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1 Introduction
The central role of the resolvent cubic in the solution of the quartic was first
appreciated by Leonard Euler (1707–1783). Euler’s quartic solution first appeared
as a brief section (§ 5) in a paper on roots of equations [1, 2], and was later
expanded into a chapter entitled Of a new method of resolving equations of the
fourth degree (§§ 773–783) in his Elements of algebra [3, 4].

Euler’s quartic solution was an important advance, in which he showed that
each of the roots of a reduced quartic can be represented as the sum of three
square roots, say ±√

𝑟1 ± √
𝑟2 ± √

𝑟3, where the 𝑟𝑖 (𝑖 = 1, 2, 3) are the roots of
a resolvent cubic. A quartic equation in 𝑥 is said to be reduced if the coefficient
of 𝑥3 is zero. This can always be achieved by a simple change of variable.

Motivated by the recent tercentenary of Euler’s birth, this article describes
the geometric basis underlying both the 𝑟𝑖 and the sign of the product √

𝑟1𝑟2𝑟3,
these being two key aspects of Euler’s solution. Finally, we reveal the beautiful
dynamic between Euler’s resolvent cubic and the quartic invariants 𝐺, 𝐻, 𝐼, 𝐽
[5, 6, 7], and propose a new class of algebraic object.

2 Geometric basis for the 𝑟𝑖

A significant property of the reduced quartic equation is that the four roots
can be completely defined using only three parameters. For example, let 𝑧𝑗

(𝑗 = 1, 2, 3, 4) be the roots (see Figure 1) of a reduced quartic equation,

𝑍(𝑥) ≡ 𝑎𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0. (1)

As the sum of the roots is zero (the coefficient of the cubic term is zero), it
follows that we can define the points midway between 𝑧1, 𝑧2 and 𝑧3, 𝑧4 as ±𝑔.
Let 𝑧2 − 𝑧1 = 2𝛼 and 𝑧4 − 𝑧3 = 2𝛽. The four roots can then be expressed as
follows: {︂

𝑧1, 𝑧2 = −𝑔 ± 𝛼,
𝑧3, 𝑧4 = +𝑔 ± 𝛽.

1This minor revision of the original article corrects typographic errors and incorporates
some explanatory footnotes. The original published version will soon be available in the
JSTOR archive.
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Figure 1:

Since specifying one pair of quartic roots necessarily defines the remaining
pair, there are just three different ways of allocating the pairs of roots, each
associated with its own 𝑔, 𝛼, 𝛽, the inter-relationship between which lies at the
heart of a remarkable symmetry which underpins the solution of the quartic.
For example if, with no loss of generality, we let⎧⎨⎩ 𝑧3 + 𝑧4 = 2𝑔1,

𝑧3 + 𝑧1 = 2𝑔2,
𝑧3 + 𝑧2 = 2𝑔3,

(2)

then
2(𝑔2 + 𝑔3) = 2𝑧3 + 𝑧1 + 𝑧2,

= (𝑧1 + 𝑧2 + 𝑧3 + 𝑧4) + 𝑧3 − 𝑧4,
= 𝑧3 − 𝑧4 = −2𝛽1,

and similarly
2(𝑔2 − 𝑔3) = 𝑧1 − 𝑧2 = −2𝛼1,

and hence {︂
𝛼1 = −(𝑔2 − 𝑔3),
𝛽1 = −(𝑔2 + 𝑔3).

Thus the 𝛼𝑘, 𝛽𝑘 (𝑘 = 1, 2, 3) are actually simple functions of the 𝑔𝑖 (𝑖 ≠ 𝑘) such
that each of the four roots 𝑧𝑗 can be expressed as a function of the 𝑔𝑖 alone, as
follows: ⎧⎪⎪⎨⎪⎪⎩

𝑧1 = −𝑔1 − 𝛼1 = −𝑔1 + (𝑔2 − 𝑔3) = −𝑔1 + 𝑔2 − 𝑔3,
𝑧2 = −𝑔1 + 𝛼1 = −𝑔1 − (𝑔2 − 𝑔3) = −𝑔1 − 𝑔2 + 𝑔3,
𝑧3 = +𝑔1 − 𝛽1 = +𝑔1 + (𝑔2 + 𝑔3) = +𝑔1 + 𝑔2 + 𝑔3,
𝑧4 = +𝑔1 + 𝛽1 = +𝑔1 − (𝑔2 + 𝑔3) = +𝑔1 − 𝑔2 − 𝑔3.

(3)

Thus Euler’s 𝑟𝑖 are the same as the 𝑔2
𝑖 .

3 Euler’s resolvent cubic
Using these observations we can reconstruct a given reduced quartic equation,
say (1), which then leads to a resolvent cubic and hence to the solution. Let the
roots of 𝑍(𝑥) = 0 be −𝑔 ± 𝛼 and 𝑔 ± 𝛽 (Figure 1).

𝑍(𝑥) ≡ {𝑥 − (−𝑔 − 𝛼)}{𝑥 − (−𝑔 + 𝛼)}{𝑥 − (𝑔 − 𝛽)}{𝑥 − (𝑔 + 𝛽)} = 0.

Expanding and letting 𝐴 = 𝑔2 − 𝛼2 and 𝐵 = 𝑔2 − 𝛽2, gives

𝑥4 + (−4𝑔2 + 𝐴 + 𝐵)𝑥2 + (2𝑔)(𝐵 − 𝐴)𝑥 + 𝐴𝐵 = 0.
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We can eliminate 𝛼, 𝛽 by first equating coefficients with the monic form of (1)
giving ⎧⎨⎩ 𝑝/𝑎 = −4𝑔2 + 𝐴 + 𝐵,

𝑞/𝑎 = 2𝑔(𝐵 − 𝐴),
𝑟/𝑎 = 𝐴𝐵,

and then eliminating 𝐴 and 𝐵 (using the identity 4𝐴𝐵 = 2𝐴 × 2𝐵), which gen-
erates a resolvent sextic in 𝑔, the roots of which are the six values ±𝑔1, ±𝑔2, ±𝑔3.
The substitution 𝑔2 ↦→ 𝑥 then generates Euler’s original resolvent cubic [1, 2, 3,
4]

𝑅(𝑥) ≡ 𝑥3 + 𝑝

2𝑎
𝑥2 +

(︂
𝑝2 − 4𝑎𝑟

16𝑎2

)︂
𝑥 − 𝑞2

64𝑎2 = 0, (4)

whose roots 𝑟𝑖 are therefore 𝑔2
1 , 𝑔2

2 , 𝑔2
3 . The four roots of the reduced quartic

𝑍(𝑥) = 0 are among the eight possible values of ±√
𝑟1 ± √

𝑟2 ± √
𝑟3; but in order

to determine which four they are we need a way of allocating the signs correctly.
Euler, using a monic quartic of the form 𝑥4 − 𝑙𝑥2 − 𝑚𝑥 − 𝑛 = 0, says he

resolved the sign problem by noting that √
𝑟1𝑟2𝑟3 = 𝑚/8, as follows [3, § 773]:

. . . But it is to be observed, that the product . . . √
𝑟1𝑟2𝑟3, must be

equal to 𝑚/8, and that if 𝑚/8 be positive, the product of the terms√
𝑟1, √

𝑟2, √
𝑟3, must likewise be positive;

Unfortunately Euler did not elaborate further on this, but the key to under-
standing the sign problem is not difficult to find, since from (2) we have

8𝑔1𝑔2𝑔3 = (𝑧3 + 𝑧4)(𝑧3 + 𝑧1)(𝑧3 + 𝑧2),
= 𝑧3

3 + 𝑧2
3(𝑧1 + 𝑧2 + 𝑧4) + 𝑧3(𝑧2𝑧1 + 𝑧2𝑧4 + 𝑧1𝑧4) + 𝑧4𝑧1𝑧2.

Now 𝑧1 + 𝑧2 + 𝑧4 = −𝑧3 (since Σ𝑧𝑗 = 0), hence

8𝑔1𝑔2𝑔3 = 𝑧1𝑧2𝑧3 + 𝑧2𝑧3𝑧4 + 𝑧3𝑧4𝑧1 + 𝑧4𝑧1𝑧2, (5)

and so 8𝑔1𝑔2𝑔3 is actually one of the four elementary symmetric functions of the
roots 𝑧𝑗 . Its value is therefore equal to −1× the coefficient of the 𝑥-term of the
monic form of the reduced quartic equation 𝑍(𝑥) = 0, and so we have

8√
𝑟1𝑟2𝑟3 = 8𝑔1𝑔2𝑔3 = −𝑞/𝑎, (5𝑎)

which is equivalent to Euler’s √
𝑟1𝑟2𝑟3 = 𝑚/8.

4 Geometric basis for the sign of √
𝑟1𝑟2𝑟3

A useful way of ‘seeing’ the quartic algebra at work is to express the coefficients
in terms of the key ‘visible’ parameters 𝜀, 𝑦𝑁𝑧, 𝑦𝑁𝑧′ shown in Figure 2, as follows:
Let 𝐹 (𝑋) be a quartic polynomial with real coefficients (𝑎 ̸= 0)

𝐹 (𝑋) ≡ 𝑎𝑋4 + 𝑏𝑋3 + 𝑐𝑋2 + 𝑑𝑋 + 𝑒, (6)

with invariants [6, p. 76]⎧⎪⎪⎨⎪⎪⎩
𝐺 = 𝑏3 + 8𝑎2𝑑 − 4𝑎𝑏𝑐,
𝐻 = 8𝑎𝑐 − 3𝑏2,
𝐼 = 12𝑎𝑒 − 3𝑏𝑑 + 𝑐2,
𝐽 = 72𝑎𝑐𝑒 + 9𝑏𝑐𝑑 − 27𝑎𝑑2 − 27𝑒𝑏2 − 2𝑐3.

(7)
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Figure 2:
The reduced quartic 𝑍(𝑥), turning points (𝑇1, 𝑇2, 𝑇3), points of inflection
(𝐼1, 𝐼2), and first differential 𝑍′(𝑥). The 𝑥-coordinates of the points of
inflection are ±𝜀. The curves intersect the 𝑦-axis at points 𝑁𝑧 and 𝑁𝑧′ .

Let its reduced form 𝑍(𝑥) be generated by the translation 𝑥 ↦→ 𝑋 − 𝑋𝑁𝑓 , where
𝑋𝑁𝑓 = −𝑏/(4𝑎). Using Taylor’s theorem we have

𝑍(𝑥) ≡ 𝐹 (𝑥 + 𝑋𝑁𝑓 ) = 𝑎𝑥4 +
𝐹 ′′(𝑋𝑁𝑓 )

2 𝑥2 + 𝐹 ′(𝑋𝑁𝑓 )𝑥 + 𝐹 (𝑋𝑁𝑓 ). (8)

If 𝑍(𝑥) and 𝑍 ′(𝑥) intersect the 𝑦-axis in points 𝑁𝑧 and 𝑁𝑧′ respectively, then
(8) can be expressed as

𝑍(𝑥) ≡ 𝑎𝑥4 − 6𝑎𝜀2𝑥2 + 𝑦
𝑁𝑧′𝑥 + 𝑦

𝑁𝑧
(9)

where (see (4) and Figures 2, 3)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀2 = (3𝑏2 − 8𝑎𝑐)
48𝑎2 ≡ −𝐻

48𝑎2 ≡ −𝑝

6𝑎
,

𝑦𝑁𝑧
= 𝐹 (𝑋𝑁𝑓 ) ≡ 𝐼

12𝑎
− 3𝐻2

482𝑎3 ≡ 𝑟,

𝑦
𝑁𝑧′ = 𝐹 ′(𝑋𝑁𝑓 ) ≡ 𝐺

8𝑎2 ≡ 𝑞,

−12𝑎𝜀2 = 𝐹 ′′(𝑋𝑁𝑓 ).

(10)

Expressing the reduced quartic 𝑍(𝑥) in this form (Equation 9) greatly facilitates
visualisation, since we can now ‘see’ how the configuration of the curves 𝑍(𝑥)
and 𝑍 ′(𝑥) is related to the coefficients. For example (assuming 𝑎 > 0), if the
𝑥2 term is positive then 𝜀 is complex (𝜀2 < 0), and so the quartic will have two
complex points of inflection and hence only one real turning point (cf. [10]).
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If 𝑥𝑇𝑖 are the 𝑥-coordinates of the turning points of 𝑍(𝑥), then by differenti-
ating (9) we have (see Equations 5𝑎 and 10)

4𝑥𝑇1𝑥𝑇2𝑥𝑇3 =
−𝑦

𝑁𝑧′

𝑎
= 8√

𝑟1𝑟2𝑟3, (11)

and hence the sign of √
𝑟1𝑟2𝑟3 is the same as that of −𝑦

𝑁𝑧′/𝑎 and 𝑥𝑇1𝑥𝑇2𝑥𝑇3. It
follows, therefore, that we can actually ‘see’ the correct sign of √

𝑟1𝑟2𝑟3 simply
by observing the signs of the abscissae of the turning points of the reduced
quartic, or by noting the location of 𝑁𝑧′ in relation to the abscissa.

For example (assuming 𝑎 > 0), if the roots 𝑧𝑗 are such that the middle
turning point, 𝑇2, is to the left of the 𝑦-axis, then not only will 𝑦

𝑁𝑧′ be negative
(Figure 2) but just two of the three 𝑥𝑇𝑖 will be negative resulting in a positive
product for 𝑥𝑇1𝑥𝑇2𝑥𝑇3, and hence √

𝑟1𝑟2𝑟3 will also be positive (see Equation 11).
Conversely, if the middle turning point is to the right of the 𝑦-axis, then 𝑦𝑁𝑧′

will be positive, and only one of the 𝑥𝑇𝑖 will be negative making the product
𝑥𝑇1𝑥𝑇2𝑥𝑇3 negative.

5 Roots
As regards the roots 𝑧𝑗 of the reduced quartic 𝑍(𝑥), we can initially choose any
sign combination for the √

𝑟𝑖, and then evaluate the sign of the product √
𝑟1𝑟2𝑟3.

If the sign of the product is the same as that of −𝑦
𝑁𝑧′/𝑎 (see Equation 11) then

we have a valid combination of signs, and can proceed to determine the four 𝑧𝑗

using (3). Otherwise, it is only necessary to change the sign of any one of the√
𝑟𝑖 (say, √

𝑟1 → −√
𝑟1), and proceed as before using (3).

When the reduced quartic is symmetric about the 𝑦-axis one of the 𝑥𝑇𝑖 will
be zero and hence the product √

𝑟1𝑟2𝑟3 is zero. However, the solution in this
case is trivial since 𝑍(𝑥) is then an even function as 𝑦

𝑁𝑧′ is also zero.

6 Application
Since all resolvent cubics of the quartic can be transformed to a standard form
[9], typically expressed as [6, p. 77]

𝑇 (𝑥) ≡ 𝑥3 − 3𝐼𝑥 + 𝐽, (12)

we can solve any quartic by solving instead a simple reduced form of the
resolvent, say 𝑇 (𝑥) = 0, and then recover the roots of Euler’s resolvent using
the transformation which carries the reduced form back to 𝑅(𝑥).

For example, the translation 𝑥 ↦→ 𝑥 + 𝑥𝑁𝑟
to reduce 𝑅(𝑥), for which

𝑥
𝑁𝑟

= −𝑝/(6𝑎) ≡ 𝜀2, generates the reduced form 𝑆(𝑥), as follows:

𝑆(𝑥) ≡ 𝑅(𝑥 + 𝜀2) ≡ 𝑥3 − 𝐼

48𝑎2 𝑥 + 𝐽

1728𝑎3 . (13)

The substitution 𝑥 ↦→ 𝑥/(12𝑎) then scales 1728𝑎3𝑆(𝑥) to 𝑇 (𝑥), and hence if the
roots of 𝑆(𝑥) = 0 and 𝑇 (𝑥) = 0 are 𝑠𝑖 and 𝑡𝑖 respectively, then

𝑟𝑖 = 𝑠𝑖 + 𝜀2 = 𝑡𝑖

12𝑎
+ 𝜀2. (14)

This convenient approach is illustrated in Example 1.
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Figure 3:
Euler’s resolvent cubic 𝑅(𝑥) with three real roots (ℎ2

𝑟 > 𝑦2
𝑁𝑟

, i.e. 4𝐼3 > 𝐽2)
which are all positive (𝜀2 > 0, 𝑥2

𝑁𝑟
> 𝛿2

𝑟). The conditions 𝜀2 > 0, 𝑥2
𝑁𝑟

< 𝛿2
𝑟

are associated with two negative roots (dashed curve). Note that 𝐺2,
𝐻, 𝐼, 𝐽 are constant multiples respectively of the resolvent’s geometric
parameters 𝑦𝑃 , 𝑥𝑁𝑟, 𝛿2

𝑟 , 𝑦𝑁𝑟 (𝜌1 = 642𝑎6, 𝜌2 = 48𝑎2, 𝜌3 = 1728𝑎3, 𝜌4 = 12𝑎).

The invariants 𝐼, 𝐽 are readily visualised since any reduced cubic can be
expressed in terms of its geometric parameters 𝛿 and 𝑦𝑁 as in [8]

𝐴𝑥3 − 3𝐴𝛿2𝑥 + 𝑦𝑁 = 0. (15)

For example, equating coefficients between 𝑆(𝑥), 𝑇 (𝑥) and the monic form of
(15), and noting that ℎ2 = 4𝐴2𝛿6 [8], shows that 𝐼, 𝐽 are simply constant
multiples of 𝛿2, 𝑦𝑁 as follows (Figure 3):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐴𝑟 = 𝐴𝑠 = 𝐴𝑡 = 1,

𝐼 = 𝛿2
𝑟(12𝑎)2 = 𝛿2

𝑠(12𝑎)2 = 𝛿2
𝑡 ,

𝐽 = 𝑦
𝑁𝑟

(12𝑎)3 = 𝑦
𝑁𝑠

(12𝑎)3 = 𝑦
𝑁𝑡

,

4𝐼3

𝐽2 =
(︂

ℎ𝑟

𝑦
𝑁𝑟

)︂2
=

(︂
ℎ𝑠

𝑦
𝑁𝑠

)︂2
=

(︂
ℎ𝑡

𝑦
𝑁𝑡

)︂2
.

(16)

Thus each of these invariants has a visible geometric interpretation in relation to
Euler’s resolvent cubic, either as a position parameter with respect to the axes
(𝐺, 𝐻, 𝐽), or as a shape parameter (𝐼). For example, we can now see that the
condition 𝐽 = 0 simply indicates that the 𝑁 -point of the resolvent cubic lies on
the 𝑥-axis and all that that implies (see Example 2). Similarly, the condition
𝐼 = 0 indicates that the resolvent adopts the ‘cubic parabola’ form. Furthermore
𝑦

𝑃
≤ 0, which reveals how and why the resolvent cubic cannot have just a single

negative root. The syzygy −27𝐺2 = 𝐻3 −48𝑎2𝐼𝐻 +64𝑎3𝐽 [6, p. 76] is generated
by substituting into 𝑆(𝑥) the coordinates of 𝑃 (𝐻/(48𝑎2), −𝐺2/(642𝑎6)).
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7 Euler’s cubic and the quartic root
configurations

A very significant but seemingly overlooked aspect of Euler’s resolvent cubic is
its beautiful and symmetric relationship with two important algebraic objects,
namely the discriminant 4𝐼3 − 𝐽2 and the seminvariant 𝐻2 − 16𝑎2𝐼, the signs
of which distinguish between the various quartic root configurations [5, § 68;
6, p. 80; 7, p. 28]. Visualising the resolvent in relation to the invariants (Figure 3)
reveals the mechanisms, as follows:

7.1 4𝐼3 − 𝐽2

Since ℎ2 = 4𝐴2𝛿6 [8], it follows from (16) that
−(4𝐼3 − 𝐽2)

126𝑎6 = 𝑦2
𝑁𝑟

− ℎ2
𝑟. (17)

Thus the quartic discriminant 4𝐼3 − 𝐽2 is simply a constant multiple of 𝑦2
𝑁𝑟

− ℎ2
𝑟,

the sign of which reflects whether the 𝑥-axis lies between (𝑦2
𝑁𝑟

< ℎ2
𝑟), on (𝑦2

𝑁𝑟
= ℎ2

𝑟),
or outside (𝑦2

𝑁𝑟
> ℎ2

𝑟) the turning points of the resolvent cubic (Figure 3).

7.2 𝐻2 − 16𝑎2𝐼

The sign of this algebraic object distinguishes (when 𝜀2 > 0) between the then two
possible quartic root configurations associated with the case 4𝐼3 −𝐽2 > 0, namely
(a) four real roots (𝐻2 −16𝑎2𝐼 > 0), and (b) four complex roots (𝐻2 −16𝑎2𝐼 < 0)
[5, § 68]. Substituting for 𝐻 (Equation 10) and 𝐼 (Equation 16) gives

𝐻2 − 16𝑎2𝐼 = (−48𝑎2𝜀2)2 − 16𝑎2(122𝑎2𝛿2
𝑟) = 3244𝑎4(𝜀4 − 𝛿2

𝑟).
But 𝜀2 = 𝑥𝑁𝑟

(Figure 3) and hence

𝐻2 − 16𝑎2𝐼

3244𝑎4 = 𝑥2
𝑁𝑟

− 𝛿2
𝑟 . (18)

Thus 𝐻2 − 16𝑎2𝐼 is just a constant multiple of 𝑥2
𝑁𝑟

− 𝛿2
𝑟 , the sign of which

(when 𝜀2 > 0) reflects whether the 𝑦-axis lies between (𝑥2
𝑁𝑟

< 𝛿2
𝑟), on (𝑥2

𝑁𝑟
= 𝛿2

𝑟),
or outside (𝑥2

𝑁𝑟
> 𝛿2

𝑟) the turning points of the resolvent cubic (cf. [6, p. 80,
proposition 7]).

For example (Figure 3), when a quartic with three real turning points (𝜀2 > 0)
has four real roots (4𝐼3 − 𝐽2 > 0) Euler’s cubic 𝑅(𝑥) has three positive real
roots—the 𝑦-axis lies outside the two turning points—and so 𝑥2

𝑁𝑟
> 𝛿2

𝑟 and hence
𝐻2 − 16𝑎2𝐼 > 0.

Conversely, when a quartic with three real turning points (𝜀2 > 0) has four
complex roots (4𝐼3 − 𝐽2 > 0), 𝑅(𝑥) then has exactly two negative real roots,
and so its turning point 𝑇 ′ (Figure 3) lies to the left of the 𝑦-axis (𝑥2

𝑁𝑟
< 𝛿2

𝑟),
hence 𝐻2 − 16𝑎2𝐼 < 0.

7.3 A new class of object?
Since 𝐻2 − 16𝑎2𝐼 functions with regard to the 𝑦-axis in exactly the same way
that 4𝐼3 − 𝐽2 functions with regard to the 𝑥-axis, I would like to suggest that
this pair of algebraic objects should be regarded as forming a distinct class of
object—thereby linking two previously unrelated algebraic quantities with a
single unifying concept.
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8 Example 1
Solve 𝐹 (𝑋) ≡ 𝑋4 − 11𝑋3 + 41𝑋2 − 61𝑋 + 30 = 0.

The key parameters are: 𝑎 = 1, 𝑋𝑁𝑓 = 11/4, 𝑌𝑁𝑓 ′ = 𝐹 ′(𝑋𝑁𝑓 ) = −15/8, 𝐼 = 28,
𝐽 = −160, 𝜀2 = 35/48. Using say, 𝑇 (𝑥), we solve 3

𝑇 (𝑥) ≡ 𝑥3 − 84𝑥 − 160 = 0,

the three 𝑡𝑖 being −8, −2, 10. The √
𝑟𝑖 are therefore given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
𝑟1 =

√︂
𝜀2 + 𝑡1

12𝑎
=

√︂
35
48 − 8

12 = 1
4 ,

√
𝑟2 =

√︂
𝜀2 + 𝑡2

12𝑎
=

√︂
35
48 − 2

12 = 3
4 ,

√
𝑟3 =

√︂
𝜀2 + 𝑡3

12𝑎
=

√︂
35
48 + 10

12 = 5
4 ·

Since the sign of −𝑌
𝑁𝑓 ′/𝑎 is positive then the product of the √

𝑟𝑖 must also be
positive—which it is. Finally, adding 𝑋𝑁𝑓 recovers the quartic roots
(𝑋𝑗 = 𝑋𝑁𝑓 ± √

𝑟1 ± √
𝑟2 ± √

𝑟3) using (3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋1 = 11
4 − 1

4 + 3
4 − 5

4 = 2,

𝑋2 = 11
4 − 1

4 − 3
4 + 5

4 = 3,

𝑋3 = 11
4 + 1

4 + 3
4 + 5

4 = 5,

𝑋4 = 11
4 + 1

4 − 3
4 − 5

4 = 1.

Even the solution of 𝑇 (𝑥) = 0 is greatly simplified since 𝛿, ℎ, 𝑦𝑁 are simple
functions of 𝐼 and 𝐽 (see Equation 16). For example, 𝑇 (𝑥) = 0 has three real
roots in this case since (𝑦𝑁𝑡/ℎ𝑡)2 ≡ 𝐽2/(4𝐼3) ≤ 1 [8].

9 Example 2
Explain the significance of 𝐽 = 0, 𝐼 > 0, for a quartic with four real roots.

The condition 𝐽 = 0 implies that Euler’s resolvent cubic has its 𝑁 -point on
the 𝑥-axis (Figure 3), and hence it has three roots in arithmetic progression. If
also 𝐼 > 0 (resolvent cubic has two real turning points), then the resolvent’s roots
are distinct and (with the root at infinity) form a harmonic range. Since the
roots of the parent quartic have the same cross-ratio they also form a harmonic
range.

3Note that we could instead solve 𝑆(𝑥) = 0, and then use 𝑟𝑖 = 𝜀2 + 𝑠𝑖 (see Equation 14).
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