=head1 OVERVIEW This is a Gnuplot-based plotter for PDL. This repository stores the history for the PDL::Graphics::Gnuplot module on CPAN. Install the module via CPAN. CPAN page at L. =cut =head1 NAME PDL::Graphics::Gnuplot - Gnuplot-based plotting for PDL =head1 SYNOPSIS pdl> use PDL::Graphics::Gnuplot; pdl> $x = sequence(101) - 50; pdl> gplot($x**2); pdl> gplot($x**2,{xr=>[0,50]}); pdl> gplot( {title => 'Parabola with error bars'}, with => 'xyerrorbars', legend => 'Parabola', $x**2 * 10, abs($x)/10, abs($x)*5 ); pdl> $xy = zeros(21,21)->ndcoords - pdl(10,10); pdl> $z = inner($xy, $xy); pdl> gplot({title => 'Heat map', '3d' => 1, extracmds => 'set view 0,0'}, with => 'image', xvals($z),yvals($z),zeroes($z),$z*2); pdl> $w = gpwin(); pdl> $pi = 3.14159; pdl> $theta = zeros(200)->xlinvals(0, 6*$pi); pdl> $z = zeros(200)->xlinvals(0, 5); pdl> $w->plot3d(cos($theta), sin($theta), $z); =head1 DESCRIPTION This module allows PDL data to be plotted using Gnuplot as a backend for 2D and 3D plotting and image display. Gnuplot (not affiliated with the Gnu project) is a venerable, open-source plotting package that produces both interactive and publication-quality plots on a very wide variety of output devices. Gnuplot is a standalone package that must be obtained separately from this interface module. It is available through most Linux repositories, on MacOS via fink and MacPorts, and from its website L. It is not necessary to understand the gnuplot syntax to generate basic, or even complex, plots - though the full syntax is available for advanced users who want to take advantage of the full flexibility of the Gnuplot backend. Gnuplot recognizes both hard-copy and interactive plotting devices, and on interactive devices (like X11) it is possible to pan, scale, and rotate both 2-D and 3-D plots interactively. You can also enter graphical data through mouse clicks on the device window. On some hardcopy devices (e.g. "PDF") that support multipage output, it is necessary to close the device after plotting to ensure a valid file is written out. The main subroutine that C exports by default is C, which produces one or more overlain plots and/or images in a single plotting window. Depending on options, C can produce line plots, scatterplots, error boxes, "candlesticks", images, or any overlain combination of these elements; or perspective views of 3-D renderings such as surface plots. A call to C looks like: gplot({temp_plot_options}, # optional hash or array ref curve_options, data, data, ... , curve_options, data, data, ... ); The data entries are columns to be plotted. They are normally an optional ordinate and a required abscissa, but some plot modes can use more columns than that. The collection of columns is called a "tuple". Each column must be a separate PDL or an ARRAY ref. If all the columns are PDLs, you can add extra dimensions to make threaded collections of curves. PDL::Graphics::Gnuplot also implements an object oriented interface. Plot objects track individual gnuplot subprocesses. Direct calls to C are tracked through a global object that stores globally set configuration variables. The C sub (or the C method) collects two kinds of options hash: B, which describe the overall structure of the plot being produced (e.g. axis specifications, window size, and title), and B, which describe the behavior of individual traces or collections of points being plotted. In addition, the module itself supports options that allow direct pass-through of plotting commands to the underlying gnuplot process. =head2 Basic plotting Gnuplot generates many kinds of plot, from basic line plots and histograms to scaled labels. Individual plots can be 2-D or 3-D, and different sets of plot styles are supported in each mode. Plots can be sent to a variety of devices; see the description of plot options, below. You select a plot style with the "with" curve option, and feed in columns of data (usually ordinate followed by abscissa). The collection of columns is called a "tuple". These plots have two columns in their tuples: $x = xvals(51)-25; $y = $x**2; gplot(with=>'points', $x, $y); # Draw points on a parabola gplot(with=>'lines', $x, $y); # Draw a parabola gplot({title=>"Parabolic fit"}, with=>"yerrorbars", legend=>"data", $x, $y+(random($y)-0.5)*2*$y/20, pdl($y/20), with=>"lines", legend=>"fit", $x, $y); Normal threading rules apply across the arguments to a given plot. All data are required to be supplied as either PDLs or list refs. If you use a list ref as a data column, then normal threading is disabled. For example: $x = xvals(5); $y = xvals(5)**2; $labels = ['one','two','three','four','five']; gplot(with=>'labels',$x,$y,$labels); See below for supported curve styles. =head3 Modifying plots Gnuplot is built around a monolithic plot model - it is not possible to add new data directly to a plot without redrawing the entire plot. To support replotting, PDL::Graphics::Gnuplot stores the data you plot in the plot object, so that you can add new data with the "replot" command: $w=gpwin(x11); $x=xvals(101)/100; $y=$x; $w->plot($x,$y); $w->replot($x,$y*$y); For speed, the data are *not* disconnected from their original variables - so this will plot X vs. sqrt(X): $x = xvals(101)/100; $y = xvals(101)/100; $w->plot($x,$y); $y->inplace->sqrt; $w->replot($x,$y); =head3 Image plotting Several of the plot styles accept image data. The tuple parameters work the same way as for basic plots, but each "column" is a 2-D PDL rather than a 1-D PDL. As a special case, the "with image" plot style accepts either a 2-D or a 3-D PDL. If you pass in 3-D PDL, the extra dimension can have size 1, 3, or 4. It is interpreted as running across (R,G,B,A) color planes. =head3 3-D plotting You can plot in 3-D by setting the plot option C to a true value. Three dimensional plots accept either 1-D or 2-D PDLs as data columns. If you feed in 2-D "columns", many of the common plot styles will generalize appropriately to 3-D. For example, to plot a 2-D surface as a line grid, you can use the "lines" style and feed in 2-D columns instead of 1-D columns. =head2 Plot styles supported Gnuplot itself supports a wide range of plot styles, and all are supported by PDL::Graphics::Gnuplot. Most of the basic plot styles collect tuples of 1-D columns in 2-D mode (for ordinary plots), or either 1-D or 2-D "columns" in 3-D mode (for grid surface plots and such). Image modes always collect tuples made of 2-D "columns". You can pass in 1-D columns as either PDLs or ARRAY refs. That is important for plot types (such as "labels") that require a collection of strings rather than numeric data. The GNuplot plot styles supported are: =over 3 =item * C - combo of C and C, below (2D) =item * C - simple boxes around regions on the plot (2D) =item * C - Render X and Y error bars as boxes (2D) =item * C - Y error bars with inner and outer limits (2D) =item * C - circles with variable radius at each point: X/Y/radius (2D) =item * C - tiny points ("dots") at each point, e.g. for scatterplots (2D/3D) =item * C - ellipses. Accepts X/Y/major/minor/angle (2D) =item * C - closed polygons or axis-to-line filled shapes (2D) =item * C - financial style plot. Accepts date/open/low/high/close (2D) =item * C - square bin plot; delta-Y, then delta-X (see C, C) (2D) =item * C - square bin plot; plateaus centered on X coords (see C, C) (2D) =item * C - binned histogram of dataset (not direct plot; see C) (2D) =item * C - (PDL-specific) renders FITS image files in scientific coordinates =item * C - Takes (i), (x,y,i), or (x,y,z,i). See C, C, C. (2D/3D) =item * C - vertical line from axis to the plotted point (2D/3D) =item * C - Text labels at specified locations all over the plot (2D/3D) =item * C - regular line plot (2D/3D) =item * C - line plot with symbols at plotted points (2D/3D) =item * C - multiple-histogram-friendly histogram style (see C) (2D) =item * C - symbols at plotted points (2D/3D) =item * C - R/G/B color image with variable transparency (2D/3D) =item * C - R/G/B color image (2D/3D) =item * C - square bin plot; delta-X, then delta-Y (see C, C) (2D) =item * C - Small arrows: (x,y,[z]) -> (x+dx,y+dy,[z+dz]) (2D/3D) =item * C - points with X error bars ("T" form) (2D) =item * C - points with both X and Y error bars ("T" form) (2D) =item * C - points with Y error bars ("T" form) (2D) =item * C - line plot with X errorbars at each point. (2D) =item * C - line plot with XY errorbars at each point. (2D) =item * C - line plot with Y error limits at each point. (2D) =item * C - three-dimensional variable-position surface plot =back =head2 Options arguments The plot options are parameters that affect the whole plot, like the title of the plot, the axis labels, the extents, 2d/3d selection, etc. All the plot options are described below in L. Plot options can be set directly in the plot object, or passed to the plotting methods directly. Plot options can be passed in as a leading interpolated hash, as a leading hash ref, or as a trailing hash ref in the argument list to any of the main plotting routines (C, C, C, etc.). The curve options are parameters that affect only one curve in particular. Each call to C can contain many curves, and options for a particular curve I the data for that curve in the argument list. Furthermore, I. So if you set a particular style for a curve, this style will persist for all the following curves, until this style is turned off. The only exception to this is the C option, since it's very rarely a good idea to have multiple curves with the same label. An example: gplot( with => 'points', $x, $a, {y2 => 1}, $x, $b, with => 'lines', $x, $c ); This plots 3 curves: $a vs. $x plotted with points on the main y-axis (this is the default), $b vs. $x plotted with points on the secondary y axis, and $c vs. $x plotted with lines also on the secondary y axis. Note that the curve options can be supplied as either an inline hash or a hash ref. All the curve options are described below in L. If you want to plot multiple curves of the same type without changing any options between them, you must include an empty hash ref between the tuples for subsequent lines, as in: gplot( $x, $a, {}, $x, $b, {}, $x, $c ); =head2 Data arguments Following the curve options in the C argument list is the actual data being plotted. Each output data point is a "tuple" whose size varies depending on what is being plotted. For example if we're making a simple 2D x-y plot, each tuple has 2 values; if we're making a 3d plot with each point having variable size and color, each tuple has 5 values (x,y,z,size,color). Each tuple element must be passed separately. For ordinary 2-D plots, the 0 dim of the tuple elements runs across plotted point. PDL threading is active, so you can plot multiple curves with similar curve options on a normal 2-D plot, just by stacking data inside the passed-in PDLs. (An exception is that threading is disabled if one or more of the data elements is a list ref). =head3 A simple example my $win = gpwin('x11'); $win->plot( sin(xvals(45)) * 3.14159/10 ); Here we just plot a simple function. The default plot style is a line. Line plots take a 2-tuple (X and Y values). Since we have supplied only one element, C understands it to be the Y value (abscissa) of the plot, and supplies value indices as X values -- so we get a plot of just over 2 cycles of the sine wave over an X range across X values from 0 to 44. =head3 A not-so-simple example $win = gpwin('x11'); $pi = 3.14159 $win->plot( {with => line}, xvals(10)**2, xvals(10), {with => circles}, 2 * xvals(50), 2 * sin(xvals(50) * $pi / 10), xvals(50)/20 ); This plots sqrt(x) in an interesting way, and overplots some circles of varying size. The line plot accepts a 2-tuple, and we supply both X and Y. The circles plot accepts a 3-tuple: X, Y, and R. =head3 A complicated example: $pi = 3.14159; $theta = xvals(201) * 6 * $pi / 200; $z = xvals(201) * 5 / 200; gplot( {trid => 1, title => 'double helix'}, {with => 'linespoints pointsize variable pointtype 2 palette', legend => ['spiral 1','spiral 2']} , cdim=>1, pdl( cos($theta), -cos($theta) ), # x pdl( sin($theta), -sin($theta) ), # y $z, # z (0.5 + abs(cos($theta))), # pointsize sin($theta/3), # color {with=>'points pointsize variable pointtype 5'}, zeroes(6), # x zeroes(6), # y xvals(6), # z xvals(6)+1 # point size ); This is a 3d plot with variable size and color. There are 5 values in the tuple. The first 2 piddles have dimensions (N,2); all the other piddles have a single dimension. The "cdim=>1" specifies that each column of data should be one-dimensional. Thus the PDL threading generates 2 distinct curves, with varying values for x,y and identical values for everything else. To label the curves differently, 2 different sets of curve options are given. Omitting the "cdim" curve option would yield a 201x2 grid with the "linespoints" plotstyle, rather than two separate curves. In addition to the threaded pair of linespoints curves, there are six variable size points plotted as filled squares, as a secondary curve. Plot options are passed in in two places: as a leading hash ref, and as a trailing hash ref. Any other hash elements or hash refs must be curve options. Curves are delimited by non-data arguments. After the initial hash ref, curve options for the first curve (the threaded pair of spirals) are passed in as a second hash ref. The curve's data arguments are ended by the first non-data argument (the hash ref with the curve options for the second curve). =head3 Implicit domains When making a simple 2D plot, if exactly 1 dimension is missing, PDL::Graphics::Gnuplot will use C as the domain. This is why code like C works. Only one PDL is given here, but the plot type ("lines" by default) requires 2 elements per tuple. We are thus exactly 1 piddle short; C is used as the missing domain PDL. This is thus equivalent to C. If plotting in 3d or displaying an image, an implicit domain will be used if we are exactly 2 piddles short. In this case, PDL::Graphics::Gnuplot will use a 2D grid as a domain. Example: my $xy = zeros(21,21)->ndcoords - pdl(10,10); plot({'3d' => 1}, with => 'points', inner($xy, $xy)); plot( with => 'image', sin(rvals(51,51)) ); Here the only given piddle has dimensions (21,21). This is a 3D plot, so we are exactly 2 piddles short. Thus, PDL::Graphics::Gnuplot generates an implicit domain, corresponding to a 21-by-21 grid. C will group arguments greedily, so you need to add separators when overplotting two separate curves on an implicit domain. For example, C is intepreting as plotting C<$b> vs. C<$a>. If you actually want to plot an overlay of both C<$a> and C<$b> against array index, you want C instead. The C<{}> is an empty hash ref. It serves to separate the argument list into two curves. =head2 Images PDL::Graphics::Gnuplot supports four styles of image plot, via the "with" curve option. The "image" style accepts a single image plane and displays it using the palette (pseudocolor map) that is specified in the plot options for that plot. As a special case, if you supply as data a (WxHx3) PDL it is treated as an RGB image and displayed with the "rgbimage" style (below). For quick image display there is also an "image" method: use PDL::Graphics::Gnuplot qw/image/; $im = sin(rvals(51,51)/2); image( $im ); # display the image gplot( with=>'image', $im ); # display the image (longer form) The colors are autoscaled in both cases. To set a particular color range, use the 'cbrange' plot option: image( {cbrange=>[0,1]}, $im ); You can plot rgb images directly with the image style, just by including a 3rd dimension of size 3 on your image: $rgbim = pdl( xvals($im), yvals($im),rvals($im)/sqrt(2)); image( $rgbim ); # display an RGB image gplot( with=>'image', $rgbim ); # display an RGB image (longer form) Some additional plot styles exist to specify RGB and RGB transparent forms directly. These are the "with" styles "rgbimage" and "rgbalpha". For each of them you must specify the channels as separate PDLs: gplot( with=>'rgbimage', $rgbim->dog ); # RGB the long way gplot( with=>'rgbalpha', $rgbim->dog, ($im>0) ); # RGBA the long way According to the gnuplot specification you can also give X and Y values for each pixel, as in plot( with=>'image', xvals($im), yvals($im), $im ) but this appears not to work properly for anything more complicated than a trivial matrix of X and Y values. PDL::Graphics::Gnuplot provides a "fits" plot style that interprets World Coordinate System (WCS) information supplied in the header of the scientific image format FITS. The image is displayed in rectified scientific coordinates, rather than in pixel coordinates. You can plot FITS images in scientific coordinates with gplot( with=>'fits', $fitsdata ); The fits plot style accepts a modifier "resample" (which may be abbreviated), that allows you to downsample and/or rectify the image before it is passed to the Gnuplot back-end. This is useful either to cut down on the burden of transferring large blocks of image data or to rectify images with nonlinear WCS transformations in their headers. (gnuplot itself has a bug that prevents direct rendering of images in nonlinear coordinates). gplot( with=>'fits res 200', $fitsdata ); gplot( with=>'fits res 100,400',$fitsdata ); to specify that the output are to be resampled onto a square 200x200 grid or a 100x400 grid, respectively. The resample sizes must be positive integers. =head2 Interactivity Several of the graphical backends of Gnuplot are interactive, allowing the user to pan, zoom, rotate and measure the data in the plot window. See the Gnuplot documentation for details about how to do this. Some terminals (such as wxt) are persistently interactive. Other terminals (such as x11) maintain their interactivity only while the underlying gnuplot process is active -- i.e. until another plot is created with the same PDL::Graphics::Gnuplot object, or until the perl process exits (whichever comes first). Still others (the hardcopy devices) aren't interactive at all. Interactive devices also support mouse input: you can write PDL scripts that accept and manipulate graphical input from the plotted window. =head1 PLOT OPTIONS Gnuplot controls plot style with "plot options" that configure and specify virtually all aspects of the plot to be produced. Plot options are tracked as stored state in the PDL::Graphics::Gnuplot object. You can set them by passing them in to the constructor, to an C method, or to the C method itself. Nearly all the underlying Gnuplot plot options are supported, as well as some additional options that are parsed by the module itself for convenience. =head2 POs for Output: terminal, termoption, output, device, hardcopy You can send plots to a variety of different devices; Gnuplot calls devices "terminals". With the object-oriented interface, you must set the output device with the constructor C (or the exported constructor C) or the C method. If you use the simple non-object interface, you can set the output with the C, C, and C plot options. C sets the output device type for Gnuplot, and C sets the actual output file or window number. C and C are for convenience. C offers a PGPLOT-style device specifier in "filename/device" format (the "filename" gets sent to the "output" option, the "device" gets sent to the "terminal" option). C takes an output file name and attempts to parse out a file suffix and infer a device type. For finer grained control of the plotting environment, you can send "terminal options" to Gnuplot. If you set the terminal directly with plot options, you can include terminal options by interpolating them into a string, as in C, or you can use the constructor C (also exported as C), which parses terminal options as an argument list. The routine C prints a list of all availale terminals or, if you pass in a terminal name, options accepted by that terminal. =head2 POs for Titles: title, (x|x2|y|y2|z|cb)label, key Gnuplot supports "enhanced" text escapes on most terminals; see "text", below. The C option lets you set a title for the whole plot. Individual plot components are labeled with the C<label> options. C<xlabel>, C<x2label>, C<ylabel>, and C<y2label> specify axis titles for 2-D plots. The C<zlabel> works for 3-D plots. The C<cblabel> option sets the label for the color box, in plot types that have one (e.g. image display). (Don't be confused by C<clabel>, which doesnt' set a label at all, rather specifies the printf format used by contour labels in contour plots.) C<key> controls where the plot key (that relates line/symbol style to label) is placed on the plot. It takes a scalar boolean indicating whether to turn the key on (with default values) or off, or a list ref containing any of the following arguments (all are optional) in the order listed: =over 3 =item * ( on | off ) - turn the key on or off =item * ( inside | outside | lmargin | rmargin | tmargin | bmargin | at <pos> ) These keywords set the location of the key -- "inside/outside" is relative to the plot border; the margin keywords indicate location in the margins of the plot; and at <pos> (where <pos> is a 2-list containing (x,y): C<key=>[at=>[0.5,0.5]]>) is an exact location to place the key. =item * ( left | right | center ) ( top | bottom | center ) - horiz./vert. alignment =item * ( vertical | horizontal ) - stacking direction within the key =item * ( Left | Right ) - justification of plot labels within the key (note case) =item * [no]reverse - switch order of label and sample line =item * [no]invert - invert the stack order of the labels =item * samplen <length> - set the length of the sample lines =item * spacing <dist> - set the spacing between adjacent labels in the list =item * [no]autotitle - control whether labels are generated when not specified =item * title "<text>" - set a title for the key =item * [no]enhanced - override terminal settings for enhanced text interpretation =item * font "<face>,<size>" - set font for the labels =item * textcolor <colorspec> =item * [no]box linestyle <ls> linetype <lt> linewidth <lw> - control box around the key =back =head2 POs for axes, grids, & borders: grid, (x|x2|y|y2|z)zeroaxis, border Normally, tick marks and their labels are applied to the border of a plot, and no extra axes (e.g. the y=0 line) nor coordinate grids are shown. You can specify which (if any) zero axes should be drawn, and which (if any) borders should be drawn. The C<border> option controls whether the plot itself has a border drawn around it. You can feed it a scalar boolean value to indicate whether borders should be drawn around the plot -- or you can feed in a list ref containing options. The options are all optional but must be supplied in the order given. =over 3 =item * <integer> - packed bit flags for which border lines to draw The default if you set a true value for C<border> is to draw all border lines. You can feed in a single integer value containing a bit mask, to draw only some border lines. From LSB to MSB, the coded lines are bottom, left, top, right for 2D plots -- e.g. 5 will draw bottom and top borders but neither left nor right. In three dimensions, 12 bits are used to describe the twelve edges of a cube surrounding the plot. In groups of three, the first four control the bottom (xy) plane edges in the same order as in the 2-D plots; the middle four control the vertical edges that rise from the clockwise end of the bottom plane edges; and the last four control the top plane edges. =item * ( back | front ) - draw borders first or last (controls hidden line appearance) =item * linewidth <lw>, linestyle <ls>, linetype <lt> These are Gnuplot's usual three options for line control. =back The C<grid> option indicates whether gridlines should be drawn on each axis. It takes a list ref of arguments, each of which is either "no" or "m" or "", followed by an axis name and "tics" -- e.g. C<< grid=>["noxtics","ymtics"] >> draws no X gridlines and draws (horizontal) Y gridlines on Y axis major and minor tics, while C<< grid=>["xtics","ytics"] >> or C<< grid=>["xtics ytics"] >> will draw both vertical (X) and horizontal (Y) grid lines on major tics. To draw a coordinate grid with default values, set C<< grid=>1 >>. For more control, feed in a list ref with zero or more of the following parameters, in order: The C<zeroaxis> keyword indicates whether to actually draw each axis line at the corresponding zero along its indicated dimension. For example, to draw the X axis (y=0), use C<< xzeroaxis=>1 >>. If you just want the axis turned on with default values, you can feed in a Boolean scalar; if you want to set its parameters, you can feed in a list ref containing linewidth, linestyle, and linetype (with appropriate parameters for each), e.g. C<< xzeroaxis=>[linewidth=>2] >>. =head2 POs for axis range and mode: (x|x2|y|y2|z|r|cb|t|u|v)range, autoscale, logscale Gnuplot accepts explicit ranges as plot options for all axes. Each option accepts a list ref with (min, max). If either min or max is missing, then the opposite limit is autoscaled. The x and y ranges refer to the usual ordinate and abscissa of the plot; x2 and y2 refer to alternate ordinate and abscissa; z if for 3-D plots; r is for polar plots; t, u, and v are for parametric plots. cb is for the color box on plots that include it (see "color", below). C<rrange> is used for radial coordinates (which are accessible using the C<mapping> plot option, below). C<cbrange> (for 'color box range') sets the range of values over which palette colors (either gray or pseudocolor) are matched. It is valid in any color-mapped plot (including images or palette-mapped lines or points), even if no color box is being displayed for this plot. C<trange>, C<urange>, and C<vrange> set ranges for the parametric coordinates if you are plotting a parametric curve. By default all axes are autoscaled unless you specify a range on that axis, and partially (min or max) autoscaled if you specify a partial range on that axis. C<autoscale> allows more explicit control of how autoscaling is performed, on an axis-by-axis basis. It accepts a list ref, each element of which specifies how a single axis should be autoscaled. Each element contains an axis name followed by one of "fix,"min","max","fixmin", or "fixmax", e.g. autoscale=>['xmax','yfix'] To not autoscale an axis at all, specify a range for it. The fix style of autoscaling forces the autoscaler to use the actual min/max of the data as the limit for the corresponding axis -- by default the axis gets extended to the next minor tic (as set by the autoticker or by a tic specification, see below). C<logscale> allows you to turn on logarithmic scaling for any or all axes, and to set the base of the logarithm. It takes a list ref, the first element of which is a string mushing together the names of all the axes to scale logarithmically, and the second of which is the base of the logarithm: C<< logscale=>[xy=>10] >>. You can also leave off the base if you want base-10 logs: C<< logscale=>['xy'] >>. =head2 POs for Axis tick marks - [m](x|x2|y|y2|z|cb)tics Axis tick marks are called "tics" within Gnuplot, and they are extensively controllable via the "<axis>tics" options. In particular, major and minor ticks are supported, as are arbitrarily variable length ticks, non-equally spaced ticks, and arbitrarily labelled ticks. Support exists for time formatted ticks (see C<POs for time data values> below). By default, gnuplot will automatically place major and minor ticks. You can turn off ticks on an axis by setting the appropriate <foo>tics option to a defined, false scalar value (e.g. C<< xtics=>0 >>), and turn them on with default values by setting the option to a true scalar value (e.g. C<< xtics=>1 >>). If you prepend an 'm' to any tics option, it affects minor tics instead of major tics (major tics typically show units; minor tics typically show fractions of a unit). Each tics option can accept a list or hash ref containing options to pass to Gnuplot. If you want PDL::Graphics::Gnuplot to parse your options for you (inserting commas and quotes, for example, where the gnuplot backend wants them), then you must pass in a hash ref. If you are comfortable with the Gnuplot backend's syntax, then you can pass in a scalar string or a list ref that is interpolated into a single space-separated string to be passed to the gnuplot backend. The keywords accepted by the hash are: =over 2 =item * axis - set this to 1 to place tics on the axis (the default) =item * border - set this to 1 to place tics on the border (not the default) =item * mirror - set this to 1 to place mirrored tics on the opposite axis/border? =item * in - set this to 1 to draw tics inward from the axis/border =item * out - set this to 1 to draw tics outward from the axis/border =item * scale - multiplier on tic length. If you pass in undef, tics get the default length. If you pass in a scalar, major tics get scaled. You can pass in a list ref to scale minor tics too. =item * rotate - turn label text by the given angle (in degrees) =item * offset - offset label text from default position, (units: characters; requires list ref containing x,y) =item * locations - sets tic locations. list ref: [incr], [start, incr], or [start, incr, stop]. =item * labels - sets tic locations explicitly, with text labels for each. The labels should be a nested list ref that is a collection of duals or triplets. Each dual or triplet should contain [label, position, minorflag], as in C<labels=>[["one",1,0],["three-halves",1.5,1],["two",2,0]]>. =item * format - printf-style formatting for tic labels =item * font - set font name and size (system font name) =item * rangelimited - set to 1 to limit tics to the range of values actually present in the plot =item * textcolor - set the color of the ticks (see "color specs" below) =back For example, to turn on inward mirrored X axis ticks with diagonal Arial 9 text, use: xtics => {axis=>1,mirror=>1,in=>1,rotate=>45,font=>'Arial,9'} or xtics => ['axis','mirror','in','rotate by 45','font "Arial,9"'] =head2 POs for time data values - (x|x2|y|y2|z|cb)(m|d)tics, (x|x2|y|y2|z|cb)data Gnuplot contains support for plotting absolute time and date on any of its axes, with conventional formatting. There are three main methods, which are mutually exclusive (i.e. you should not attempt to use two at once on the same axis). =over 3 =item B<Plotting timestamps using UNIX times> You can set any axis to plot timestamps rather than numeric values by setting the corresponding "data" plot option to "time", e.g. C<xdata=>"time">. If you do so, then numeric values in the corresponding data are interpreted as UNIX time (seconds since the UNIX epoch, neglecting leap seconds). No provision is made for UTC<->TAI conversion. You can format how the times are plotted with the "format" option in the various "tics" options(above). Output specifiers should be in UNIX strftime(3) format -- for example, C<xdata=>"time",xtics=>{format=>"%Y-%b-%dT%H:%M:%S"}> will plot UNIX times as ISO timestamps in the ordinate. Due to limitations within gnuplot, the time resolution in this mode is limited to 1 second - if you want fractional seconds, you must use numerically formatted times (and/or create your own tick labels using the C<labels> suboption to the C<?tics> option. B<Timestamp format specifiers> Time format specifiers use the following printf-like codes: =over 3 =item Year A.D.: C<%Y> is 4-digit year; C<%y> is 2-digit year (1969-2068) =item Month of year: C<%m>: 01-12; C<%b> or C<%h>: abrev. name; C<%B>: full name =item Week of year: C<%W> (week starting Monday); C<%U> (week starting Sunday) =item Day of year: C<%j> (1-366; boundary is midnight) =item Day of month: C<%d> (01-31) =item Day of week: C<%w> (0-6, Sunday=0), %a (abrev. name), %A (full name) =item Hour of day: C<%k> (0-23); C<%H> (00-23); C<%l> (1-12); C<%I> (01-12) =item Am/pm: C<%p> ("am" or "pm") =item Minute of hour: C<%M> (00-60) =item Second of minute: C<%S> (0-60) =item Total seconds since start of 2000 A.D.: C<%s> =item Timestamps: C<%T> (same as C<%H:%M:%S>); C<%R> (same as C<%H:%M>); C<%r> (same as C<%I:%M:%S %p>) =item Datestamps: C<%D> (same as C<%m/%d/%y>); C<%F> (same as C<%Y-%m-%d>) =item ISO timestamps: use C<%DT%T>. =back =item B<day-of-week plotting> If you just want to plot named days of the week, you can instead use the C<dtics> options set plotting to day of week, where 0 is Sunday and 6 is Saturday; values are interpreted modulo 7. For example, C<< xmtics=>1,xrange=>[-4,9] >> will plot two weeks from Wednesday to Wednesday. As far as output format goes, this is exactly equivalent to using the C<%w> option with full formatting - but you can treat the numeric range in terms of weeks rather than seconds. =item B<month-of-year plotting> The C<mtics> options set plotting to months of the year, where 1 is January and 12 is December, so C<< xdtics=>1, xrange=>[0,4] >> will include Christmas through Easter. This is exactly equivalent to using the C<%d> option with full formatting - but you can treat the numeric range in terms of months rather than seconds. =back =head2 POs for location/size - (t|b|l|r)margin, offsets, origin, size, justify, clip Adjusting the size, location, and margins of the plot on the plotting surface is something of a null operation for most single plots -- but you can tweak the placement and size of the plot with these options. That is particularly useful for multiplots, where you might like to make an inset plot or to lay out a set of plots in a custom way. The margin options accept scalar values -- either a positive number of character heights or widths of margin around the plot compared to the edge of the device window, or a string that starts with "at screen " and interpolates a number containing the fraction of the plot window offset. The "at screen" technique allows exact plot placement and is an alternative to the C<origin> and C<size> options below. The C<offsets> option allows you to put an empty boundary around the data, inside the plot borders, in an autosacaled graph. The offsets only affect the x1 and y1 axes, and only in 2D plot commands. C<offsets> accepts a list ref with four values for the offsets, which are given in scientific (plotted) axis units. The C<origin> option lets you specify the origin (lower left corner) of an individual plot on the plotting window. The coordinates are screen coordinates -- i.e. fraction of the total plotting window. The size option lets you adjust the size and aspect ratio of the plot, as an absolute fraction of the plot window size. You feed in fractional ratios, as in C<< size=>[$xfrac, $yfrac] >>. You can also feed in some keywords to adjust the aspect ratio of the plot. The size option overrides any autoscaling that is done by the auto-layout in multiplot mode, so use with caution -- particularly if you are multiplotting. You can use "size" to adjust the aspect ratio of a plot, but this is deprecated in favor of the pseudo-option C<justify>. C<justify> sets the scientific aspect ratio of a 2-D plot. Unity yields a plot with a square scientific aspect ratio. Larger numbers yield taller plots. C<clip> controls the border between the plotted data and the border of the plot. There are three clip types supported: points, one, and two. You can set them independently by passing in booleans with their names: C<< clip=>[points=>1,two=>0] >>. =head2 POs for Color: colorbox, palette, clut Color plots are supported via RGB and pseudocolor. Plots that use pseudcolor or grayscale can have a "color box" that shows the photometric meaning of the color. The colorbox generally appears when necessary but can be controlled manually with the C<colorbox> option. C<colorbox> accepts a scalar boolean value indicating whether or no to draw a color box, or a list ref containing additional options. The options are all, well, optional but must appear in the order given: =over 3 =item ( vertical | horizontal ) - indicates direction of the gradient in the box =item ( default | user ) - indicates user origin and size If you specify C<default> the colorbox will be placed on the right-hand side of the plot; if you specify C<user>, you give the location and size in subsequent arguments: colorbox => [ 'user', 'origin'=>"$x,$y", 'size' => "$x,$y" ] =item ( front | back ) - draws the colorbox before or after the plot =item ( noborder | bdefault | border <line style> ) - specify border The line style is a numeric type as described in the gnuplot manual. =back The C<palette> option offers many arguments that are not fully documented in this version but are explained in the gnuplot manual. It offers complete control over the pseudocolor mapping function. For simple color maps, C<clut> gives access to a set of named color maps. (from "Color Look Up Table"). A few existing color maps are: "default", "gray", "sepia", "ocean", "rainbow", "heat1", "heat2", and "wheel". To see a complete list, specify an invalid table, e.g. C<< clut=>'xxx' >>. (This should be improved in a future version). =head2 POs for 3D: trid, view, pm3d, hidden3d, dgrid3d, surface, xyplane, mapping If C<trid> or its synonym C<3d> is true, Gnuplot renders a 3-D plot. This changes the default tuple size from 2 to 3. This option is used to switch between the Gnuplot "plot" and "splot" command, but it is tracked with persistent state just as any other option. The C<view> option controls the viewpoint of the 3-D plot. It takes a list of numbers: C<< view=>[$rot_x, $rot_z, $scale, $scale_z] >>. After each number, you can omit the subsequent ones. Alternatively, C<< view=>['map'] >> represents the drawing as a map (e.g. for contour plots) and C<< view=>[equal=>'xy'] >> forces equal length scales on the X and Y axes regardless of perspective, while C<< view=>[equal=>'xyz'] >> sets equal length scales on all three axes. The C<pm3d> option accepts several parameters to control the pm3d plot style, which is a palette-mapped 3d surface. They are not documented here in this version of the module but are explained in the gnuplot manual. C<hidden3d> accepts a list of parameters to control how hidden surfaces are plotted (or not) in 3D. It accepts a boolean argument indicating whether to hide "hidden" surfaces and lines; or a list ref containing parameters that control how hidden surfaces and lines are handled. For details see the gnuplot manual. C<xyplane> sets the location of that plane (which is drawn) relative to the rest of the plot in 3-space. It takes a single string: "at" or "relative", and a number. C<< xyplane=>[at=>$z] >> places the XY plane at the stated Z value (in scientific units) on the plot. C<< xyplane=>[relative=>$frac] >> places the XY plane $frac times the length of the scaled Z axis *below* the Z axis (i.e. 0 places it at the bottom of the plotted Z axis; and -1 places it at the top of the plotted Z axis). C<mapping> takes a single string: "cartesian", "spherical", or "cylindrical". It determines the interpretation of data coordinates in 3-space. (Compare to the C<polar> option in 2-D). =head2 POs for Contour plots - contour, cntrparam Contour plots are only implemented in 3D. To make a normal 2D contour plot, use 3-D mode, but set the view to "map" - which projects the 3-D plot onto its 2-D XY plane. (This is convoluted, for sure -- future versions of this module may have a cleaner way to do it). C<contour> enables contour drawing on surfaces in 3D. It takes a single string, which should be "base", "surface", or "both". C<cntrparam> manages how contours are generated and smoothed. It accepts a list ref with a collection of Gnuplot parameters that are issued one per line; refer to the Gnuplot manual for how to operate it. =head2 POs for Polar plots - polar, angles, mapping You can make 2-D polar plots by setting C<polar> to a true value. The ordinate is then plotted as angle, and the abscissa is radius on the plot. The ordinate can be in either radians or degrees, depending on the C<angles> parameter C<angles> takes either "degrees" or "radians" (default is radians). C<mapping> is used to set 3-D polar plots, either cylindrical or spherical (see the section on 3-D plotting, above). =head2 POs for Markup - label, arrow, object You specify plot markup in advance of the plot command, with plot options (or add it later with the C<replot> method). The options give you access to a collection of (separately) numbered descriptions that are accumulated into the plot object. To add a markup object to the next plot, supply the appropriate options as a list ref or as a single string. To specify all markup objects at once, supply the appropriate options for all of them as a nested list-of-lists. To modify an object, you can specify it by number, either by appending the number to the plot option name (e.g. C<arrow3>) or by supplying it as the first element of the option list for that object. To remove all objects of a given type, supply undef (e.g. C<< arrow=>undef >>). For example, to place two labels, use the plot option: label => [["Upper left",at=>"10,10"],["lower right",at=>"20,5"]]; To add a label to an existing plot object, if you don't care about what index number it gets, do this: $w->options( label=>["my new label",at=>[10,20]] ); If you do care what index number it gets (or want to replace an existing label), do this: $w->options( label=>[$n, "my replacement label", at=>"10,20"] ); where C<$w> is a Gnuplot object and C<$n> contains the label number you care about. =head3 label - add a text label to the plot. The C<label> option allows adding small bits of text at arbitrary locations on the plot. Each label specifier list ref accepts the following suboptions, in order. All of them are optional -- if no options other than the index tag are given, then any existing label with that index is deleted. For examples, please refer to the Gnuplot 4.4 manual, p. 117. =over 3 =item <tag> - optional index number (integer) =item <label text> - text to place on the plot. You may supply double-quotes inside the string, but it is not necessary in most cases (only if the string contains just an integer and you are not specifying a <tag>. =item at <position> - where to place the text (sci. coordinates) The <position> should be a string containing a gnuplot position specifier. At its simplest, the position is just two numbers separated by a comma, as in C<< label2=>["foo",at=>"5,3" >>, to specify (X,Y) location on the plot in scientific coordinates. Each number can be preceded by a coordinate system specifier; see the Gnuplot 4.4 manual (page 20) for details. =item ( left | center | right ) - text placement rel. to position =item rotate [ by <degrees> ] - text rotation If "rotate" appears in the list alone, then the label is rotated 90 degrees CCW (bottom-to-top instead of left-to-right). The following "by" clause is optional. =item font "<name>,<size>" - font specifier The <name>,<size> must be double quoted in the string (this may be fixed in a future version), as in C<< label3=>["foo",at=>"3,4",font=>'"Helvetica,18"'] >>. =item noenhanced - turn off gnuplot enhanced text processing (if enabled) =item ( front | back ) - rendering order (last or first) =item textcolor <colorspec> =item (point <pointstyle> | nopoint ) - control whether the exact position is marked =item offset <offset> - offfset from position (in points). =back =head3 arrow - place an arrow or callout line on the plot Works similarly to the C<label> option, but with an arrow instead of text. The arguments, all of which are optional but which must be given in the order listed, are: =over 3 =item from <position> - start of arrow line The <position> should be a string containing a gnuplot position specifier. At its simplest, the position is just two numbers separated by a comma, as in C<< label2=>["foo",at=>"5,3" >>, to specify (X,Y) location on the plot in scientific coordinates. Each number can be preceded by a coordinate system specifier; see the Gnuplot 4.4 manual (page 20) for details. =item ( to | rto ) <position> - end of arrow line These work like C<from>. For absolute placement, use "to". For placement relative to the C<from> position, use "rto". =item (arrowstyle | as) <arrow_style> This specifies that the arrow be drawn in a particualr predeclared numerical style. If you give this parameter, you shoudl omit all the following ones. =item ( nohead | head | backhead | heads ) - specify arrowhead placement =item size <length>,<angle>,<backangle> - specify arrowhead geometry =item ( filled | empty | nofilled ) - specify arrowhead fill =item ( front | back ) - specify drawing order ( last | first ) =item linestyle <line_style> - specify a numeric linestyle =item linetype <line_type> - specify numeric line type =item linewidth <line_width> - multiplier on the width of the line =back =head3 object - place a shape on the graph C<object>s are rectangles, ellipses, circles, or polygons that can be placed arbitrarily on the plotting plane. The arguments, all of which are optional but which must be given in the order listed, are: =over 3 =item <object-type> <object-properties> - type name of the shape and its type-specific properties The <object-type> is one of four words: "rectangle", "ellipse", "circle", or "polygon". You can specify a rectangle with C<< from=>$pos1, [r]to=>$pos2 >>, with C<< center=>$pos1, size=>"$w,$h" >>, or with C<< at=>$pos1,size=>"$w,$h" >>. You can specify an ellipse with C<< at=>$pos, size=>"$w,$h" >> or C<< center=>$pos size=>"$w,$h" >>, followed by C<< angle=>$a >>. You can specify a circle with C<< at=>$pos, size=>"$w,$h" >> or C<< center=>$pos size=>"$w,$h" >>, followed by C<> size=>$radius >> and (optionally) C<< arc=>"[$begin:$end]" >>. You can specify a polygon with C<< from=>$pos1,to=>$pos2,to=>$pos3,...to=>$posn >> or with C<< from=>$pos1,rto=>$diff1,rto=>$diff2,...rto=>$diffn >>. =item ( front | back | behind ) - draw the object last | first | really-first. =item fc <colorspec> - specify fill color =item fs <fillstyle> - specify fill style =item lw <width> - multiplier on line width =back =head2 POs for appearance tweaks - bars, boxwidth, isosamples, pointsize, style TBD - more to come. =head2 POs for locale/internationalization - locale, decimalsign C<locale> is used to control date stamp creation. See the gnuplot manual. C<decimalsign> accepts a character to use in lieu of a "." for the decimalsign. (e.g. in European countries use C<< decimalsign=>',' >>). C<globalwith> is used as a default plot style if no valid 'with' curve option is present for a given curve. If set to a nonzero value, C<timestamp> causes a time stamp to be placed on the side of the plot, e.g. for keeping track of drafts. C<zero> sets the approximation threshold for zero values within gnuplot. Its default is 1e-8. C<fontpath> sets a font search path for gnuplot. It accepts a collection of file names as a list ref. =head2 Advanced Gnuplot tweaks: topcmds, extracmds, bottomcmds, binary, dump, log Plotting is carried out by sending a collection of commands to an underlying gnuplot process. In general, the plot options cause "set" commands to be sent, configuring gnuplot to make the plot; these are followed by a "plot" or "splot" command and by any cleanup that is necessary to keep gnuplot in a known state. Provisions exist for sending commands directly to Gnuplot as part of a plot. You can send commands at the top of the configuration but just under the initial "set terminal" and "set output" commands (with the C<topcmds> option), at the bottom of the configuration and just before the "plot" command (with the C<extracmds> option), or after the plot command (with the C<bottomcmds> option). Each of these plot options takes a list ref, each element of which should be one command line for gnuplot. Most plotting is done with binary data transfer to Gnuplot; however, due to some bugs in Gnuplot binary handling, certain types of plot data are sent in ASCII. In particular, time series and label data require transmission in ASCII (as of Gnuplot 4.4). You can force ASCII transmission of all but image data by explicitly setting the C<< binary=>0 >> option. C<dump> is used for debugging. If true, it writes out the gnuplot commands to STDOUT I<instead> of writing to a gnuplot process. Useful to see what commands would be sent to gnuplot. This is a dry run. Note that this dump will contain binary data, if the 'binary' option is given (see below) C<tee> is used for debugging. If true, writes out the gnuplot commands to STDERR I<in addition> to writing to a gnuplot process. This is I<not> a dry run: data is sent to gnuplot I<and> to the log. Useful for debugging I/O issues. Note that this log will contain binary data, if the 'binary' option is given (see below) =head1 CURVE OPTIONS The curve options describe details of specific curves within a plot. They are in a hash, whose keys are as follows: =over 2 =item legend Specifies the legend label for this curve =item with Specifies the style for this curve. The value is passed to gnuplot using its 'with' keyword, so valid values are whatever gnuplot supports. See below for a list of supported curve styles. =item axes Lets you specify which X and/or Y axes to plot on. Gnuplot supports a main and alternate X and Y axis. You specify them as a packed string with the x and y axes indicated: for example, C<x1y1> to plot on the main axes, or C<x1y2> to plot using an alternate Y axis (normally gridded on the right side of the plot). =item tuplesize Specifies how many values represent each data point. Normally you don't need to set this as individual C<with> styles implicitly set a tuple size (which is automatically extended if you specify additional modifiers such as C<palette> that require more data); this option lets you override PDL::Graphics::Gnuplot's parsing in case of irregularity. =item cdims Specifies the dimensions of of each column in this curve's tuple. It must be 0, 1, or 2. Normally you don't need to set this for most plots; the main use is to specify that a 2-D data PDL is to be interpreted as a collection of 1-D columns rather than a single 2-D grid (which would be the default in a 3-D plot). For example: $w=gpwin(); $r2 = rvals(21,21)**2; $w->plot3d( wi=>'lines', xvals($r2), yvals($r2), $r2 ); will produce a grid of values on a paraboloid. To instead plot a collection of lines using the threaded syntax, try $w->plot3d( wi=>'lines', cd=>1, xvals($r2), yvals($r2), $r2 ); which will plot 21 separate curves in a threaded manner. =back =head1 RECIPES Most of these come directly from Gnuplot commands. See the Gnuplot docs for details. =head2 2D plotting If we're plotting a piddle $y of y-values to be plotted sequentially (implicit domain), all you need is plot($y); If we also have a corresponding $x domain, we can plot $y vs. $x with plot($x, $y); =head3 Simple style control To change line thickness: plot(with => 'lines linewidth 4', $x, $y); To change point size and point type: plot(with => 'points pointtype 4 pointsize 8', $x, $y); =head3 Errorbars To plot errorbars that show $y +- 1, plotted with an implicit domain plot(with => 'yerrorbars', $y, $y->ones); Same with an explicit $x domain: plot(with => 'yerrorbars', $x, $y, $y->ones); Symmetric errorbars on both x and y. $x +- 1, $y +- 2: plot(with => 'xyerrorbars', $x, $y, $x->ones, 2*$y->ones); To plot asymmetric errorbars that show the range $y-1 to $y+2 (note that here you must specify the actual errorbar-end positions, NOT just their deviations from the center; this is how Gnuplot does it) plot(with => 'yerrorbars', $y, $y - $y->ones, $y + 2*$y->ones); =head3 More multi-value styles In Gnuplot 4.4.0, these generally only work in ASCII mode. This is a bug in Gnuplot that will hopefully get resolved. Plotting with variable-size circles (size given in plot units, requires Gnuplot >= 4.4) plot(with => 'circles', $x, $y, $radii); Plotting with an variably-sized arbitrary point type (size given in multiples of the "default" point size) plot(with => 'points pointtype 7 pointsize variable', $x, $y, $sizes); Color-coded points plot(with => 'points palette', $x, $y, $colors); Variable-size AND color-coded circles. A Gnuplot (4.4.0) bug make it necessary to specify the color range here plot(cbmin => $mincolor, cbmax => $maxcolor, with => 'circles palette', $x, $y, $radii, $colors); =head2 3D plotting General style control works identically for 3D plots as in 2D plots. To plot a set of 3d points, with a square aspect ratio (squareness requires Gnuplot >= 4.4): plot3d(square => 1, $x, $y, $z); If $xy is a 2D piddle, we can plot it as a height map on an implicit domain plot3d($xy); Complicated 3D plot with fancy styling: my $pi = 3.14159; my $theta = zeros(200)->xlinvals(0, 6*$pi); my $z = zeros(200)->xlinvals(0, 5); plot3d(title => 'double helix', { with => 'linespoints pointsize variable pointtype 7 palette', legend => 'spiral 1' }, { legend => 'spiral 2' }, # 2 sets of x, 2 sets of y, single z PDL::cat( cos($theta), -cos($theta)), PDL::cat( sin($theta), -sin($theta)), $z, # pointsize, color 0.5 + abs(cos($theta)), sin(2*$theta) ); 3D plots can be plotted as a heat map. As of Gnuplot 4.4.0, this doesn't work in binary. plot3d( extracmds => 'set view 0,0', with => 'image', $xy ); =head2 Hardcopies To send any plot to a file, instead of to the screen, one can simply do plot(hardcopy => 'output.pdf', $x, $y); The C<hardcopy> option is a shorthand for the C<terminal> and C<output> options. The output device is chosen from the file name suffix. If you want more (any) control over the output options (e.g. page size, font, etc.) then you can specify the output device using the C<ouput> method or the constructor itself -- or the corresponding plot options in the non-object mode. For example, to generate a PDF of a particular size with a particular font size for the text, one can do plot(terminal => 'pdfcairo solid color font ",10" size 11in,8.5in', output => 'output.pdf', $x, $y); This command is equivalent to the C<hardcopy> shorthand used previously, but the fonts and sizes can be changed. Using the object oriented mode, you could instead say: $w = gpwin(); $w->plot( $x, $y ); $w->output( pdfcairo, solid=>1, color=>1,font=>',10',size=>[11,8.5,'in'] ); $w->replot(); $w->close(); Many hardcopy output terminals (such as C<pdf> and C<svg>) will not dump their plot to the file unless the file is explicitly closed with a change of output device or a call to C<reset>, C<restart>, or C<close>. This is because those devices support multipage output and also require and end-of-file marker to close the file. =head1 Methods =cut =head2 gpwin - exported constructor (synonymous with new) =for usage use PDL::Graphics::Gnuplot; $w = gpwin( @options ); $w->plot( @plot_args ); =for ref This is just a synonym for the "new" method. It is exported into the current package by default for convenience. =cut =head2 new - object constructor =for usage $w = new PDL::Graphics::Gnuplot; $w->plot( @plot_args ); # Specify plot options alone $w = new PDL::Graphics::Gnuplot( {%plot_options} ); # Specify device and device options (and optional default plot options) $w = new PDL::Graphics::Gnuplot( device, %device_options, {%plot_options} ); $w->plot( @plot_args ); =for ref Creates a PDL::Graphics::Gnuplot persistent plot object, and connects it to gnuplot. For convenience, you can specify the output device and its options right here in the constructor. Because different gnuplot devices accept different options, you must specify a device is you want to specify any device configuration options (such as window size, output file, text mode, or default font). If you don't specify a device type, then the Gnuplot default device for your system gets used. You can set that with an environment variable (check the Gnuplot documentation). Gnuplot uses the term "terminal" for output devices; you can see a list of terminals supported by PDL::Graphics::Gnuplot by invoking C<PDL::Graphics::Gnuplot::terminfo()> (for example in the perldl shell). For convenience, you can provide default plot options here. If the last argument to C<new()> is a trailing hash ref, it is treated as plot options. After you have created an object, you can change its terminal/output device with the C<output> method, which is useful for (e.g.) throwing up an interactive plot and then sending it to a hardcopy device. See C<output> for a description of terminal options and how to format them. =for example my $plot = PDL::Graphics::Gnuplot->new({title => 'Object-oriented plot'}); $plot->plot( legend => 'curve', sequence(5) ); =cut =head2 output - set the output device and options for a Gnuplot object =for usage $window->output( device, %device_options, {plot_options} ); =for ref You can control the output device of a PDL::Graphics::Gnuplot object on the fly. That is useful, for example, to replot several versions of the same plot to different output devices (interactive and hardcopy). Gnuplot interprets plot options differently per device. PDL::Graphics::Gnuplot attempts to interpret some of the more common ones in a common way. In particular: =over 3 =item size Most drivers support a "size" option to specify the size of the output plotting surface. The format is [$width, $height, $unit]; the trailing unit string is optional but recommended, since the default unit of length changes from device to device. The unit string can be in, cm, mm, px, or pt. Pixels are taken to be 1 point in size (72 pixels per inch) and dimensions are computed accordingly. =item output This option actually sets the object's "output" option for most terminal devices; that changes the file to which the plot will be written. Some devices, notably X11 and Aqua, don't make proper use of "output"; for those devices, specifying "output" in the object constructor actually sets the appropriate terminal option (e.g. "window" in the X11 terminal). This is described as a "plot option" in the Gnuplot manual, but it is treated as a setup variable and parsed with the setup/terminal options here in the constructor. =item enhanced This is a flag that indicates whether to enable Gnuplot's enhanced text processing (e.g. for superscripts and subscripts). Set it to a false value for plain text, to a true value for enhanced text. See the Gnuplot manual for a description of the syntax. =back For a brief description of the plot options that any one device supports, you can run PDL::Graphics::Gnuplot::terminfo(). As with plot options, terminal options can be abbreviated to the shortest unique string -- so (e.g.) "size" can generally be abbreviated "si" and "monochrome" can be abbreviated "mono" or "mo". =cut =head2 close - close gnuplot process (actually just a synonym for restart) =for ref Some of the gnuplot terminals (e.g. pdf) don't write out a file promptly. The close method closes the associated gnuplot subprocess, forcing the file to be written out. It is implemented as a simple restart operation. The object preserves the plot state, so C<replot> and similar methods still work with the new subprocess. =cut =head2 restart - restart the gnuplot backend for a plot object =for usage $w->restart(); PDL::Graphics::Gnuplot::restart(); =for ref Occasionally the gnuplot backend can get into an unknown state. C<reset> kills the gnuplot backend and starts a new one, preserving state in the object. (i.e. C<replot> and similar functions work even with the new subprocess). Called with no arguments, C<restart> applies to the global plot object. =cut =head2 reset - clear all state from the gnuplot backend =for usage $w->reset() =for ref Clears all plot option state from the underlying object. All plot options except "terminal", "termoptions", "output", and "multiplot" are cleared. This is similar to the "reset" command supported by gnuplot itself. =cut =head2 options - set/get persistent plot options for a plot object =for usage $w = new PDL::Graphics::Gnuplot(); $w->options( globalwith=>'lines' ); print %{$w->options()}; =for ref The options method parses plot options into a gnuplot object on a cumulative basis, and returns the resultant options hash. If called as a sub rather than a method, options() changes the global gnuplot object. =cut =head2 gplot - plot method exported by default (synonym for "PDL::Graphics::Gnuplot::plot") =head2 plot - method to generate a plot =for ref This is the main plotting routine in PDL::Graphics::Gnuplot. Each C<plot()> call creates a new plot from whole cloth, either creating or overwriting the output for that device. If you want to add features to an existing plot, use C<replot>. =for usage $w=gpwin(); $w->plot({temp_plot_options}, # optional curve_options, data, data, ... , # curve_options are optional for the first plot curve_options, data, data, ... , {temp_plot_options}); Most of the arguments are optional. All of the extensive array of gnuplot plot styles are supported, including images and 3-D plots. =for example use PDL::Graphics::Gnuplot qw(plot); my $x = sequence(101) - 50; plot($x**2); See main POD for PDL::Graphics::Gnuplot for details. You can pass plot options into plot as either a leading or trailing hash ref, or both. If you pass both, the trailing hash ref is parsed last and overrides the leading hash. For debugging and curiosity purposes, the last plot command issued to gnuplot is maintained in a package global: C<$PDL::Graphics::Gnuplot::last_plotcmd>. =cut =head2 replot - Replot the last plot (possibly with new arguments) =for ref C<replot> is similar to gnuplot's "replot" command - it allows you to regenerate the last plot made with this object. You can change the plot by adding new elements to it, modifying options, or even (with the "device" method) changing the output device. C<replot> takes the same arguments as C<plot>. If you give no arguments at all (or only a plot object) then the plot is simply redrawn. If you give plot arguments, they are added to the new plot exactly as if you'd included them in the original plot element list, and maintained for subsequent replots. (Compare to 'markup'). =cut =head2 markup - Add ephemeral markup to the last plot =for ref C<markup> works exactly the same as C<replot>, except that any new arguments are not added to the replot list - so you can add temporary markup to a plot and regenerate the plot later without it. =cut =head2 plot3d, splot =for ref Generate 3D plots. Synonyms for C<plot(trid =E<gt> 1, ...)> =cut =head2 lines =for ref Generates plots with lines, by default. Shorthand for C<plot(globalwith =E<gt> 'lines', ...)> =cut =head2 points =for ref Generates plots with points, by default. Shorthand for C<plot(globalwith =E<gt> 'points', ...)> =cut =head2 image =for ref Displays an image (either greyscale or RGB) =cut =head2 fits =for ref Displays a FITS image =cut =head2 multiplot =for example $a = (xvals(101)/100) * 6 * 3.14159/180; $b = sin($a); $w->multiplot(layout=>[2,2],"columnsfirst"); $w->plot({title=>"points"},with=>"points",$a,$b); $w->plot({title=>"lines"}, with=>"lines", $a,$b); $w->plot({title=>"image"}, with=>"image", $a->(*1) * $b ); $w->end_multi(); =for ref The C<multiplot> method enables multiplot mode in gnuplot, which permits multiple plots on a single pane. Plots can be lain out in a grid, or can be lain out freeform using the C<size> and C<origin> plot options for each of the individual plots. It is not possible to change the terminal or output device when in multiplot mode; if you try to do that, by setting one of those plot options, PDL::Graphics::Gnuplot will throw an error. The options hash will accept: =over 3 =item layout - define a regular grid of plots to multiplot C<layout> should be followed by a hash ref that contains at least number of columns ("NX") followed by number of rows ("NY). After that, you may include any of the "rowsfirst", "columnsfirst", "downwards", or "upwards" keywords to specify traversal order through the grid. Only the first letter is examined, so (e.g.) "down" or even "dog" works the same as "downwards". =item title - define a title for the entire page C<title> should be followed by a single scalar containing the title string. =item scale - make gridded plots larger or smaller than their allocated space C<scale> takes either a scalar or a list ref containing one or two values. If only one value is supplied, it is a general scale factor of each plot in the grid. If two values are supplied, the first is an X stretch factor for each plot in the grid, and the second is a Y stretch factor for each plot in the grid. =item offset - offset each plot from its grid origin C<offset> takes a list ref containing two values, that control placement of each plot within the grid. =back =cut =head2 read_mouse - get a mouse click or keystroke from the active interactive plot window. =for usage ($x,$y,$char,$modstring) = $w->read_mouse($message); $hash = $w->read_mouse($message); =for ref For interactive devices (e.g. x11, xwt, aqua), get_click lets you accept a keystroke or mouse button input from the gnuplot window. In list context, it returns four arguments containing the reported X, Y, keystroke character, and modifiers packed in a string. In scalar context, it returns a hash ref containing those things. read_mouse blocks execution for input, but responds gracefully to interrupts. =cut =head2 read_polygon =for usage $points = $w->read_polygon(%opt) =for ref Read in a polygon by accepting mouse clicks. The polygon is returned as a 2xN PDL of ($x,$y) values in scientific units. Acceptable options are: =over 3 =item message - what to print before collecting points There are some printf-style escapes for the prompt: * C<%c> - expands to "an open" or "a closed" * C<%n> - number of points currently in the polygon * C<%N> - number of points expected for the polygon * C<%k> - list of all keys accepted * C<%%> - % =item prompt - what to print to prompt the user for the next point =item n_points - number of points to accept (or 0 for indefinite) With 0 value, points are accepted until the user presses 'q' or 'ESC' on the keyboard with focus on the graph. With other value, points are accepted until that happens *or* until the number of points is at least n_points. =item actions - hash of callback code refs indexed by character for action You can optionally call a callback routine when any particular character is pressed. The actions table is a hash ref whose keys are characters and whose values are either code refs (to be called on the associated keypress) or array refs containing a short description string followed by a code ref. Non-printable characters (e.g. ESC, BS, DEL) are accessed via a hash followed by a three digit decimal ASCII code -- e.g. "#127" for DEL. Button events are indexed with the strings "BUTTON1", "BUTTON2", and "BUTTON3", and modifications must be entered as well for shift, control, and The code ref receives the arguments ($obj, $c, $poly,$x,$y,$mods), where: =over 2 =item C<$obj> is the plot object =item C<$c> is the character (or "BUTTONC<n>" string), =item C<$poly> is a scalar ref; $$poly is the current polygon before the action, =item C<$x> and C<$y> are the current scientific coordinates, and =item C<$mods> is the modifier string. You can't override the 'q', or '#027' (ESC) callbacks. You *can* override the BUTTON1 and DEL callbacks, potentially preventing the user from entering points at all! You should do that with caution. =item close - (default true): generate a closed polygon =item markup - (default 'linespoints'): style to use to render the polygon on the fly If this is set to a true value, it should be a valid 'with' specifier (curve option). The routine will call markup after each click. =back =back =cut =head2 terminfo - print out information about gnuplot syntax =for usage use PDL::Graphics::Gnuplot qw/terminfo/ terminfo() terminfo 'aqua' $w = gpwin(); $w->terminfo(); =for ref terminfo is a reference tool to describe the Gnuplot terminal types and the options they accept. It's mainly useful in interactive sessions. =cut =head1 COMPATIBILITY Everything should work on all platforms that support Gnuplot and Perl. Currently, only MacOS, Fedora Linux, and Debian Linux have been tested to work. Please report successes or failures on other platforms to the authors. A transcript of a failed run with {tee => 1} would be most helpful. =head1 REPOSITORY L<https://github.com/drzowie/PDL-Graphics-Gnuplot> =head1 AUTHOR Dima Kogan, C<< <dima@secretsauce.net> >> and Craig DeForest, C<< <craig@deforest.org> >> =head1 STILL TO DO =over 3 =item some plot and curve options need better parsing: =over 3 =item - options to "with" selection: accept a list ref instead of a string with args =item - labels need attention (plot option labels) They need to be handled as hashes, not just as array refs. Also, they don't seem to be working with timestamps. Further, deeply nested options (e.g. "at" for labels) need attention. =back =item - new plot styles The "boxplot" plot style (new to 4.6?) requires a different using syntax and will require some hacking to support. =item - ephemeral state isn't. Ephemeral plot options leave state behind in the underlying gnuplot process. Following each plot with a reset() doesn't do what you really want. Start each plot with a reset()? Hold default values in the parse table? =back =head1 RELEASE NOTES =head3 v1.3 - Specifies Perl 5.010 or higher to run - Tests do not fail on v4.2 Gnuplot (still used on BSD) - Better error messages in common error cases - Several Microsoft Windows compatibility fixes (thanks, Sisyphus!) =head3 v1.2 - Handles communication better on Microsoft Windows (MSW has brain damage). - Improvements in documentation - Handles PDF output in scripts - Handles 2-D and 1-D columns in 3-D plots (grid vs. threaded lines) =head3 v1.1 - Handles communication with command echo on the pipe (for Microsoft Windows) - Better gnuplot error reporting - Fixed date range handling =head1 LICENSE AND COPYRIGHT Copyright 2011,2012 Dima Kogan and Craig DeForest This program is free software; you can redistribute it and/or modify it under the terms of either: the GNU General Public License as published by the Free Software Foundation; or the Perl Artistic License included with the Perl language. See http://dev.perl.org/licenses/ for more information. =cut