffing a reference using a function name instead of
brackets or braces.

Class Interface

Some languages provide a formal syntactic interface to a class‘s methods, but Perl does not. It relies on you
to read the documentation of each class. If you try to call an undefined method on an object, Perl won't
complain, but the program will trigger an exception while it's running. Likewise, if you call a method
expecting a prime number as its argument with a non—prime one instead, you can't expect the compiler to
catch this. (Well, you can expect it all you like, but it's not going to happen.)

Let's suppose you have a well-educated user of your Person class, someone who has read the docs that
explain the prescribed interface. Here's how they might use the Person class:

use Person;

$him = Person->new();
$him->name("Jason");

$him->age(23);

$him->peers("Norbert", "Rhys", "Phineas");

push @AIl_Recs, $him; # save object in array for later

printf "%s is %d years old.\n", $him->name, $him->age;

print "His peers are: ", join(", ", $him—>peers), "\n";
printf "Last rec’s name is %s\n", $All_Recs[-1]->name;

As you can see, the user of the class doesn‘t know (or at least, has no business paying attention to the fact)
that the object has one particular implementation or another. The interface to the class and its objects is
exclusively via methods, and that's all the user of the class should ever play with.

344 Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

Constructors and Instance Methods

Still, someonéias to know what's in the object. And that someone is the class. It implements methods that
the programmer uses to access the object. Here's how to implement the Person class using the standard
hash-ref-as—an-object idiom. We'll make a class method aadle) to act as the constructor, and three

object methods calledame() , age() , andpeers() to get at per—object data hidden away in our
anonymous hash.

package Person;
use strict;

B R B R B R B B I T A
the object constructor (simplistic version)
B R B R B R B B I T A
sub new {

my $self ={};

$self->{NAME} = undef;

$self->{AGE} = undef;

$self->{PEERS} =];

bless($self); # but see below

return $self;

}

B R R B R B R T T A R
methods to access per—object data

#it
With args, they set the value. Without
any, they only retrieve it/them.

B R

sub name {
my $self = shift;
if (@_) { $self->{NAME} = shift }
return $self->{NAME};

}

sub age {
my $self = shift;
if (@_) { $self->{AGE} = shift }
return $self->{AGE};

}

sub peers {
my $self = shift;
if (@) { @{ $self->{PEERS}}=@_}
return @{ $self->{PEERS} };

}

1; # so the require or use succeeds

We've created three methods to access an object'satege() , age() , andpeers() . These are all
substantially similar. If called with an argument, they set the appropriate field; otherwise they return the
value held by that field, meaning the value of that hash key.

Planning for the Future: Better Constructors

Even though at this point you may not even know what it means, someday you‘re going to worry about
inheritance. (You can safely ignore this for now and worry about it later if you'd like.) To ensure that this

all works out smoothly, you must use the double—argument forloles$() . The second argument is the

class into which the referent will be blessed. By not assuming our own class as the default second argument

23—-Mar-1997 Perl Version 5.004 BETA 345

perltoot Perl Programmers Reference Guide perltoot

and instead using the class passed into us, we make our constructor inheritable.

While we're at it, let's make our constructor a bit more flexible. Rather than being uniquely a class method,
we'll set it up so that it can be called as either a class methaa object method. That way you can say:

$me = Person—->new();
$him = $me—>new();

To do this, all we have to do is check whether what was passed in was a reference or not. If so, we were
invoked as an object method, and we need to extract the package (class) usfyy théunction. If not,
we just use the string passed in as the package name for blessing our referent.

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self ={};
$self->{NAME} = undef;
$self->{AGE} = undef;
$self->{PEERS} =];
bless ($self, $class);
return $self;

}

That's about all there is for constructors. These methods bring objects to life, returning neat little opaque
bundles to the user to be used in subsequent method calls.

Destructors

Every story has a beginning and an end. The beginning of the object's story is its constructor, explicitly
called when the object comes into existence. But the ending of its story dedhrector a method
implicitly called when an object leaves this life. Any per—object clean—-up code is placed in the destructor,
which must (in Perl) be called DESTROY.

If constructors can have arbitrary names, then why not destructors? Because while a constructor is explicitly
called, a destructor is not. Destruction happens automatically via Perl's garbage collection (GC) system,
which is a quick but somewhat lazy reference—based GC system. To know what to call, Perl insists that the
destructor be named DESTROY.

Why is DESTROY in all caps? Perl on occasion uses purely uppercase function hames as a convention to
indicate that the function will be automatically called by Perl in some way. Others that are called implicitly
include BEGIN, END, AUTOLOAD, plus all methods used by tied objects, descrilyestlire.

In really good object—oriented programming languages, the user doesn‘t care when the destructor is called.
It just happens when it's supposed to. In low-level languages without any GC at all, there's no way to
depend on this happening at the right time, so the programmer must explicitly call the destructor to clean up
memory and state, crossing their fingers that it's the right time to do so. Unlike C++, an object destructor is
nearly never needed in Perl, and even when it is, explicit invocation is uncalled for. In the case of our Person
class, we don‘t need a destructor because Perl takes care of simple matters like memory deallocation.

The only situation where Perl's reference—-based GC won‘t work is when there's a circularity in the data
structure, such as:

$this—>{WHATEVERY} = $this;

In that case, you must delete the self-reference manually if you expect your program not to leak memory.

While admittedly error—prone, this is the best we can do right now. Nonetheless, rest assured that when your
program is finished, its objects’ destructors are all duly called. So you are guaranteed that an object
eventuallygets properly destroyed, except in the unique case of a program that never exits. (If you‘re running

Perl embedded in another application, this full GC pass happens a bit more frequently—whenever a thread
shuts down.)

346

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

Other Object Methods

The methods we've talked about so far have either been constructors or else simple "data methods",
interfaces to data stored in the object. These are a bit like an object's data members in the C++ world, except
that strangers don'‘t access them as data. Instead, they should only access the object's data indirectly via its
methods. This is an important rule: in Perl, access to an object's datashiguid made through methods.

Perl doesn‘t impose restrictions on who gets to use which methods. The public-versus—private distinction is
by convention, not syntax. (Well, unless you use the Alias module described below in .) Occasionally you'll
see method names beginning or ending with an underscore or two. This marking is a convention indicating
that the methods are private to that class alone and sometimes to its closest acquaintances, its immediate
subclasses. But this distinction is not enforced by Perl itself. It's up to the programmer to behave.

There's no reason to limit methods to those that simply access data. Methods can do anything at all. The key
point is that they‘re invoked against an object or a class. Let's say we'd like object methods that do more
than fetch or set one particular field.

sub exclaim {
my $self = shift;
return sprintf "Hi, I'm %s, age %d, working with %s",
$self->{NAME}, $self->{AGE}, join(", ", $self->{PEERS});
}

Or maybe even one like this:

sub happy_birthday {

my $self = shift;

return ++$self->{AGE};
}

Some might argue that one should go at these this way:

sub exclaim {
my $self = shift;
return sprintf "Hi, I'm %s, age %d, working with %s",

$self->name, $self->age, join(", ", $self->peers);

}

sub happy_birthday {
my $self = shift;
return $self->age($self->age() + 1);

}

But since these methods are all executing in the class itself, this may not be critical. There are trade-offs to
be made. Using direct hash access is faster (about an order of magnitude faster, in fact), and it's more
convenient when you want to interpolate in strings. But using methods (the external interface) internally
shields not just the users of your class but even you yourself from changes in your data representation.

Class Data

What about "class data", data items common to each object in a class? What would you want that for? Well,
in your Person class, you might like to keep track of the total people alive. How do you implement that?

You could make it a global variable callekPerson::Census. But about only reason you‘d do that
would be if youwanted people to be able to get at your class data directly. They could just say
$Person::Census and play around with it. Maybe this is ok in your design scheme. You might even
conceivably want to make it an exported variable. To be exportable, a variable must be a (package) global.
If this were a traditional module rather than an object-oriented one, you might do that.

While this approach is expected in most traditional modules, it's generally considered rather poor form in
most object modules. In an object module, you should set up a protective veil to separate interface from
implementation. So provide a class method to access class data just as you provide object methods to access

23—-Mar-1997 Perl Version 5.004 BETA 347

perltoot Perl Programmers Reference Guide perltoot

object data.

So, youcould still keep$Census as a package global and rely upon others to honor the contract of the
module and therefore not play around with its implementation. You could even be supertricky and make
$Census a tied object as describedperltie, thereby intercepting all accesses.

But more often than not, you just want to make your class data a file—scoped lexical. To do so, simply put
this at the top of the file:

my $Census = 0;

Even though the scope ofay() normally expires when the block in which it was declared is done (in this
case the whole file being required or used), Perl's deep binding of lexical variables guarantees that the
variable will not be deallocated, remaining accessible to functions declared within that scope. This doesn't
work with global variables given temporary valuesloal() , though.

Irrespective of whether you lea®#€ensus a package global or make it instead a file—scoped lexical, you
should make these changes to yBarson::new() constructor:

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self ={};
$Census++;
$self->{NAME} = undef;
$self->{AGE} = undef;
$self->{PEERS} =];
bless ($self, $class);
return $self;

}

sub population {
return $Census;

}

Now that we've done this, we certainly do need a destructor so that when Person is destré@ahshe
goes down. Here's how this could be done:

sub DESTROY { --$Census }

Notice how there's no memory to deallocate in the destructor? That's something that Perl takes care of for
you all by itself.

Accessing Class Data

It turns out that this is not really a good way to go about handling class data. A good scalable ryteus that
must never reference class data directly from an object metftberwise you aren‘t building a scalable,
inheritable class. The object must be the rendezvous point for all operations, especially from an object
method. The globals (class data) would in some sense be in the "wrong" package in your derived classes. In
Perl, methods execute in the context of the class they were defingat that of the object that triggered

them. Therefore, namespace visibility of package globals in methods is unrelated to inheritance.

Got that? Maybe not. Ok, let's say that some other class "borrowed" (well, inherited) the DESTROY
method as it was defined above. When those objects are destroyed, the $Ggmsis variable will be

altered, not the one in the new class's package namespace. Perhaps this is what you want, but probably it
isn‘t.

Here's how to fix this. We'll store a reference to the data in the value accessed by the hash key
" CENSUS". Why the underscore? Well, mostly because an initial underscore already conveys strong
feelings of magicalness to a C programmer. It's really just a mnemonic device to remind ourselves that this
field is special and not to be used as a public data member in the same way that NAME, AGE, and PEERS
are. (Because we've been developing this code under the strict pragma, prior to perl version 5.004 we'll have

348

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

to quote the field name.)

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self ={};
$self->{NAME} = undef;
$self->{AGE} = undef;
$self->{PEERS} =1];
"private" data
$self->{" CENSUS"} = \$Census;
bless ($self, $class);
++ ${ $self->{"_CENSUS"} };
return $self;

}

sub population {
my $self = shift;
if (ref $self) {
return ${ $self->{" CENSUS"} };
}else {
return $Census;

}
}

sub DESTROY {

my $self = shift;

—— ${ $self->{"_CENSUS"} };
}

Debugging Methods

It's common for a class to have a debugging mechanism. For example, you might want to see when objects
are created or destroyed. To do that, add a debugging variable as a file—scoped lexical. For this, we'll pull
in the standard Carp module to emit our warnings and fatal messages. That way messages will come out with
the caller's filename and line number instead of our own; if we wanted them to be from our own perspective,
we'd just usadie() andwarn() directly instead ofroak() andcarp() respectively.

use Carp;
my $Debugging = 0;

Now add a new class method to access the variable.

sub debug {
my $class = shift;
if (ref $class) { confess "Class method called as object method" }
unless (@_ == 1) { confess "usage: CLASSNAME->debug(level)"}
$Debugging = shift;

}

Now fix up DESTROY to murmur a bit as the moribund object expires:

sub DESTROY {
my $self = shift;
if ($Debugging) { carp "Destroying $self " . $self->name }
—— ${ $self->{"_CENSUS"} };

}

One could conceivably make a per—object debug state. That way you could call both of these:

23—-Mar-1997 Perl Version 5.004 BETA 349

perltoot Perl Programmers Reference Guide perltoot

Person—->debug(l); # entire class
$him->debug(1); # just this object

To do so, we need our debugging method to be a "bimodal” one, one that works on botlanthsisiests.
Therefore, adjust theéebug() and DESTROY methods as follows:

sub debug {
my $self = shift;
confess "usage: thing—>debug(level)" unless @_ ==1;
my $level = shift;
if (ref($self)) {

$self->{"_DEBUG"} = $level; # just myself
}else {
$Debugging = $level; # whole class

}
}

sub DESTROY {
my $self = shift;
if ($Debugging || $self->{"_DEBUG"}) {
carp "Destroying $self " . $self->name;

}
—— ${ $self->{"_CENSUS'"} };
}

What happens if a derived class (which we'll call Employee) inherits methods from this Person base class?
ThenEmployee—>debug() , when called as a class method, manipul@ferson::Debugging not
$Employee::Debugging.

Class Destructors

The object destructor handles the death of each distinct object. But sometimes you want a bit of cleanup
when the entire class is shut down, which currently only happens when the program exits. To make such a
class destructgrcreate a function in that class's package named END. This works just like the END
function in traditional modules, meaning that it gets called whenever your program exits unless it execs or
dies of an uncaught signal. For example,

sub END {
if ($Debugging) {
print "All persons are going away now.\n";

}
}

When the program exits, all the class destructors (END functions) are be called in the opposite order that
they were loaded in (LIFO order).
Documenting the Interface

And there you have it: we've just shown you implementatiorof this Person class. litsterfacewould be

its documentation. Usually this means putting it in pod ("plain old documentation") format right there in the
same file. In our Person example, we would place the following docs anywhere in the Person.pm file. Even
though it looks mostly like code, it's not. It's embedded documentation such as would be used by the
pod2man, pod2html, or pod2text programs. The Perl compiler ignores pods entirely, just as the translators
ignore code. Here's an example of some pods describing the informal interface:

=headl NAME
Person - class to implement people
=headl SYNOPSIS

use Person;

350 Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

B

class methods
B

$ob = Person—>new;
$count = Person—>population;

HHEHH TR
object data methods
HHEHH TR

##H get versions ###
$who = $ob->name;
$years = $ob—>age;
@pals = $ob—>peers;

set versions
$ob->name("Jason");
$ob—>age(23);
$ob—>peers("Norbert", "Rhys", "Phineas");

HHHH TR R
other object methods
HHHH TR R

$phrase = $ob—>exclaim;
$ob—>happy_birthday;

=headl DESCRIPTION
The Person class implements dah dee dah dee dah....

That's all there is to the matter of interface versus implementation. A programmer who opens up the module
and plays around with all the private little shiny bits that were safely locked up behind the interface contract
has voided the warranty, and you shouldn‘t worry about their fate.

Aggregation
Suppose you later want to change the class to implement better names. Perhaps you'd like to support both
given names (called Christian names, irrespective of one's religion) and family names (called surnames),
plus nicknames and titles. If users of your Person class have been properly accessing it through its

documented interface, then you can easily change the underlying implementation. If they haven't, then they
lose and it's their fault for breaking the contract and voiding their warranty.

To do this, we'll make another class, this one called Fullname. What's the Fullname class look like? To
answer that question, you have to first figure out how you want to use it. How about we use it this way:

$him = Person->new();

$him—>fullname—>title("St");
$him->fullname->christian("Thomas");
$him->fullname—->surname("Aquinas");
$him->fullname->nickname("Tommy");

printf "His normal name is %s\n", $him->name;

printf "But his real name is %s\n", $him—>fullname->as_string;

Ok. To do this, we'll changBerson::new() so that it supports a full name field this way:

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self ={};
$self->{FULLNAME} = Fullname->new();
$self->{AGE} = undef;

23—-Mar-1997 Perl Version 5.004 BETA 351

perltoot Perl Programmers Reference Guide perltoot

$self->{PEERS} =1];

$self->{" CENSUS"} = \$Census;
bless ($self, $class);

++ ${ $self->{"_CENSUS"} };
return $self;

}

sub fullname {

my $self = shift;

return $self->{FULLNAME};
}

Then to support old code, defiRerson::name() this way:

sub name {
my $self = shift;
return $self->{FULLNAME}->nickname(@_)
|| $self->{FULLNAME}->christian(@_);
}

Here's the Fullname class. We'll use the same technique of using a hash reference to hold data fields, and
methods by the appropriate name to access them:

package Fullname;
use strict;

sub new {

my $proto = shift;

my $class = ref($proto) || $proto;

my $self ={
TITLE => undef,
CHRISTIAN => undef,
SURNAME => undef,
NICK => undef,

¥

bless ($self, $class);

return $self;

}

sub christian {
my $self = shift;
if (@_) { $self->{CHRISTIAN} = shift }
return $self->{CHRISTIAN};

}

sub surname {
my $self = shift;
if (@_) { $self->{SURNAME} = shift }
return $self->{SURNAME};

}

sub nickname {
my $self = shift;
if (@_) { $self->{NICK} = shift }
return $self->{NICK};

}

sub title {
my $self = shift;

352 Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

if (@_) { $self->{TITLE} = shift }
return $self->{TITLE};
}

sub as_string {
my $self = shift;
my $name = join(" ", @$self{' CHRISTIAN’, 'SURNAME});
if ($self->{TITLE}) {
$name = $self->{TITLE}." " . $name;
}

return $name;

}
1
Finally, here's the test program:

#l/usr/bin/perl -w

use strict;

use Person;

sub END { show_census() }

sub show_census () {
printf "Current population: %d\n", Person—>population;

}
Person->debug(1);

show_census();
my $him = Person->new();

$him->fullname->christian("Thomas");
$him->fullname->surname("Aquinas");
$him->fullname->nickname("Tommy");
$him—>fullname—>title("St");
$him—>age(1);

printf "%s is really %s.\n", $him—>name, $him->fullname;
printf "%s’s age: %d.\n", $him—->name, $him->age;
$him->happy_birthday;

printf "%s’s age: %d.\n", $him—->name, $him->age;

show_census();

Inheritance

Object-oriented programming systems all support some notion of inheritance. Inheritance means allowing
one class to piggy—back on top of another one so you don‘t have to write the same code again and again. It's
about software reuse, and therefore related to Laziness, the principal virtue of a programmer. (The
import/export mechanisms in traditional modules are also a form of code reuse, but a simpler one than the
true inheritance that you find in object modules.)

Sometimes the syntax of inheritance is built into the core of the language, and sometimes it's not. Perl has
no special syntax for specifying the class (or classes) to inherit from. Instead, it's all strictly in the
semantics. Each package can have a variable called @ISA, which governs (method) inheritance. If you try
to call a method on an object or class, and that method is not found in that object's package, Perl then looks
to @ISA for other packages to go looking through in search of the missing method.

Like the special per-package variables recognized by Exporter (such as @EXPORT, @EXPORT_OK,
@EXPORT_FAIL, %EXPORT_TAGS, an8VERSION), the @ISA arraymustbe a package-scoped
global and not a file—scoped lexical createdniig) . Most classes have just one item in their @ISA array.

23—-Mar-1997 Perl Version 5.004 BETA 353

perltoot Perl Programmers Reference Guide perltoot

In this case, we have what's called "single inheritance", or Sl for short.
Consider this class:

package Employee;

use Person;
@ISA = ("Person™);
1

Not a lot to it, eh? All it's doing so far is loading in another class and stating that this one will inherit
methods from that other class if need be. We have given it none of its own methods. We rely upon an
Employee to behave just like a Person.

Setting up an empty class like this is called the "empty subclass test"; that is, making a derived class that
does nothing but inherit from a base class. If the original base class has been designed properly, then the
new derived class can be used as a drop-in replacement for the old one. This means you should be able to
write a program like this:

use Employee

my $empl = Employee—>new();
$empl->name("Jason");

$empl->age(23);

printf "%s is age %d.\n", $empl->name, $empl->age;

By proper design, we mean always using the two—argument fotstesd() , avoiding direct access of

global data, and not exporting anything. If you look back atPteson::new() function we defined

above, we were careful to do that. There's a bit of package data used in the constructor, but the reference to
this is stored on the object itself and all other methods access package data via that reference, so we should
be ok.

What do we mean by theerson::new() function — isn'‘t that actually a method? Well, in principle,

yes. A method is just a function that expects as its first argument a class name (package) or object (blessed
reference). Person::new() is the function that both th&erson->new() method and the
Employee->new() method end up calling. Understand that while a method call looks a lot like a
function call, they aren't really quite the same, and if you treat them as the same, you'll very soon be left
with nothing but broken programs. First, the actual underlying calling conventions are different: method calls
get an extra argument. Second, function calls don‘t do inheritance, but methods do.

Method Call Resulting Function Call
Person—->new() Person::new("Person")
Employee->new() Person::new("Employee")

So don‘t use function calls when you mean to call a method.

If an employee is just a Person, that's not all too very interesting. So let's add some other methods. We'll
give our employee data fields to access their salary, their employee ID, and their start date.

If you're getting a little tired of creating all these nearly identical methods just to get at the object's data, do
not despair. Later, we'll describe several different convenience mechanisms for shortening this up.
Meanwhile, here's the straight—forward way:

sub salary {
my $self = shift;
if (@_) { $self->{SALARY} = shift }
return $self->{SALARY};
}
sub id_number {
my $self = shift;
if (@_) { $self->{ID} = shift }

354

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

return $self->{ID};
}

sub start_date {
my $self = shift;
if (@_) { $self->{START_DATE} = shift }
return $self->{START_DATE};

}

Overridden Methods

What happens when both a derived class and its base class have the same method defined? Well, then you
get the derived class's version of that method. For example, let's say that we waeerd(@ method
called on an employee to act a bit differently. Instead of just returning the list of peer names, let's return
slightly different strings. So doing this:

$empl->peers("Peter"”, "Paul", "Mary");

printf "His peers are: %s\n", join(", ", $empl->peers);
will produce:

His peers are: PEON=PETER, PEON=PAUL, PEON=MARY
To do this, merely add this definition into the Employee.pm file:

sub peers {

my $self = shift;

if (@) { @{ $self->{PEERS}}=@_}

return map { "PEON=\U$_" } @{ $self->{PEERS} };
}

There, we've just demonstrated the high—falutin’ concept known in certain cirgbedyasorphism We've

taken on the form and behaviour of an existing object, and then we‘ve altered it to suit our own purposes.
This is a form of Laziness. (Getting polymorphed is also what happens when the wizard decides you‘d look
better as a frog.)

Every now and then you'll want to have a method call trigger both its derived class (also known as
"subclass") version as well as its base class (also known as "superclass") version. In practice, constructors
and destructors are likely to want to do this, and it probably also makes sensdebubd method we

showed previously.

To do this, add this to Employee.pm:

use Carp;
my $Debugging = 0;

sub debug {
my $self = shift;
confess "usage: thing—>debug(level)" unless @_ ==1;
my $level = shift;
if (ref($self)) {
$self->{"_DEBUG"} = $level;
}else {
$Debugging = $level; # whole class

}
Person::debug($self, $Debugging); # don't really do this

}

As you see, we turn around and call the Person packdgetsy() function. But this is far too fragile for
good design. What if Person doesn‘t hawkebug() function, but is inheritingts debug() method from
elsewhere? It would have been slightly better to say

23—-Mar-1997 Perl Version 5.004 BETA 355

perltoot Perl Programmers Reference Guide perltoot

Person->debug($Debugging);
But even that's got too much hard—coded. It's somewhat better to say
$self->Person::debug($Debugging);

Which is a funny way to say to start looking fod@bug() method up in Person. This strategy is more
often seen on overridden object methods than on overridden class methods.

There is still something a bit off here. We've hard-coded our superclass's name. This in particular is bad if
you change which classes you inherit from, or add others. Fortunately, the pseudoclass SUPER comes to the
rescue here.

$self->SUPER::debug($Debugging);

This way it starts looking in my class's @ISA. This only makes senseviiitim a method call, though.
Don't try to access anything in SUPER:: from anywhere else, because it doesn't exist outside an overridden
method call.

Things are getting a bit complicated here. Have we done anything we shouldn‘t? As before, one way to test
whether we'‘re designing a decent class is via the empty subclass test. Since we already have an Employee
class that we're trying to check, we'd better get a new empty subclass that can derive from Employee.
Here's one:

package Boss;
use Employee; #:-)
@ISA = qw(Employee);

And here's the test program:

#l/usr/bin/perl -w
use strict;
use Boss;
Boss—>debug(1);

my $boss = Boss—>new();

$boss—>fullname—>title("Don");
$boss—>fullname—>surname("Pichon Alvarez");
$boss—>fullname—>christian("Federico Jesus");
$boss—>fullname—>nickname("Fred");

$boss—>age(47);
$boss—>peers("Frank", "Felipe", "Faust");

printf "%s is age %d.\n", $boss—>fullname, $boss—>age;

printf "His peers are: %s\n", join(", ", $boss—>peers);

Running it, we see that we're still ok. If you'd like to dump out your object in a nice format, somewhat like
the way the ‘X’ command works in the debugger, you could use the Data::Dumper module from CPAN this
way:

use Data::Dumper;
print "Here’s the boss:\n";
print Dumper($boss);

Which shows us something like this:

Here's the boss:
$VARL1 = bless({
_CENSUS =>\1,
FULLNAME => bless({
TITLE => 'Don’,

356 Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

SURNAME => 'Pichon Alvarez’,

NICK => 'Fred’,

CHRISTIAN => 'Federico Jesus’
}, 'Fullname’),

AGE => 47,
PEERS => |
'Frank’,
'Felipe’,
'Faust’
]
}, '‘Boss’);

Hm.... something‘s missing there. What about the salary, start date, and ID fields? Well, we never set them
to anything, even undef, so they don‘t show up in the hash's keys. The Employee classméasg) no

method of its own, and theew() method in Person doesn‘t know about Employees. (Nor should it: proper

OO design dictates that a subclass be allowed to know about its immediate superclass, but never vice-versa.)
So let's fix upEmployee::new() this way:

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self = $class->SUPER::new();
$self->{SALARY} = undef;
$self->{ID} = undef;
$self->{START_DATE} = undef;
bless ($self, $class); # reconsecrate
return $self;

}

Now if you dump out an Employee or Boss object, you'll find that new fields show up there now.

Multiple Inheritance

Ok, at the risk of confusing beginners and annoying OO gurus, it's time to confess that Perl‘'s object system
includes that controversial notion known as multiple inheritance, or Ml for short. All this means is that
rather than having just one parent class who in turn might itself have a parent class, etc., that you can directly
inherit from two or more parents. It's true that some uses of Ml can get you into trouble, although hopefully
not quite so much trouble with Perl as with dubiously—OO languages like C++.

The way it works is actually pretty simple: just put more than one package name in your @ISA array. When
it comes time for Perl to go finding methods for your object, it looks at each of these packages in order.
Well, kinda. It's actually a fully recursive, depth—first order. Consider a bunch of @ISA arrays like this:

@First::ISA = qw(Alpha);

@Second::ISA =qw(Beta);

@Third::ISA = qw(First Second);
If you have an object of class Third:

my $ob = Third—>new();

$ob—>spin();
How do we find aspin() method (or amew() method for that matter)? Because the search is depth—first,
classes will be looked up in the following order: Third, First, Alpha, Second, and Beta.

In practice, few class modules have been seen that actually make use of MI. One nearly always chooses
simple containership of one class within another over MI. That's why our Person objgaineda
Fullname object. That doesn‘t meamw#sone.

However, there is one particular area where Ml in Perl is rampant: borrowing another class's class methods.
This is rather common, especially with some bundled "objectless" classes, like Exporter, Dynal oader,

23—-Mar-1997 Perl Version 5.004 BETA 357

perltoot Perl Programmers Reference Guide perltoot

AutoLoader, and SelfLoader. These classes do not provide constructors; they exist only so you may inherit
their class methods. (It's not entirely clear why inheritance was done here rather than traditional module
importation.)

For example, here is the POSIX module‘'s @ISA:

package POSIX;
@ISA = qw(Exporter DynalLoader);

The POSIX module isn‘t really an object module, but then, neither are Exporter or DynaLoader. They‘re
just lending their classes’ behaviours to POSIX.

Why don‘t people use Ml for object methods much? One reason is that it can have complicated side—effects.

For one thing, your inheritance graph (no longer a tree) might converge back to the same base class.
Although Perl guards against recursive inheritance, merely having parents who are related to each other via a
common ancestor, incestuous though it sounds, is not forbidden. What if in our Third class shown above we
wanted itsnew() method to also call both overridden constructors in its two parent classes? The SUPER
notation would only find the first one. Also, what about if the Alpha and Beta classes both had a common
ancestor, like Nought? If you kept climbing up the inheritance tree calling overridden methods, you‘d end
up callingNought::new() twice, which might well be a bad idea.

UNIVERSAL: The Root of All Objects

Wouldn‘t it be convenient if all objects were rooted at some ultimate base class? That way you could give
every object common methods without having to go and add it to each and every @ISA. Well, it turns out
that you can. You don't see it, but Perl tacitly and irrevocably assumes that there‘s an extra element at the
end of @ISA: the class UNIVERSAL. In version 5.003, there were no predefined methods there, but you
could put whatever you felt like into it.

However, as of version 5.004 (or some subversive releases, like 5.003_08), UNIVERSAL has some methods
in it already. These are built—in to your Perl binary, so they don‘t take any extra time to load. Predefined
methods includdsa() , can() , and VERSION(). isa() tells you whether an object or class "is"
another one without having to traverse the hierarchy yourself:

$has_io = $fd—>isa("l0::Handle");
$itza_handle = |0::Socket—>isa("lO::Handle");

Thecan() method, called against that object or class, reports back whether its string argument is a callable
method name in that class. In fact, it gives you back a function reference to that method:

$his_print_method = $obj—>can('as_string’);

Finally, the VERSION method checks whether the class (or the object's class) has a package global called
$VERSIONTthat's high enough, as in:

Some_Module->VERSION(3.0);
$his_vers = $0b—>VERSION();

However, we don‘t usually call VERSION ourselves. (Remember that an all uppercase function name is a
Perl convention that indicates that the function will be automatically used by Perl in some way.) In this case,
it happens when you say

use Some_Module 3.0;
If you wanted to add version checking to your Person class explained above, just add this to Person.pm:

use vars qw($VERSION);
$VERSION ="1.1";

and then in Employee.pm could you can say
use Employee 1.1;

And it would make sure that you have at least that version number or higher available. This is not the same

358

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

as loading in that exact version number. No mechanism currently exists for concurrent installation of
multiple versions of a module. Lamentably.

Alternate Object Representations

Nothing requires objects to be implemented as hash references. An object can be any sort of reference so
long as its referent has been suitably blessed. That means scalar, array, and code references are also fair
game.

A scalar would work if the object has only one datum to hold. An array would work for most cases, but
makes inheritance a bit dodgy because you have to invent new indices for the derived classes.

Arrays as Objects
If the user of your class honors the contract and sticks to the advertised interface, then you can change its
underlying interface if you feel like it. Here's another implementation that conforms to the same interface
specification. This time we'll use an array reference instead of a hash reference to represent the object.

package Person;
use strict;

my($NAME, $AGE, $PEERS) = (0 .. 2);

T R
the object constructor (array version)
T R
sub new {
my $self = [];
$self->[$NAME] = undef; # this is unnecessary
$self->[$AGE] =undef; # as is this
$self->[$PEERS] =[]; # but this isn't, really
bless($self);
return $self;

}

sub name {
my $self = shift;
if (@_) { $self->[$NAME] = shift }
return $self->[$NAME];

}

sub age {
my $self = shift;
if (@_) { $self->[$AGE] = shift }
return $self->[$AGE];

}

sub peers {
my $self = shift;
if (@) { @{ $self—>[$PEERS]}=@_}
return @{ $self->[$PEERS] };

}

1; # so the require or use succeeds

You might guess that the array access would be a lot faster than the hash access, but they‘re actually
comparable. The array islitile bit faster, but not more than ten or fifteen percent, even when you replace
the variables above lIKBAGEwith literal numbers, like 1. A bigger difference between the two approaches

can be found in memory use. A hash representation takes up more memory than an array representation
because you have to allocate memory for the keys as well as for the values. However, it really isn‘t that bad,
especially since as of version 5.004, memory is only allocated once for a given hash key, no matter how
many hashes have that key. It's expected that sometime in the future, even these differences will fade into

23—-Mar-1997 Perl Version 5.004 BETA 359

perltoot Perl Programmers Reference Guide perltoot

obscurity as more efficient underlying representations are devised.

Still, the tiny edge in speed (and somewhat larger one in memory) is enough to make some programmers
choose an array representation for simple classes. There's still a little problem with scalability, though,
because later in life when you feel like creating subclasses, you'll find that hashes just work out better.

Closures as Objects

Using a code reference to represent an object offers some fascinating possibilities. We can create a new
anonymous function (closure) who alone in all the world can see the object's data. This is because we put
the data into an anonymous hash that's lexically visible only to the closure we create, bless, and return as the
object. This object's methods turn around and call the closure as a regular subroutine call, passing it the field
we want to affect. (Yes, the double—function call is slow, but if you wanted fast, you wouldn‘t be using
objects at all, eh? :-)

Use would be similar to before:

use Person;

$him = Person->new();

$him->name("Jason");

$him->age(23);

$him->peers(["Norbert", "Rhys", "Phineas"]);

printf "%s is %d years old.\n", $him->name, $him->age;
print "His peers are: ", join(", ", @{$him—>peers}), "\n";

but the implementation would be radically, perhaps even sublimely different:
package Person;

sub new {
my $that = shift;
my $class = ref($that) || $that;

my $self = {
NAME => undef,
AGE => undef,
PEERS =>],

3

my $closure = sub {
my $field = shift;
if (@_) { $self—>{$field} = shift }
return $self->{$field};

¥

bless($closure, $class);

return $closure;

}

sub name {&{$_[0] }("NAME", @ _[1..$#])}
subage {&{$_[0]}("AGE", @_[1..$#_])}
sub peers {&{$_[0]}("PEERS", @ [1..%# 1)}

1;

Because this object is hidden behind a code reference, it's probably a bit mysterious to those whose
background is more firmly rooted in standard procedural or object-based programming languages than in
functional programming languages whence closures derive. The object created and returneeJg) the

method is itself not a data reference as we've seen before. It's an anonymous code reference that has within
it access to a specific version (lexical binding and instantiation) of the object's data, which are stored in the
private variable$self. Although this is the same function each time, it contains a different version of
$self.

360

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

When a method likeéshim—>name("Jason") is called, its implicit zeroth argument is the invoking
object—ijust as it is with all method calls. But in this case, it's our code reference (something like a function
pointer in C++, but with deep binding of lexical variables). There's not a lot to be done with a code reference
beyond calling it, so that's just what we do when we &/ [0]}. This is just a regular function call,

not a method call. The initial argument is the string "NAME", and any remaining arguments are whatever
had been passed to the method itself.

Once we're executing inside the closure that had been createewif) , the $self hash reference
suddenly becomes visible. The closure grabs its first argument ("NAME" in this case because that's what
thename() method passed it), and uses that string to subscript into the private hash hidden in its unique
version of$self.

Nothing under the sun will allow anyone outside the executing method to be able to get at this hidden data.
Well, nearly nothing. Yowouldsingle step through the program using the debugger and find out the pieces
while you're in the method, but everyone else is out of luck.

There, if that doesn't excite the Scheme folks, then | just don‘t know what will. Translation of this technique
into C++, Java, or any other braindead-static language is left as a futile exercise for aficionados of those
camps.

You could even add a bit of nosiness via tader() function and make the closure refuse to operate
unless called via its own package. This would no doubt satisfy certain fastidious concerns of programming
police and related puritans.

If you were wondering when Hubris, the third principle virtue of a programmer, would come into play, here
you have it. (More seriously, Hubris is just the pride in craftsmanship that comes from having written a
sound bit of well-designed code.)

AUTOLOAD: Proxy Methods

Autoloading is a way to intercept calls to undefined methods. An autoload routine may choose to create a
new function on the fly, either loaded from disk or perhaps pusl() ed right there. This
define—on—the—fly strategy is why it's called autoloading.

But that's only one possible approach. Another one is to just have the autoloaded method itself directly
provide the requested service. When used in this way, you may think of autoloaded methods as "proxy"
methods.

When Perl tries to call an undefined function in a particular package and that function is not defined, it looks
for a function in that same package called AUTOLOAD. If one exists, it's called with the same arguments
as the original function would have had. The fully—qualified name of the function is stored in that package's
global variableSAUTOLOAD. Once called, the function can do anything it would like, including defining a
new function by the right name, and then doing a really fancy kigdtof right to it, erasing itself from the

call stack.

What does this have to do with objects? After all, we keep talking about functions, not methods. Well, since
a method is just a function with an extra argument and some fancier semantics about where it's found, we
can use autoloading for methods, too. Perl doesn't start looking for an AUTOLOAD method until it has
exhausted the recursive hunt up through @ISA, though. Some programmers have even been known to
define a UNIVERSAL::AUTOLOAD method to trap unresolved method calls to any kind of object.

Autoloaded Data Methods

You probably began to get a little suspicious about the duplicated code way back earlier when we first
showed you the Person class, and then later the Employee class. Each method used to access the hash fields
looked virtually identical. This should have tickled that great programming virtue, Impatience, but for the
time, we let Laziness win out, and so did nothing. Proxy methods can cure this.

Instead of writing a new function every time we want a new data field, we'll use the autoload mechanism to
generate (actually, mimic) methods on the fly. To verify that we're accessing a valid member, we will check
against an_permitted (pronounced "under—permitted") field, which is a reference to a file-scoped

lexical (like a C file static) hash of permitted fields in this record called %fields. Why the underscore? For

23—-Mar-1997 Perl Version 5.004 BETA 361

perltoot Perl Programmers Reference Guide perltoot

the same reason as the _CENSUS field we once used: as a marker that means "for internal use only".
Here's what the module initialization code and class constructor will look like when taking this approach:

package Person;
use Carp;
use vars gw($AUTOLOAD); # it's a package global

my %fields = (

name => undef,
age => undef,
peers => undef,
)i
sub new {
my $that = shift;
my $class = ref($that) || $that;
my $self ={
_permitted => \%fields,
%fields,
¥
bless $self, $class;
return $self;
}

If we wanted our record to have default values, we could fill those in where current wenlda¥e in the
%fields hash.

Notice how we saved a reference to our class data on the object itself? Remember that it's important to
access class data through the object itself instead of having any method reference %fields directly, or else
you won'‘t have a decent inheritance.

The real magic, though, is going to reside in our proxy method, which will handle all calls to undefined
methods for objects of class Person (or subclasses of Person). It has to be called AUTOLOAD. Again, it's
all caps because it's called for us implicitly by Perl itself, not by a user directly.

sub AUTOLOAD {
my $self = shift;
my $type = ref($self)
or croak "$self is not an object"”;

my $name = $AUTOLOAD;
$name =~ s/.*:/[; # strip fully—qualified portion

unless (exists $self->{ permitted}—>{$name}) {
croak "Can't access ‘$name’ field in class $type";

}
if (@) {
return $self->{$name} = shift;
}else {
return $self->{$name};
}
}
Pretty nifty, enh? All we have to do to add new data fields is modify %fields. No new functions need be
written.

| could have avoided thepermitted field entirely, but | wanted to demonstrate how to store a reference
to class data on the object so you wouldn‘t have to access that class data directly from an object method.

362 Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

Inherited Autoloaded Data Methods

But what about inheritance? Can we define our Employee class similarly? Yes, so long as we‘re careful
enough.

Here's how to be careful:

package Employee;

use Person;

use strict;

use vars gw(@ISA);
@ISA = qw(Person);

my %fields = (

id => undef,
salary => undef,
)i
sub new {
my $that = shift;
my $class = ref($that) || $that;
my $self = bless $that—>SUPER::new(), $class;
my($element);
foreach $element (keys %fields) {
$self->{ permitted}->{$element} = $fields{$element};
}
@{$self{keys %fields} = values %fields;
return $self;
}

Once we've done this, we don‘t even need to have an AUTOLOAD function in the Employee package,
because we'll grab Person's version of that via inheritance, and it will all work out just fine.

Metaclassical Tools

Class::

Even though proxy methods can provide a more convenient approach to making more struct-like classes
than tediously coding up data methods as functions, it still leaves a bit to be desired. For one thing, it means
you have to handle bogus calls that you don‘t mean to trap via your proxy. It also means you have to be quite
careful when dealing with inheritance, as detailed above.

Perl programmers have responded to this by creating several different class construction classes. These
metaclasses are classes that create other classes. A couple worth looking at are Class::Template and Alias.
These and other related metaclasses can be found in the modules directory on CPAN.

Template

One of the older ones is Class::Template. In fact, its syntax and interface were sketched out long before
perl5 even solidified into a real thing. What it does is provide you a way to "declare" a class as having
objects whose fields are of a specific type. The function that does this is called, not surprisingly enough,
struct() . Because structures or records are not base types in Perl, each time you want to create a class to
provide a record-like data object, you yourself have to definewf) method, plus separate data—access
methods for each of that record's fields. You'll quickly become bored with this process. The
Class:: Template::struct() function alleviates this tedium.

Here's a simple example of using it:

use Class:: Template qw(struct);
use Jobbie; # user—defined; see below

struct 'Fred’ => {
one ='$,
many ='@’,

23—-Mar-1997 Perl Version 5.004 BETA 363

perltoot Perl Programmers Reference Guide perltoot

profession => Jobbie, # calls Jobbie—>new()
¥

$ob = Fred->new;
$ob->one("hmmmm");

$ob->many(0, "here");
$ob->many(1, "you");
$ob->many(2, "go");

print "Just set: ", $ob—>many(2), "\n";

$ob—>profession->salary(10_000);

You can declare types in the struct to be basic Perl types, or user—defined types (classes). User types will be
initialized by calling that classisew() method.

Here's a real-world example of using struct generation. Let's say you wanted to override Perl's idea of
gethostbyname() and gethostbyaddr() so that they would return objects that acted like C
structures. We don‘t care about high—falutin’ OO gunk. All we want is for these objects to act like structs in
the C sense.

use Socket;

use Net::hostent;

$h = gethostbyname("perl.com"); # object return

printf "perl.com’s real name is %s, address %s\n",
$h—>name, inet_ntoa($h—>addr);

Here's how to do this using the Class::Template module. The crux is going to be this call:

struct 'Net::hostent’ => | # note bracket
name =%,
aliases =>'@’,
addrtype =>'$’,
'length’ =>'$’,
addr_list =>'@’,
I;
Which creates object methods of those hames and types. It even creaigys anethod for us.
We could also have implemented our object this way:

struct 'Net::hostent’ => { # note brace
name =>'¢,
aliases =>'@’,
addrtype =>'$,
‘length’ =>'$’,
addr_list =>'@’,
h
and then Class::Template would have used an anonymous hash as the object type, instead of an anonymous
array. The array is faster and smaller, but the hash works out better if you eventually want to do inheritance.
Since for this struct-like object we aren‘t planning on inheritance, this time we'll opt for better speed and
size over better flexibility.

Here's the whole implementation:

package Net::hostent;
use strict;

BEGIN {
use Exporter ();
use vars gw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

364

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

@ISA = gw(Exporter);
@EXPORT = gw(gethostbyname gethostbyaddr gethost);
@EXPORT_OK = qw(

$h_name @h_aliases

$h_addrtype $h_length

@h_addr_list $h_addr

);

%EXPORT_TAGS = (FIELDS => [@EXPORT_OK, @EXPORT]);

}
use vars @EXPORT_OK;

use Class:: Template qw(struct);
struct 'Net::hostent’ => |
name =g,
aliases =>'@’,
addrtype =>'$,
‘length’ =>'$’,
addr_list =>'@’,
I;
sub addr { shift->addr_list—>[0] }

sub populate (@) {
return unless @ _;
my $hob = new(); # Class::Template made this!

$h_name = $hob->[0] =$_[0];
@h_aliases = @{ $hob—>[1] } = split" ", $_[1];
$h_addrtype = $hob—>[2] =$_[2];

$h_length = $hob—>[3] =$_[3];

$h_addr = $_[4];

@h_addr_list = @{ $hob—>[4] } = @ [@.$#)];

return $hob;

}
sub gethostbyname ($) { populate(CORE::gethostbyname(shift)) }

sub gethostbyaddr ($;$) {
my ($addr, $addrtype);
$addr = shift;
require Socket unless @_;
$addrtype = @__ ? shift : Socket::AF_INET();
populate(CORE::gethostbyaddr($addr, $addrtype))

}

sub gethost($) {
if ($_[0] =~ M\d+(?2:\\d+(?:\\d+(?:\.\d+)?)?)?$/) {
require Socket;
&gethostbyaddr(Socket::inet_aton(shift));
}else {
&gethostbyname;

}
}
1

We've snuck in quite a fair bit of other concepts besides just dynamic class creation, like overriding core
functions, import/export bits, function prototyping, and short—cut function calwiaatever. These all
mostly make sense from the perspective of a traditional module, but as you can see, we can also use them in

23—-Mar-1997 Perl Version 5.004 BETA 365

perltoot Perl Programmers Reference Guide perltoot

an object module.

You can look at other object-based, struct-like overrides of core functions in the 5.004 release of Perl in
File::stat, Net::hostent, Net::netent, Net::protoent, Net::servent, Time::gmtime, Time::localtime, User::grent,
and User::pwent. These modules have a final component that's all lowercase, by convention reserved for
compiler pragmas, because they affect the compilation and change a built-in function. They also have the
type names that a C programmer would most expect.

Data Members as Variables

If you're used to C++ objects, then you‘re accustomed to being able to get at an object's data members as
simple variables from within a method. The Alias module provides for this, as well as a good bit more, such
as the possibility of private methods that the object can call but folks outside the class cannot.

Here's an example of creating a Person using the Alias module. When you update these magical instance
variables, you automatically update value fields in the hash. Convenient, eh?

package Person;

this is the same as before...
sub new {
my $that = shift;
my $class = ref($that) || $that;

my $self = {
NAME => undef,
AGE => undef,
PEERS =>],

3

bless($self, $class);
return $self;

}

use Alias gw(attr);
use vars qw($NAME $AGE $PEERS);

sub name {
my $self = attr shift;
if (@_) { SNAME = shift; }
return $NAME;

}

sub age {
my $self = attr shift;
if (@_) { $AGE = shift; }
return $AGE;

}

sub peers {
my $self = attr shift;
if (@_) { @PEERS = @_; }
return @PEERS;

}

sub exclaim {
my $self = attr shift;
return sprintf "Hi, I'm %s, age %d, working with %s",
$NAME, $AGE, join(", ", @PEERS);
}

sub happy_birthday {
my $self = attr shift;

366

Perl Version 5.004 BETA 23—-Mar-1997

perltoot Perl Programmers Reference Guide perltoot

return ++$AGE;

}
The need for theise vars declaration is because what Alias does is play with package globals with the
same name as the fields. To use globals wiske strict is in effect, you have to pre—-declare them.

These package variables are localized to the block enclosingtttle call just as if you'd used a
local() on them. However, that means that they're still considered global variables with temporary
values, just as with any othlexcal()

It would be nice to combine Alias with something like Class::Template or Class::MethodMaker.
NOTES

Object Terminology

In the various OO literature, it seems that a lot of different words are used to describe only a few different
concepts. If you're not already an object programmer, then you don‘t need to worry about all these fancy
words. But if you are, then you might like to know how to get at the same concepts in Perl.

For example, it's common to call an objectiastanceof a class and to call those objects’ methiodsance
methods Data fields peculiar to each object are often calsthnce dateor object attributes and data
fields common to all members of that classaass dataclass attributesor static data members

Also, base classgeneric classandsuperclassll describe the same notion, wherdasived classspecific
class andsubclassiescribe the other related one.

C++ programmers havstatic methodsand virtual methods but Perl only haglass methodsnd object

methods Actually, Perl only has methods. Whether a method gets used as a class or object method is by
usage only. You could accidentally call a class method (one expecting a string argument) on an object (one
expecting a reference), or vice versa.

From the C++ perspective, all methods in Perl are virtual. This, by the way, is why they are never checked
for function prototypes in the argument list as regular built-in and user—defined functions can be.

Because a class is itself something of an object, Perl's classes can be taken as describing both a "class as
meta—object" (also calleabject factory philosophy and the "class as type definitiodédlaringbehaviour,
notdefiningmechanism) idea. C++ supports the latter notion, but not the former.

SEE ALSO

The following man pages will doubtless provide more background for thispenienod perlref, perlobj,
perlbot, perltie, andoverload

COPYRIGHT
| really hate to have to say this, but recent unpleasant experiences have mandated its inclusion:

Copyright 1996 Tom Christiansen. All Rights Reserved.

This work derives in part from the second editiorPaigramming Perl Although destined for release as a

man page with the standard Perl distribution, it is not public domain (nor is any of Perl and its docset:
publishers beware). It's expected to someday make its way into a revision of the Camel Book. While it is
copyright by me with all rights reserved, permission is granted to freely distribute verbatim copies of this
document provided that no modifications outside of formatting be made, and that this notice remain intact.
You are permitted and encouraged to use its code and derivatives thereof in your own source code for fun or
for profit as you see fit. But so help me, if in six months | find some book out there with a hacked—up
version of this material in it claiming to be written by someone else, I'll tell all the world that you're a jerk.
Furthermore, your lawyer will meet my lawyer (or O'Reilly‘s) over lunch to arrange for you to receive your
just deserts. Count on it.

Acknowledgments

Thanks to Larry Wall, Roderick Schertler, Gurusamy Sarathy, Dean Roehrich, Raphael Manfredi, Brent
Halsey, Greg Bacon, Brad Appleton, and many others for their helpful comments.

23—-Mar-1997 Perl Version 5.004 BETA 367

perlipc Perl Programmers Reference Guide perlipc

NAME
perlipc — Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and semaphores)

DESCRIPTION

The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe opens, the
Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations.

Signals

Perl uses a simple signal handling model: the %SIG hash contains names or references of user-installed
signal handlers. These handlers will be called with an argument which is the name of the signal that
triggered it. A signal may be generated intentionally from a particular keyboard sequence like control-C or
control-Z, sent to you from another process, or triggered automatically by the kernel when special events
transpire, like a child process exiting, your process running out of stack space, or hitting file size limit.

For example, to trap an interrupt signal, set up a handler like this. Notice how all we do is set a global
variable and then raise an exception. That's because on most systems libraries are not re—entrant, so calling
any print() functions (or even anything that needs to malloc(3) more memory) could in theory trigger a
memory fault and subsequent core dump.

sub catch_zap {

my $signame = shift;

$shucks++;

die "Somebody sent me a SIG$signame”;
}
$SIG{INT} = 'catch_zap’; # could fail in modules
$SIG{INT} = \&catch_zap; # best strategy

The names of the signals are the ones listed olitllbyl on your system, or you can retrieve them from
the Config module. Set up an @signame list indexed by number to get the name and a %signo table indexed
by name to get the number:

use Config;
defined $Config{sig_name} || die "No sigs?";
foreach $name (split(’ ’, $Config{sig_name})) {
$signo{$name} = $i;
$signame[$i] = $name;
$i++;

}
So to check whether signal 17 and SIGALRM were the same, do just this:

print "signal #17 = $signame[17]\n";
if ($signo{ALRM}) {

print "SIGALRM is $signo{ALRMAn";
}

You may also choose to assign the strit@NORE’ or ‘DEFAULT’ as the handler, in which case Perl

will try to discard the signal or do the default thing. Some signals can be neither trapped nor ignored, such as
the KILL and STOP (but not the TSTP) signals. One strategy for temporarily ignoring signals is to use a
local() statement, which will be automatically restored once your block is exited. (Remember that
local() values are "inherited" by functions called from within that block.)

sub precious {
local $SIG{INT} = IGNORE’;
&more_functions;

}

sub more_functions {

368 Perl Version 5.004 BETA 23—-Mar-1997

perlipc

Perl Programmers Reference Guide perlipc

interrupts still ignored, for now...
}

Sending a signal to a negative process ID means that you send the signal to the entire Unix process—group.
This code send a hang—-up signal to all processes in the current processxgepiforthe current process
itself:

local $SIG{HUP} = 'IGNORE’;

kill HUP => -$$;

snazzy writing of: killCHUP’, -3)
}

Another interesting signal to send is signal number zero. This doesn‘t actually affect another process, but
instead checks whether it's alive or has changed its UID.

unless (kill 0 => $kid_pid) {
warn "something wicked happened to $kid_pid";

}

You might also want to employ anonymous functions for simple signal handlers:
$SIG{INT} = sub { die "\nOutta here'\n" };

But that will be problematic for the more complicated handlers that need to re—install themselves. Because
Perl's signal mechanism is currently based on the signal(3) function from the C library, you may sometimes
be so misfortunate as to run on systems where that function is "broken", that is, it behaves in the old
unreliable SysV way rather than the newer, more reasonable BSD and POSIX fashion. So you'll see
defensive people writing signal handlers like this:

sub REAPER {
$waitedpid = walit;
loathe sysV: it makes us not only reinstate
the handler, but place it after the wait
$SIG{CHLD} = \&REAPER;

}

$SIG{CHLD} = \&REAPER;

now do something that forks...

or even the more elaborate:

use POSIX ":sys_wait_h";
sub REAPER {
my $child;
while ($child = waitpid(-1,WNOHANG)) {
$Kid_Status{$child} = $?;
}
$SIG{CHLD} =\&REAPER; # still loathe sysV
}
$SIG{CHLD} = \&REAPER;
do something that forks...

Signal handling is also used for timeouts in Unix, While safely protected wittemadf} block, you set

a signal handler to trap alarm signals and then schedule to have one delivered to you in some number of
seconds. Then try your blocking operation, clearing the alarm when it's done but not before you‘ve exited
your eval{} block. If it goes off, you'll uselie() to jump out of the block, much as you might using
longjmp() orthrow() in other languages.

Here's an example:

23—-Mar-1997 Perl Version 5.004 BETA 369

perlipc Perl Programmers Reference Guide perlipc

eval {
local $SIG{ALRM} = sub { die "alarm clock restart" };
alarm 10;
flock(FH, 2); # blocking write lock
alarm 0;
I

if (3@ and $@ !~ /alarm clock restart/) { die }

For more complex signal handling, you might see the standard POSIX module. Lamentably, this is almost
entirely undocumented, but thiéb/posix.tfile from the Perl source distribution has some examples in it.

Named Pipes

Using

A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes communicating on
the same machine. It works just like a regular, connected anonymous pipes, except that the processes
rendezvous using a filename and don‘t have to be related.

To create a named pipe, use the Unix command mknod(1) or on some systems, mkfifo(1). These may not be
in your normal path.

system return val is backwards, so && not ||
#
$ENV{PATH]} .= ":/etc:/usr/etc";
if (system('mknod’, $path, 'p’)
&& system(’'mkfifo’, $path))
{

}

A fifo is convenient when you want to connect a process to an unrelated one. When you open a fifo, the
program will block until there‘s something on the other end.

die "mk{nod,fifo} $path failed;

For example, let's say you'd like to have yasignaturefile be a named pipe that has a Perl program on the
other end. Now every time any program (like a mailer, news reader, finger program, etc.) tries to read from
that file, the reading program will block and your program will supply the new signature. We'll use the
pipe—-checking file testp to find out whether anyone (or anything) has accidentally removed our fifo.

chdir; # go home
$FIFO =".signature’;
$ENV{PATH]} .= ":/etc:/usr/games";

while (1) {
unless (—p $FIFO) {
unlink $FIFO;
system('mknod’, $FIFO, 'p’)
&& die "can’t mknod $FIFO: $!";
}

next line blocks until there’s a reader

open (FIFO, "> $FIFQ") || die "can't write $FIFO: $!";
print FIFO "John Smith (smith\@host.org)\n", ‘fortune -s’;
close FIFO;

sleep 2; # to avoid dup signals

}
open() forIPC

Perl's basicopen() statement can also be used for unidirectional interprocess communication by either
appending or prepending a pipe symbol to the second argumegpen@ . Here's how to start something
up in a child process you intend to write to:

370

Perl Version 5.004 BETA 23—-Mar-1997

perlipc Perl Programmers Reference Guide perlipc

open(SPOOLER, "| cat —v | Ipr —h 2>/dev/null")
|| die "can’t fork: $!";
local $SIG{PIPE} = sub { die "spooler pipe broke" };
print SPOOLER "stuffin";
close SPOOLER || die "bad spool: $! $?";

And here's how to start up a child process you intend to read from:

open(STATUS, "netstat —an 2>&1 |")
|| die "can’t fork: $!";
while (<STATUS>) {
next if /~(tcp|udp)/;
print;

}
close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script that is expecting filenames in @ARGYV, the clever
programmer can write something like this:

$ program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

and irrespective of which shell it's called from, the Perl program will read from thé filke processmd1,
standard inputtnpfile in this case), th& file, thecmd2command, and finally th& file. Pretty nifty, eh?

You might notice that you could use back-ticks for much the same effect as opening a pipe for reading:

print grep { !/ (tcp|udp)/ } ‘netstat —an 2>&1";
die "bad netstat" if $?;

While this is true on the surface, it's much more efficient to process the file one line or record at a time
because then you don't have to read the whole thing into memory at once. It also gives you finer control of
the whole process, letting you to kill off the child process early if you'd like.

Be careful to check both thepen() and theclose() return values. If you'revriting to a pipe, you

should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a command that
doesn't exist: thepen() will in all likelihood succeed (it only reflects therk() ‘s success), but then

your output will fail—spectacularly. Perl can't know whether the command worked because your command
is actually running in a separate process whoge() might have failed. Therefore, while readers of
bogus commands return just a quick end of file, writers to bogus command will trigger a signal they‘d better
be prepared to handle. Consider:

open(FH, "|bogus");

print FH "bang\n";

close FH;
Filehandles

Both the main process and the child process share the same STDIN, STDOUT and STDERR filehandles. If
both processes try to access them at once, strange things can happen. You may want to close or reopen the
filehandles for the child. You can get around this by opening your pipeop&th() , but on some systems
this means that the child process cannot outlive the parent.

Background Processes

You can run a command in the background with:
system("cmd&");

The command's STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the same as
the parent's. You won't need to catch SIGCHLD because of the double-fork taking place (see below for
more details).

23—-Mar-1997 Perl Version 5.004 BETA 371

perlipc Perl Programmers Reference Guide perlipc

Complete Dissociation of Child from Parent

In some cases (starting server processes, for instance) you'll want to complete dissociate the child process
from the parent. The following process is reported to work on most Unixish systems. Non-Unix users
should check their Your_OS::Process module for other solutions.

° Open /dev/tty and use the the TIOCNOTTY ioctl on it. ®gd) for details.
° Change directory to /
° Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.
° Background yourself like this:
fork && exit;

Safe Pipe Opens

Another interesting approach to IPC is making your single program go multiprocess and communicate
between (or even amongst) yourselves. dpen() function will accept a file argument of eitHeq" or

"|-" to do a very interesting thing: it forks a child connected to the filehandle you've opened. The child is
running the same program as the parent. This is useful for safely opening a file when running under an
assumed UID or GID, for example. If you open a gigpminus, you can write to the filehandle you opened

and your kid will find it in his STDIN. If you open a pifirm minus, you can read from the filehandle you
opened whatever your kid writes to his STDOUT.

use English;
my $sleep_count = 0;

do {
$pid = open(KID_TO_WRITE, "|-");
unless (defined $pid) {
warn "cannot fork: $!";
die "bailing out" if $sleep_count++ > 6;
sleep 10;

}
} until defined $pid;

if ($pid) { # parent
print KID_TO_WRITE @some_data;
close(KID_TO_WRITE) || warn "kid exited $?";
}else{ # child
($EVID, $EGID) = ($UID, $GID); # suid progs only
open (FILE, "> /safe/file")
|| die "can’t open /safeffile: $!";
while (<STDIN>) {
print FILE; # child’s STDIN is parent’s KID

}
exit; # don't forget this

}

Another common use for this construct is when you need to execute something without the shell's
interference. Withsystem() , it's straightforward, but you can‘t use a pipe open or back-ticks safely.
That's because there‘'s no way to stop the shell from getting its hands on your arguments. Instead, use
lower—level control to cakkxec() directly.

Here's a safe back-tick or pipe open for read:

add error processing as above
$pid = open(KID_TO_READ, "-|");

if ($pid) { # parent

372 Perl Version 5.004 BETA 23—-Mar-1997

perlipc Perl Programmers Reference Guide perlipc

while (<KID_TO_READ>) {
do something interesting

}
close(KID_TO_READ) || warn "kid exited $?";

}else{ #child
($EUID, $EGID) = ($UID, $GID); # suid only
exec($program, @options, @args)
|| die "can’t exec program: $!";
NOTREACHED
}

And here's a safe pipe open for writing:

add error processing as above
$pid = open(KID_TO_WRITE, "|-");
$SIG{ALRM} = sub { die "whoops, $program pipe broke" };

if ($pid) { # parent
for (@data) {
print KID_TO_WRITE;

}
close(KID_TO_WRITE) || warn "kid exited $?";

}else{ # child
($EUID, $EGID) = ($UID, $GID);
exec($program, @options, @args)
|| die "can’t exec program: $!";
NOTREACHED
}

Note that these operations are full Unix forks, which means they may not be correctly implemented on alien
systems. Additionally, these are not true multi-threading. If you'd like to learn more about threading, see
themodulesfile mentioned below in the SEE ALSO section.

Bidirectional Communication

While this works reasonably well for unidirectional communication, what about bidirectional
communication? The obvious thing you'd like to do doesn't actually work:

open(PROG_FOR_READING_AND_WRITING, "| some program |")
and if you forget to use thew flag, then you'll miss out entirely on the diagnostic message:
Can't do bidirectional pipe at —e line 1.

If you really want to, you can use the standspén2() library function to catch both ends. There's also
anopen3() for tri-directional 1/0 so you can also catch your child's STDERR, but doing so would then
require an awkwardelect() loop and wouldn‘t allow you to use normal Perl input operations.

If you look at its source, you'll see thapen2() uses low-level primitives like Unipipe() and

exec() to create all the connections. While it might have been slightly more efficient by using
socketpair() , it would have then been even less portable than it already is. ojd®() and
open3() functions are unlikely to work anywhere except on a Unix system or some other one purporting
to be POSIX compliant.

Here's an example of usirapen2() :

use FileHandle;

use IPC::Open2;

$pid = open2(*Reader, *Writer, "cat —u -n");
Writer—>autoflush(); # default here, actually

23—-Mar-1997 Perl Version 5.004 BETA 373

perlipc Perl Programmers Reference Guide perlipc

print Writer "stuffin”;
$got = <Reader>;

The problem with this is that Unix buffering is really going to ruin your day. Even though/Giar

filehandle is auto-flushed, and the process on the other end will get your data in a timely manner, you can't
usually do anything to force it to give it back to you in a similarly quick fashion. In this case, we could,
because we gawata-u flag to make it unbuffered. But very few Unix commands are designed to operate
over pipes, so this seldom works unless you yourself wrote the program on the other end of the
double-ended pipe.

A solution to this is the non—-standa@dmm.pllibrary. It uses pseudo-ttys to make your program behave
more reasonably:

require 'Comm.pl’;
$ph = open_proc(cat —n’);
for (1..10) {
print $ph "a line\n";
print "got back ", scalar <$ph>;

}
This way you don‘t have to have control over the source code of the program you‘re usinGorime
library also hasxpect() andinteract() functions. Find the library (and we hope its successor

IPC::Chat) at your nearest CPAN archive as detailed in the SEE ALSO section below.

Sockets: Client/Server Communication

While not limited to Unix—derived operating systems (e.g., WinSock on PCs provides socket support, as do
some VMS libraries), you may not have sockets on your system, in which case this section probably isn't
going to do you much good. With sockets, you can do both virtual circuits (i.e., TCP streams) and datagrams
(i.e., UDP packets). You may be able to do even more depending on your system.

The Perl function calls for dealing with sockets have the same names as the corresponding system calls in C,
but their arguments tend to differ for two reasons: first, Perl filehandles work differently than C file
descriptors. Second, Perl already knows the length of its strings, so you don‘t need to pass that information.

One of the major problems with old socket code in Perl was that it used hard—coded values for some of the
constants, which severely hurt portability. If you ever see code that does anything like explicitly setting
$AF_INET = 2 , you know you're in for big trouble: An immeasurably superior approach is to use the
Socket module, which more reliably grants access to various constants and functions you'll need.

If you're not writing a server/client for an existing protocol like NNTP or SMTP, you should give some
thought to how your server will know when the client has finished talking, and vice-versa. Most protocols
are based on one-line messages and responses (so one party knows the other has finished when a "\n" is
received) or multiline messages and responses that end with a period on an empty line ("\n.\n" terminates a
message/response).

Internet TCP Clients and Servers

Use Internet-domain sockets when you want to do client-server communication that might extend to
machines outside of your own system.

Here's a sample TCP client using Internet—-domain sockets:

#l/usr/bin/perl —w

require 5.002;

use strict;

use Socket;

my ($remote,$port, Siaddr, $paddr, $proto, $line);

$remote = shift || localhost’;
$port = shift || 2345; # random port
if ($port =~ N\D/) { $port = getservbyname($port, 'tcp’) }

374 Perl Version 5.004 BETA 23—-Mar-1997

perlipc

Perl Programmers Reference Guide perlipc

die "No port" unless $port;
$iaddr = inet_aton($remote) || die "no host: $remote”;
$paddr = sockaddr_in($port, $iaddr);

$proto = getprotobyname(tcp’);

socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
connect(SOCK, $paddr) || die "connect: $!";

while ($line = <SOCK>) {

print $line;
}
close (SOCK) | die "close: $!";
exit;

And here's a corresponding server to go along with it. We'll leave the address as INADDR_ANY so that the
kernel can choose the appropriate interface on multi-homed hosts. If you want sit on a particular interface
(like the external side of a gateway or firewall machine), you should fill this in with your real address
instead.

#l/usr/bin/perl —Tw

require 5.002;

use strict;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }
use Socket;

use Carp;

sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

my $port = shift || 2345;
my $proto = getprotobyname(’tcp’);
$port = $1 if $port =~ /(\d+)/; # untaint port number

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
listen(Server, SOMAXCONN) | die "listen: $!";

logmsg "server started on port $port”;
my $paddr;
$SIG{CHLD} = \&REAPER;

for (; $paddr = accept(Client,Server); close Client) {
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";

print Client "Hello there, $name, it's now ",
scalar localtime, "\n";

}

And here's a multi-threaded version. It's multi-threaded in that like most typical servers, it spawns (forks)
a slave server to handle the client request so that the master server can quickly go back to service a new
client.

#!/usr/bin/perl —Tw
require 5.002;

23—-Mar-1997 Perl Version 5.004 BETA 375

perlipc Perl Programmers Reference Guide perlipc

use strict;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }
use Socket;

use Carp;

sub spawn; # forward declaration
sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

my $port = shift || 2345;
my $proto = getprotobyname(’tcp’);
$port = $1 if $port =~ /(\d+)/; # untaint port number

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
listen(Server, SOMAXCONN) | die "listen: $!";

logmsg "server started on port $port”;

my $waitedpid = 0;
my $paddr;

sub REAPER {

$waitedpid = walit;

$SIG{CHLD} = \&REAPER; # loathe sysV

logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ");
}

$SIG{CHLD} = \&REAPER;

for ($waitedpid = 0;
($paddr = accept(Client,Server)) || $waitedpid;
$waitedpid = 0, close Client)

next if $waitedpid and not $paddr;
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";
spawn sub {
print "Hello there, $name, it's now ", scalar localtime, "\n";

exec 'fusr/games/fortune’
or confess "can't exec fortune: $!";

}

sub spawn {
my $coderef = shift;

unless (@_ == 0 && $coderef && ref($coderef) eq 'CODE’) {
confess "usage: spawn CODEREF";

}

my $pid;

if (defined($pid = fork)) {
logmsg "cannot fork: $!";

376 Perl Version 5.004 BETA 23—-Mar-1997

perlipc Perl Programmers Reference Guide perlipc

return;

} elsif ($pid) {
logmsg "begat $pid";
return; # I'm the parent

}

else I'm the child —— go spawn

open(STDIN, "<&Client") || die "can’t dup client to stdin";

open(STDOUT, ">&Client") || die "can’t dup client to stdout";

open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";

exit &$coderef();

}

This server takes the trouble to clone off a child versiotiorlq) for each incoming request. That way it

can handle many requests at once, which you might not always want. Even if yododdqh't , the
listen() will allow that many pending connections. Forking servers have to be particularly careful about
cleaning up their dead children (called "zombies" in Unix parlance), because otherwise you'll quickly fill up
your process table.

We suggest that you use th& flag to use taint checking (sperlsed even if we aren‘t running setuid or
setgid. This is always a good idea for servers and other programs run on behalf of someone else (like CGI
scripts), because it lessens the chances that people from the outside will be able to compromise your system.

Let's look at another TCP client. This one connects to the TCP "time" service on a number of different
machines and shows how far their clocks differ from the system on which it's being run:

#l/usr/bin/perl —-w
require 5.002;
use strict;

use Socket;

my $SECS_of_70_YEARS = 2208988800;
sub ctime { scalar localtime(shift) }

my $iaddr = gethostbyname(’localhost’);
my $proto = getprotobyname(’tcp’);

my $port = getservbyname(’time’, 'tcp’);
my $paddr = sockaddr_in(0, $iaddr);
my($host);

$=1;
printf "%—-24s %8s %s\n", "localhost", 0, ctime(time());

foreach $host (@ARGV) {
printf "%-24s ", $host;
my $hisiaddr = inet_aton($host) || die "unknown host";
my $hispaddr = sockaddr_in($port, $hisiaddr);
socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
connect(SOCKET, $hispaddr) || die "bind: $!";
my $rtime =’ ;
read(SOCKET, $rtime, 4);
close(SOCKET);
my $histime = unpack("N", $rtime) — $SECS_of 70_YEARS ;
printf "%8d %s\n", $histime — time, ctime($histime);

}

Unix—Domain TCP Clients and Servers

That's fine for Internet—-domain clients and servers, but what about local communications? While you can
use the same setup, sometimes you don‘t want to. Unix—domain sockets are local to the current host, and are

23—-Mar-1997 Perl Version 5.004 BETA 377

perlipc Perl Programmers Reference Guide perlipc

often used internally to implement pipes. Unlike Internet domain sockets, UNIX domain sockets can show
up in the file system with an Is(1) listing.

$ Is -1 /dev/log
srw—rw-rw— 1 root 0 Oct 31 07:23 /dev/log

You can test for these with Per¥s file test:

unless (=S '/dev/log’) {
die "something’s wicked with the print system";

}

Here's a sample Unix—domain client:

#l/usr/bin/perl -w
require 5.002;

use Socket;

use strict;

my ($rendezvous, $line);

$rendezvous = shift || '/tmp/catsock’;

socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";
connect(SOCK, sockaddr_un($rendezvous)) | die "connect: $!";
while ($line = <SOCK>) {

print $line;
} .
exit;

And here's a corresponding server.

#!/usr/bin/perl —Tw
require 5.002;

use strict;

use Socket;

use Carp;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }

my $NAME = '/tmp/catsock’;
my $uaddr = sockaddr_un($NAME);
my $proto = getprotobyname(’tcp’);

socket(Server,PF_UNIX,SOCK_STREAM,0) | die "socket: $!";
unlink($NAME);

bind (Server, $uaddr) || die "bind: $!";
listen(Server, SOMAXCONN) || die "listen: $!";

logmsg "server started on SNAME";
$SIG{CHLD} = \&REAPER;

for ($waitedpid = 0;
accept(Client,Server) || $waitedpid;
$waitedpid = 0, close Client)

next if $waitedpid,;
logmsg "connection on $SNAME";
spawn sub {
print "Hello there, it's now ", scalar localtime, "\n";
exec 'lusr/games/fortune’ or die "can’t exec fortune: $!";

h

378 Perl Version 5.004 BETA 23—-Mar-1997

perlipc Perl Programmers Reference Guide perlipc

}

As you see, it's remarkably similar to the Internet domain TCP server, so much so, in fact, that we've
omitted several duplicatinctions—spawn() , logmsg() , ctime() , and REAPER()—which are
exactly the same as in the other server.

So why would you ever want to use a Unix domain socket instead of a simpler named pipe? Because a
named pipe doesn't give you sessions. You can't tell one process's data from another's. With socket
programming, you get a separate session for each client: thataoebpt() takes two arguments.

For example, let's say that you have a long running database server daemon that you want folks from the
World Wide Web to be able to access, but only if they go through a CGI interface. You‘d have a small,
simple CGI program that does whatever checks and logging you feel like, and then acts as a Unix—domain
client and connects to your private server.

UDP: Message Passing

Another kind of client—server setup is one that uses not connections, but messages. UDP communications
involve much lower overhead but also provide less reliability, as there are no promises that messages will
arrive at all, let alone in order and unmangled. Still, UDP offers some advantages over TCP, including being
able to "broadcast" or "multicast" to a whole bunch of destination hosts at once (usually on your local
subnet). If you find yourself overly concerned about reliability and start building checks into your message
system, then you probably should use just TCP to start with.

Here's a UDP program similar to the sample Internet TCP client given above. However, instead of checking
one host at a time, the UDP version will check many of them asynchronously by simulating a multicast and
then usingselect() to do a timed—out wait for I/O. To do something similar with TCP, you‘d have to use

a different socket handle for each host.

#l/usr/bin/perl -w
use strict;

require 5.002;

use Socket;

use Sys::Hostname;

my ($count, $hisiaddr, $hispaddr, $histime,
$host, $iaddr, $paddr, $port, $proto,
$rin, $rout, $rtime, $SECS_of 70_YEARS);

$SECS_of 70_YEARS =2208988800;

$iaddr = gethostbyname(hostname());

$proto = getprotobyname('udp’);

$port = getservbyname('time’, 'udp’);

$paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";

bind(SOCKET, $paddr) || die "bind: $!";
$=1
printf "%—-12s %8s %s\n", "localhost", 0, scalar localtime time;
$count = 0;
for $host (@ARGV) {
$count++;
$hisiaddr = inet_aton($host) | die "unknown host";

$hispaddr = sockaddr_in($port, $hisiaddr);
defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!";
}

$rin=";
vec($rin, fileno(SOCKET), 1) = 1;

23—-Mar-1997 Perl Version 5.004 BETA 379

perlipc Perl Programmers Reference Guide perlipc

timeout after 10.0 seconds
while ($count && select($rout = $rin, undef, undef, 10.0)) {
$rtime =,
($hispaddr = recv(SOCKET, $rtime, 4, 0)) || die "recv: $!";
($port, Shisiaddr) = sockaddr_in($hispaddr);
$host = gethostbyaddr($hisiaddr, AF_INET);
$histime = unpack("N", $rtime) - $SECS_of 70_YEARS ;
printf "%-12s ", $host;
printf "%8d %s\n", $histime - time, scalar localtime($histime);
$count--;

}

SysV IPC

While System V IPC isn‘t so widely used as sockets, it still has some interesting uses. You can‘t, however,
effectively use SysV IPC or Berkelegmap() to have shared memory so as to share a variable amongst
several processes. That's because Perl would reallocate your string when you weren‘t wanting it to.

Here's a small example showing shared memory usage.

$IPC_PRIVATE = 0;

$IPC_RMID = 0;

$size = 2000;

$key = shmget($IPC_PRIVATE, $size , 0777);
die unless defined $key;

$message = "Message #1";
shmwrite($key, $message, 0, 60) || die "$!";
shmread($key,$buff,0,60) || die "$!";

print $buff,"\n";

print "deleting $key\n";
shmctl($key ,$IPC_RMID, 0) || die "$!";

Here's an example of a semaphore:

$IPC_KEY = 1234;

$IPC_RMID = 0;

$IPC_CREATE = 0001000;

$key = semget($IPC_KEY, $nsems , 0666 | $IPC_CREATE);
die if !defined($key);

print "$key\n";

Put this code in a separate file to be run in more than one process. Callttidefile
create a semaphore
$IPC_KEY = 1234;
$key = semget($IPC_KEY, 0,0);
die if !defined($key);

$semnum = 0;
$semflag = 0;

'take’ semaphore

wait for semaphore to be zero

$semop = 0;

$opstringl = pack("sss", $semnum, $semop, $semflag);

Increment the semaphore count
$semop = 1;

380

Perl Version 5.004 BETA 23—-Mar-1997

perlipc Perl Programmers Reference Guide perlipc

$opstring2 = pack("sss", $semnum, $semop, $semflag);
$opstring = $opstringl . $opstring2;

semop($key,$opstring) || die "$!";
Put this code in a separate file to be run in more than one process. Call thisfile

'give’ the semaphore
run this in the original process and you will see
that the second process continues

$IPC_KEY = 1234;

$key = semget($IPC_KEY, 0, 0);

die if !defined($key);

$semnum = 0;

$semflag = 0;

Decrement the semaphore count

$semop = -1;

$opstring = pack("sss", $semnum, $semop, $semflag);

semop($key,$opstring) || die "$!";

WARNING
The SysV IPC code above was written long ago, and it's definitely clunky looking. It should at the very
least be made tase strict andrequire "sys/ipc.ph" . Better yet, perhaps someone should

create anlPC::SysV module the way we have th8ocket module for normal client—server
communications.

(... time passes)

Voila! Check out the IPC::SysV modules written by Jack Shirazi. You can find them at a CPAN store near

you.

NOTES
If you are running under version 5.000 (dubious) or 5.001, you can still use most of the examples in this
document. You may have to remove tise strict and some of they() statements for 5.000, and for

both you'll have to load in version 1.2 or older of 8acket.pnmodule, which is included iperl5.002

Most of these routines quietly but politely retunndef when they fail instead of causing your program to

die right then and there due to an uncaught exception. (Actually, some of thBoeketconversion
functions croak() on bad arguments.) It is therefore essential that you should check the return values of
these functions. Always begin your socket programs this way for optimal success, and don‘t forget to add
—T taint checking flag to the pound-bang line for servers:

#l/usr/bin/perl —w
require 5.002;
use strict;

use sigtrap;

use Socket;

BUGS

All these routines create system-specific portability problems. As noted elsewhere, Perl is at the mercy of
your C libraries for much of its system behaviour. It's probably safest to assume broken SysV semantics for
signals and to stick with simple TCP and UDP socket operations; e.g., don't try to pass open file descriptors
over a local UDP datagram socket if you want your code to stand a chance of being portable.

Because few vendors provide C libraries that are safely re—entrant, the prudent programmer will do little
else within a handler beyomiie() to raise an exception and longjmp(3) out.

23—-Mar-1997 Perl Version 5.004 BETA 381

perlipc Perl Programmers Reference Guide perlipc

AUTHOR
Tom Christiansen, with occasional vestiges of Larry Wall's original version.

SEE ALSO

Besides the obvious functionsperlfung you should also check out theodulesfile at your nearest CPAN

site. (Segerlmodor best yet, th€erl FAQ for a description of what CPAN is and where to get it.) Section

5 of themodulesfile is devoted to "Networking, Device Control (modems), and Interprocess

Communication”, and contains numerous unbundled modules numerous networking modules, Chat and
Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, SNMP, SMTP, Telnet,
Threads, and ToolTalk—just to name a few.

382 Perl Version 5.004 BETA 23—-Mar-1997

perldebug Perl Programmers Reference Guide perldebug

NAME
perldebug - Perl debugging

DESCRIPTION
First of all, have you tried using thev switch?

The Perl Debugger

If you invoke Perl with the-d switch, your script runs under the Perl source debugger. This works like an
interactive Perl environment, prompting for debugger commands that let you examine source code, set
breakpoints, get stack backtraces, change the values of variables, etc. This is so convenient that you often
fire up the debugger all by itself just to test out Perl constructs interactively to see what they do. For
example:

perl —d —e 42
In Perl, the debugger is not a separate program as it usually is in the typical compiled environment. Instead,
the —d flag tells the compiler to insert source information into the parse trees it's about to hand off to the

interpreter. That means your code must first compile correctly for the debugger to work on it. Then when
the interpreter starts up, it pre—loads a Perl library file containing the debugger itself.

The program will haltright before the first run—time executable statement (but see below regarding
compile-time statements) and ask you to enter a debugger command. Contrary to popular expectations,
whenever the debugger halts and shows you a line of code, it always displays the dinevuitte execute,

rather than the one it has just executed.

Any command not recognized by the debugger is directly execetad (d) as Perl code in the current
package. (The debugger uses the DB package for its own state information.)

Leading white space before a command would cause the debugger to thiw®Tts debugger command
but for Perl, so be careful not to do that.

Debugger Commands
The debugger understands the following commands:

h [command] Prints out a help message.

If you supply another debugger command as an argument todbmmand, it prints out
the description for just that command. The special argumehttof produces a more
compact help listing, designed to fit together on one screen.

If the output theh command (or any command, for that matter) scrolls past your screen,
either precede the command with a leading pipe symbol so it's run through your pager, as

in
DB> |h
You may change the pager which is usedipager=... command.
p expr Same agrint {$DB::OUT} expr in the current package. In particular, because this

is just Perl‘'s owrprint function, this means that nested data structures and objects are not
dumped, unlike with thg& command.

The DB::OUT filehandle is opened tédev/tty regardless of where STDOUT may be
redirected to.

X expr Evaluates its expression in list context and dumps out the result in a pretty—printed
fashion. Nested data structures are printed out recursively, unligeithe function.

The details of printout are governed by multiggions.

23—-Mar-1997 Perl Version 5.004 BETA 383

perldebug

Perl Programmers Reference Guide perldebug

V [pkg [vars]]

X [vars]
T

s [expr]

n [expr]

<CR>

¢ [line|sub]

I

| min+incr
| min—-max
I line

| subname

w [line]

f filename

/pattern/
?pattern?

L

S [[']pattern]
t

t expr

Display all (or some) variables in package (defaulting tontaén package) using a data
pretty—printer (hashes show their keys and values so you see what's what, control
characters are made printable, etc.). Make sure you don't put the type specifi$j (like
there, just the symbol names, like this:

V DB filename line
Use~pattern and!pattern for positive and negative regexps.
Nested data structures are printed out in a legible fashion, unlikeithe function.
The details of printout are governed by multigfgions.
Same a¥ currentpackage [vars]
Produce a stack backtrace. See below for details on its output.

Single step. Executes until it reaches the beginning of another statement, descending into
subroutine calls. If an expression is supplied that includes function calls, it too will be
single-stepped.

Next. Executes over subroutine calls, until it reaches the beginning of the next statement.
If an expression is supplied that includes function calls, those functions will be executed
with stops before each statement.

Repeat lash ors command.

Continue, optionally inserting a one-time-only breakpoint at the specified line or
subroutine.

List next window of lines.

Listincr+1 lines starting amin .

List linesmin throughmax. | — is synonymous te.

List a single line.

List first window of lines from subroutine.

List previous window of lines.

List window (a few lines) around the current line.

Return debugger pointer to the last—executed line and print it out.

Switch to viewing a different file or eval statementfildname is not a full filename as
found in values of %INC, it is considered as a regexp.

Search forwards for pattern; final / is optional.
Search backwards for pattern; final ? is optional.
List all breakpoints and actions.

List subroutine names [not] matching pattern.
Toggle trace mode (see al&atoTrace Option).
Trace through execution of expr. For example:

$ perl —de 42
Stack dump during die enabled outside of evals.

Loading DB routines from perl5db.pl patch level 0.94
Emacs support available.

384

Perl Version 5.004 BETA 23—-Mar-1997

perldebug Perl Programmers Reference Guide perldebug

Enter h or ‘*h h’ for help.

main::(-e:1): 0
DB<1> sub foo {14 }
DB<2> sub bar {3}
DB<3> t print foo() * bar()
main::((eval 172):3): print foo() + bar();
main::foo((eval 168):2):
main::bar((eval 170):2):

42
or, with theOptionframe=2 set,
DB<4> O f=2
frame =2

DB<5> t print foo() * bar()
3: foo() * bar()
entering main::foo
2: subfoo{14};
exited main::foo
entering main::bar
2: subbar{3}
exited main::bar
42

b [line] [condition]
Set a breakpoint. If line is omitted, sets a breakpoint on the line that is about to be
executed. If a condition is specified, it's evaluated each time the statement is reached and
a breakpoint is taken only if the condition is true. Breakpoints may be set on only lines
that begin an executable statement. Conditions donif use

b 237 $x > 30
b 237 ++$count237 < 11
b 33 /pattern/i

b subname [condition]
Set a breakpoint at the first line of the named subroutine.

b postpone subname [condition]
Set breakpoint at first line of subroutine after it is compiled.

b load filename

Set breakpoint at the first executed line of the file. Filename should be a full name as
found in values of %INC.

b compile subname
Sets breakpoint at the first statement executed after the subroutine is compiled.

d [line] Delete a breakpoint at the specified line. If line is omitted, deletes the breakpoint on the
line that is about to be executed.

D Delete all installed breakpoints.

a [line] command
Set an action to be done before the line is executed. The sequence of steps taken by the
debugger is

1. check for a breakpoint at this line
2. print the line if necessary (tracing)

23—-Mar-1997 Perl Version 5.004 BETA 385

perldebug Perl Programmers Reference Guide perldebug

3. do any actions associated with that line
4. prompt user if at a breakpoint or in single-step
5. evaluate line

For example, this will print oufoo every time line 53 is passed:
a 53 print "DB FOUND $foo\n"
A Delete all installed actions.

O [opt[=val]] [opt"val"] [opt?]...
Set or query values of options. val defaults to 1. opt can be abbreviated. Several options
can be listed.
recallCommand , ShellBang

The characters used to recall command or spawn shell. By default, these
are both set tb.

pager Program to use for output of pager—piped commands (those beginning
with a| character.) By defaulENV{PAGER}will be used.

tkRunning Run Tk while prompting (with ReadLine).

signalLevel , warnLevel , dieLevel

Level of verbosity. By default the debugger is in a sane verbose mode,
thus it will print backtraces on all the warnings and die—-messages which
are going to be printed out, and will print a message when interesting
uncaught signals arrive.

To disable this behaviour, set these values to @ielfevel is 2, then
the messages which will be caught by surroundiéwgl are also

printed.
AutoTrace Trace mode (similar tb command, but can be put into
PERLDB_OPTp
Linelnfo File or pipe to print line number info to. |If it is a pipe (say,
[visual_perl_db), then a short, "emacs like" message is used.
inhibit_exit
If 0, allowsstepping ofthe end of the script.
PrintRet affects printing of return value aftercommand.
frame affects printing messages on entry and exit from subroutindsanie

& 2 is false, messages are printed on entry only. (Printing on exit may
be useful if inter(di)spersed with other messages.)

If frame & 4 , arguments to functions are printed as well as the context
and caller info. Ifframe & 8 , overloadedstringify andtie d
FETCHare enabled on the printed arguments. The length at which the
argument list is truncated is governed by the next option:

maxTraceLen length at which the argument list is truncated wiiame option's bit 4
is set.

The following options affect what happens wihX, andx commands:

arrayDepth , hashDepth
Print only first N elements (for all).

386 Perl Version 5.004 BETA 23—-Mar-1997

perldebug

Perl Programmers Reference Guide perldebug

compactDump, veryCompact
Change style of array and hash dump.cdipactDump, short array
may be printed on one line.

globPrint Whether to print contents of globs.

DumpDBFiles Dump arrays holding debugged files.

DumpPackages
Dump symbol tables of packages.

guote , HighBit , undefPrint
Change style of string dump. Default valuggabte isauto , one can
enable either double—quotish dump, or single—quotish by setting'it to
or’ . By default, characters with high bit set are priraeds

UsageOnly very rudimentally per—package memory usage dump. Calculates total
size of strings in variables in the package.

During startup options are initialized froENV{PERLDB_OPTS}. You can put
additional initialization option¥TY, noTTY, ReadLine , andNonStop there.

Example rc file:
&parse_options("NonStop=1 Linelnfo=db.out AutoTrace");

The script will run without human intervention, putting trace information into the file
db.out (If you interrupt it, you would better reddéhelnfo to something "interactive"!)

TTY The TTY to use for debugging 1/O.

noTTY If set, goes iNNonStop mode, and would not connect to a TTY. If
interrupt (or if control goes to debugger via explicit setting of
$DB::signal or $DB::single from the Perl script), connects to a
TTY specified by theTTY option at startup, or to a TTY found at
runtime usingrerm::Rendezvous module of your choice.

This module should implement a methoew which returns an object
with two methodsiIN and OUT returning two filehandles to use for
debugging input and output correspondingly. Methed may inspect
an argument which is a value SENV{PERLDB_NOTTYat startup, or
is "/tmp/perldbtty$$" otherwise.

ReadLine If false, readline support in debugger is disabled, so you can debug
ReadLine applications.

NonStop If set, debugger goes into non-interactive mode until interrupted, or
programmatically by settin§DB::signal or $DB::single.

Here's an example of using th&ENV{PERLDB_OPTS}variable:
$ PERLDB_OPTS="N f=2" perl —d myprogram

will run the scriptmyprogram without human intervention, printing out the call tree with
entry and exit points. Note thitf=2 is equivalent tdNonStop=1 frame=2 . Note

also that at the moment when this documentation was written all the options to the
debugger could be uniquely abbreviated by the first letter (with exceptiduwip*
options).

Other examples may include

23-Mar-1997

Perl Version 5.004 BETA 387

perldebug

Perl Programmers Reference Guide perldebug

<[command]

<< command

> command

>> command

{[command]

{{ command

I number
I —=number
| pattern

Il cmd

H —number

gor”D

$ PERLDB_OPTS="N f A L=listing" perl —-d myprogram

— runs script non-interactively, printing info on each entry into a subroutine and each
executed line into the filksting. (If you interrupt it, you would better redahelnfo to
something "interactive"!)

$ env "PERLDB_OPTS=R=0 TTY=/dev/ttyc" perl -d myprogram

may be useful for debugging a program which ubesn::ReadLine itself. Do not
forget detach shell from the TTY in the window which corresponddew/ttyc say, by
issuing a command like

$ sleep 1000000
See"'Debugger Internals’below for more details.

Set an action (Perl command) to happen before every debugger prompt. A multi-line
command may be entered by backslashing the newlinesomimand is missing, resets
the list of actions.

Add an action (Perl command) to happen before every debugger prompt. A multi-line
command may be entered by backslashing the newlines.

Set an action (Perl command) to happen after the prompt when you've just given a
command to return to executing the script. A multi-line command may be entered by
backslashing the newlines. dbmmandis missing, resets the list of actions.

Adds an action (Perl command) to happen after the prompt when you‘ve just given a
command to return to executing the script. A multi-line command may be entered by
backslashing the newlines.

Set an action (debugger command) to happen before every debugger prompt. A multi-line
command may be entered by backslashing the newlinesomimand is missing, resets
the list of actions.

Add an action (debugger command) to happen before every debugger prompt. A
multi-line command may be entered by backslashing the newlines.

Redo a previous command (default previous command).
Redo number‘th-to—last command.
Redo last command that started with pattern.GeecallCommand , too.

Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT)CsskellBang
too.

Display last n commands. Only commands longer than one character are listed. If number
is omitted, lists them all.

Quit. ("quit" doesn't work for this.) This is the only supported way to exit the debugger,
though typingexit twice may do it too.

Set anOption inhibit_exit to O if you want to be able &tep offthe end the script.
You may also need to s#finished to O at some moment if you want to step through
global destruction.

Restart the debugger lexedng a new session. It tries to maintain your history across this,
but internal settings and command line options may be lost.

Currently the following setting are preserved: history, breakpoints, actions, debugger
Options, and the following command-line optiorsz, —I, and—e.

388

Perl Version 5.004 BETA 23—-Mar-1997

perldebug Perl Programmers Reference Guide perldebug
|dbecmd Run debugger command, piping DB::OUT to current pager.
[[dbcmd Same as|dbcmd but DB::OUT is temporarilyseleced as well. Often used with

commands that would otherwise produce long output, such as

[V main

= [alias value] Define a command alias, like

command

m expr

=quit q
or list current aliases.
Execute command as a Perl statement. A missing semicolon will be supplied.

The expression is evaluated, and the methods which may be applied to the result are listed.

m package The methods which may be applied to objects irptickage are listed.

Debugger input/output

Prompt

The debugger prompt is something like
DB<8>

or even
DB<<17>>

where that number is the command number, which you'd use to access with the bsiifttike

history mechanism, e.d17 would repeat command number 17. The number of angle brackets
indicates the depth of the debugger. You could get more than one set of brackets, for example, if
you'd already at a breakpoint and then printed out the result of a function call that itself also has
a breakpoint, or you step into an expressiorsii& expression command.

Multi-line commands

If you want to enter a multi-line command, such as a subroutine definition with several
statements, or a format, you may escape the newline that would normally end the debugger
command with a backslash. Here's an example:

DB<1> for (1..4) { \
cont: print "ok\n"; \
cont: }

ok

ok

ok

ok

Note that this business of escaping a newline is specific to interactive commands typed into the
debugger.

Stack backtrace

Here's an example of what a stack backtrac&dammand might look like:

$ = main::infested called from file ‘Ambulation.pm’ line 10
@ = Ambulation::legs(1, 2, 3, 4) called from file ‘camel_flea’ line 7
$ = main::pests(’bactrian’, 4) called from file ‘camel_flea’ line 4

The left—-hand character up there tells whether the function was called in a scalar or list context
(we bet you can tell which is which). What that says is that you were in the function

main::infested when you ran the stack dump, and that it was called in a scalar context
from line 10 of the fileAmbulation.pmbut without any arguments at all, meaning it was called
as &infested. The next stack frame shows that the functhonbulation::legs was

called in a list context from theamel_fledfile with four arguments. The last stack frame shows

23-Mar-1997

Perl Version 5.004 BETA 389

perldebug Perl Programmers Reference Guide perldebug

thatmain::pests was called in a scalar context, also freamel_fleabut from line 4.

Note that if you execut& command from inside an activse statement, the backtrace will
contain bothrequire frame and amval EXPR) frame.

Listing Listing given via different flavors df command looks like this:

DB<<13>> |
101: @i{@i} = ();
102:b @isa{@i,$pack} = ()
103 if(exists $i{Sprevpack} || exists $isa{$pack});
104 }
105
106 next
107==> if(exists $isa{$pack});
108
109:a if ($extra—— > 0) {
110: %isa = ($pack,1);

Note that the breakable lines are marked withines with breakpoints are marked by with
actions bya, and the next executed line is marked=by.

Frame listing

Whenframe option is set, debugger would print entered (and optionally exited) subroutines in
different styles.

What follows is the start of the listing of
env "PERLDB_OPTS=f=1 N" perl -d -V

1

entering main::BEGIN
entering Config::BEGIN
Package lib/Exporter.pm.
Package lib/Carp.pm.
Package lib/Config.pm.
entering Config:: TIEHASH
entering Exporter::import
entering Exporter::export
entering Config::myconfig
entering Config::FETCH
entering Config::FETCH
entering Config::FETCH
entering Config::FETCH

entering main::BEGIN
entering Config::BEGIN
Package lib/Exporter.pm.
Package lib/Carp.pm.
exited Config::BEGIN
Package lib/Config.pm.
entering Config:: TIEHASH
exited Config:: TIEHASH
entering Exporter::import
entering Exporter::export
exited Exporter::export
exited Exporter::import

390 Perl Version 5.004 BETA 23—-Mar-1997

perldebug

Perl Programmers Reference Guide perldebug

14

exited main::BEGIN
entering Config::myconfig
entering Config::FETCH
exited Config::FETCH
entering Config::FETCH
exited Config::FETCH
entering Config::FETCH

in $=main::BEGIN() from /dev/nul:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
Package lib/Config.pm.
in $=Config:: TIEHASH('Config’) from lib/Config.pm:644
in $=Exporter::import('Config’, 'myconfig’, ‘config_vars’) from /dev/n
in $=Exporter::export('Config’, 'main’, 'myconfig’, 'config_vars’) fr
in @=Config::myconfig() from /dev/nul:0
in $=Config::FETCH(ref(Config), 'package’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'baserev’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'PATCHLEVEL’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'SUBVERSION’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'osname’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'osvers’) from lib/Config.pm:574

in $=main::BEGIN() from /dev/nul:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
out $=Config::BEGIN() from lib/Config.pm:0
Package lib/Config.pm.
in $=Config:: TIEHASH('Config’) from lib/Config.pm:644
out $=Config:: TIEHASH('Config’) from lib/Config.pm:644
in $=Exporter::import('Config’, 'myconfig’, ‘config_vars’) from /dev/n
in $=Exporter::export('Config’, 'main’, ‘'myconfig’, 'config_vars’) fr
out $=Exporter::export('Config’, ‘'main’, 'myconfig’, ‘config_vars’) fr
out $=Exporter::import('Config’, 'myconfig’, 'config_vars’) from /dev/n
out $=main::BEGIN() from /dev/nul:0
in @=Config::myconfig() from /dev/nul:0
in $=Config::FETCH(ref(Config), 'package’) from lib/Config.pm:574
out $=Config::FETCH(ref(Config), 'package’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'baserev’) from lib/Config.pm:574
out $=Config::FETCH(ref(Config), 'baserev’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'PATCHLEVEL’) from lib/Config.pm:574
out $=Config::FETCH(ref(Config), 'PATCHLEVEL’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), 'SUBVERSION’) from lib/Config.pm:574

in $=main::BEGIN() from /dev/nul:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
out $=Config::BEGIN() from lib/Config.pm:0
Package lib/Config.pm.

23-Mar-1997

Perl Version 5.004 BETA 391

perldebug Perl Programmers Reference Guide perldebug

in $=Config:: TIEHASH('Config’) from lib/Config.pm:644
out $=Config:: TIEHASH('Config’) from lib/Config.pm:644
in $=Exporter::import('Config’, 'myconfig’, ‘config_vars’) from /dev/n
in $=Exporter::export('Config’, 'main’, ‘'myconfig’, 'config_vars’) fr
out $=Exporter::export('Config’, ‘'main’, 'myconfig’, ‘config_vars’) fr
out $=Exporter::import('Config’, 'myconfig’, 'config_vars’) from /dev/n
out $=main::BEGIN() from /dev/nul:0
in @=Config::myconfig() from /dev/nul:0
in $=Config::FETCH('Config=HASH(0x1aa444)’, 'package’) from lib/Config
out $=Config::FETCH('Config=HASH(0x1aa444)’, 'package’) from lib/Config
in $=Config::FETCH('Config=HASH(0Ox1aa444)', 'baserev’) from lib/Config
out $=Config::FETCH('Config=HASH(Ox1aa444)’, 'baserev’) from lib/Config

In all the cases indentation of lines shows the call tree, if bitfeanfe is set, then a line is
printed on exit from a subroutine as well, if bit 4 is set, then the arguments are printed as well as
the caller info, if bit 8 is set, the arguments are printed even if they are tied or references.

When a package is compiled, a line like this
Package lib/Carp.pm.

is printed with proper indentation.

Debugging compile-time statements

If you have any compile—time executable statements (code within a BEGIN bloclser statement), these

will NOTbe stopped by debugger, althougiguire s will (and compile-time statements can be traced
with AutoTrace option set inPERLDB_OPTp From your own Perl code, however, you can transfer
control back to the debugger using the following statement, which is harmless if the debugger is not running:

$DB::single = 1;

If you set$DB::single to the value 2, it's equivalent to having just typed ntheommand, whereas a
value of 1 means the command. Th&DB::trace variable should be set to 1 to simulate having typed
thet command.

Another way to debug compile—time code is to start debugger, set a breakptdatdai some module
thusly

DB<7> b load f:/perllib/lib/Carp.pm
Will stop on load of ‘f:/perllib/lib/Carp.pm’.

and restart debugger By command (if possible). One can useompile subname for the same
purpose.

Debugger Customization

Most probably you not want to modify the debugger, it contains enough hooks to satisfy most needs. You
may change the behaviour of debugger from the debugger itself, Qs#iogs, from the command line via
PERLDB_OPT&nvironment variable, and froaustomization files

You can do some customization by setting upealdbfile which contains initialization code. For instance,
you could make aliases like these (the last one is one people expect to be there):

$DB::alias{’len} ='s/Men(.*)/p length($1)/;

$DB::alias{'stop’} = 's/"stop (at|in)/b/’;

$DB::alias{’ps’} ='s/"ps\b/p scalar /’;

$DB::alias{’quit’} = 's/*quit(\s*)/exit\$/’;
One changes options fromerldbfile via calls like this one;

parse_options("NonStop=1 Linelnfo=db.out AutoTrace=1 frame=2");

392

Perl Version 5.004 BETA 23—-Mar-1997

perldebug Perl Programmers Reference Guide perldebug

(the code is executed in the pack&@f®. Note thatperldbis processed before processPlERLDB_OPTS
If .perldbdefines the subroutirafterinit , it is called after all the debugger initialization endserldb
may be contained in the current directory, or inltB&DIRHOMHlirectory.

If you want to modify the debugger, copgrl5db.plfrom the Perl library to another name and modify it as
necessary. You'll also want to set y®®EERL5DBenvironment variable to say something like this:

BEGIN { require "myperl5db.pl" }

As the last resort, one can uBERL5DBto customize debugger by directly setting internal variables or
calling debugger functions.

Readline Support

As shipped, the only command line history supplied is a simplistic one that checks for leading exclamation
points. However, if you install the Term::ReadKey and Term::ReadLine modules from CPAN, you will
have full editing capabilities much like GN8adling3) provides. Look for these in the
modules/