
Combining AJAX and WSRF for Web-browser based Grid clients

Arjun Sen, John Brooke, Bruno Harbulot, Mark Mc Keown,
Stephen Pickles and Andrew Porter

sena AT cs.man.ac.uk and {john.brooke, bruno.harbulot, mark.mckeown,

stephen.pickles, andrew.porter} AT manchester.ac.uk

The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

11th September 2006

Abstract

This paper demonstrates the effectiveness of combining Asynchronous Javascript and XML
(AJAX) and the Representational State Transfer (REST) architectural style with the Web Ser-
vice Resource Framework (WSRF) standard. Accessing WS-Resources (according to WSRF)
in a manner compatible with the REST principles, using a Web browser, makes it possible to
provide a light-weight, portable client for interacting with scientific simulations in distributed
computing environments, with similar functionality to pre-existing platform-specific clients that
required a full installation procedure. This paper describes this client and emphasises which
standards and principles of distributed computing have played a key role in putting this appli-
cation together.

1 Introduction

This paper demonstrates the effectiveness of combining AJAX and REST with WSRF by looking at
their use within the RealityGrid1 project. RealityGrid facilitates the study of complex condensed-
matter systems through the use of Grid technology. The majority of the physical scientists involved
in the project use computer simulations of one form or another in order to investigate the behaviour
of different systems. The size of these simulations frequently necessitates the use of High Perfor-
mance Computing (HPC) resources which are increasingly being made available as a part of Grids
such as the National Grid Service,2 in the United Kingdom, and the TeraGrid,3 in the United
States.

The project described in this paper provides a light-weight client for interacting with WS-
Resources (see Section 2.1) using only a Web browser, via the use of AJAX techniques (see Sec-
tion 2.4) and REST principles (see Section 2.2). The use-case and reference implementations are
presented in Section 3. Section 4 presents in detail the AJAX-based RealityGrid client, before
Section 5 concludes.

1http://www.realitygrid.org
2http://www.grid-support.ac.uk/
3http://www.teragrid.org/

1

http://www.realitygrid.org
http://www.grid-support.ac.uk/
http://www.teragrid.org/


2 Underlying technologies and concepts

This section presents the technologies and concepts that have been utilised throughout this project.
First, the Web Service Resource Framework, which has been used to implement computational
steering in RealityGrid, is presented in Section 2.1. Then, the REST architectural style is presented
in Section 2.2. Finally, two sets of mechanisms used in Web browsers are described: XSLT and
AJAX, in Sections 2.3 and 2.4, respectively.

2.1 Web Service Resource Framework (WSRF)

The Web Service Resource Framework (WSRF) is a set of OASIS standards4 for modelling stateful
entities using Web services [FFG+04]. Within WSRF a WS-Resource is defined as “the composition
of a resource and a Web service through which the resource can be accessed” [GKM+06]. A resource
is defined in WSRF as a logical entity that has the following characteristics: it must be identifiable,
it must have a set of zero or more properties, which are expressible in XML infoset, and it may
have a lifecycle [GKM+06]. Unfortunately, as presented in Section 2.2, the word “resource” has a
different definition in REST.

The concept of a resource within WSRF is an abstract one and does not necessarily have to map
to a real physical resource. For example, a WS-Resource could be used to model a physical object
such as a printer or a more abstract thing like a computer simulation. A WS-Resource has a set of as-
sociated properties, which are expressed as an XML infoset called the ResourcePropertyDocument,
which is a projection of the state of the resource. These properties, called ResourceProperties,
can be accessed via Web service operations defined by the WSRF specifications [GT06]; in par-
ticular, a property can be queried and, when the WS-Resource permits it, inserted or updated.
WS-Addressing5 EndpointReferences (EPR), are used for addressing WS-Resources.

The implementation of WSRF that has been used througout this project is WSRF::Lite,6 which
is written in Perl. Specificities of WSRF::Lite are described when they are used in the remainder
of this article.

2.2 Representational State Transfer (REST)

Representational State Transfer [Fie00, Chap. 5], REST, is an architectural style for building large-
scale distributed systems. It consists of a set of principles and design constraints which were used
in designing the protocols that make up the World Wide Web.

REST is based on a client-server model which supports caching and where interactions between
client and server are stateless, all interaction state is stored on the client for server scalability.
The concept of a resource is central to REST, resources have identity and anything that can have
an identity can be a resource. More formally REST defines a resource as: “... a resource R
is a temporally varying membership function MR(t), which for time t maps to a set of entities,
or values, which are equivalent. The values in the set may be resource representations and/or
resource identifiers. A resource can map to the empty set, which allows references to be made to a
concept before any realization of that concept exists...” [Fie00]. Resources are manipulated through
their representations and are networked together through linking — hypermedia is the engine of

4 http://www.oasis-open.org/committees/wsrf
5http://www.w3.org/Submission/ws-addressing/
6http://www.sve.man.ac.uk/Research/AtoZ/ILCT

2

http://www.oasis-open.org/committees/wsrf
http://www.w3.org/Submission/ws-addressing/
http://www.sve.man.ac.uk/Research/AtoZ/ILCT


application state. Together, the last set of constraints combine to make up the principle of uniform
interface. REST also has an optional constraint for the support of mobile code.

HTTP [FGM+99] is an example of a protocol that has been designed according to REST. On
the World Wide Web a resource is identified by a URI [BLFM05] and clients can retrieve a repre-
sentation of the resource using an HTTP GET. HTTP can also supply caching information along
with the representation to allow intermediaries to cache the representation. The representation
may contain links to other resources creating a network of resources. Clients can change the repre-
sentation of a resource by replacing the existing representation with a new one, for example using
an HTTP PUT. All resources on the World Wide Web have a uniform interface allowing generic
pieces of software such as Web browsers to interact with them. Web servers are also able to send
code, for example Javascript (see Section 2.4), to the client to be executed in the browser.

2.3 Extensible Stylesheet Language Transformations (XSLT)

Extensible Stylesheet Language Transformations (XSLT ) [ABC+01, XSL99] transformations make
it possible to express the rules for the transformation of one XML document format into another.
Modern Web browsers include XSLT engines to perform these transformations upon receipt of
an XML document. Typically, this is specified in the original XML document by including an
XML processing instruction containing a reference to a stylesheet (of the form “<?xml-stylesheet
type="text/xsl" href="URI-to-stylesheet"?>”).

XSLT is used in the context of this project to transform XML documents as returned in the
format specified by the WSRF specifications into XHTML documents, which are Web-pages ready
to be rendered by Web browsers.

2.4 Asynchronous Javascript and XML (AJAX)

AJAX, Asynchronous Javascript and XML, is a technique for developing interactive Web sites.
AJAX is not a technology in itself, rather it is the combination of a number of technologies: DOM,
HTTP and Javascript. AJAX allows a Web browser to update parts of a Web page asynchronously
by communicating with a Web server using Javascript. Javascript7 is a client-side scripting language
for Web browsers. Most modern and graphical Web browsers are capable of executing Javascript
scripts that are embedded into webpages. Example applications of Javascript are: raising and
re-dimensioning pop-up windows, changing an image when pointing the mouse cursor over a zone
and validating the content of a form before submission.

In the traditional processing model of the Web, entering a URI into a Web browser causes it
to do an HTTP GET [FGM+99] request on the URI. The Web server hosting the URI sends a
response to the Web browser, usually an HTML document, which the browser renders and displays
for the user. The content of that HTML document is analysed and elements of the page that refer
to other URIs are retrieved in the same manner (for example, images). Often, Web browsers are
able to analyse the stream of the document response so that obtaining the embedded elements can
be performed in parallel. This process finishes once all the elements upon which rendering the page

7The term Javascript is used in this article to encompass all the variants of the language: the original Netscape
JavaScript (which has now become Mozilla JavaScript [moz06]), Microsoft JScript and the standardised EC-
MAScript [ECM99]. Most differences between these dialects are minor; they may cause implementation issues for
compatibility between browsers, thus developers are encouraged to test their Javascript code on multiple platforms.
The main browser used throughout this project has been Firefox.

3



depends have been obtained. Following a link on the page or submitting a form triggers a whole
new similar process.

The AJAX model differs from this processing model in that it makes it possible to update a page
or some of its elements asynchronously. An HTML document can contain Javascript, or a link to a
Javascript document defining various routines, which the browser may execute. The Javascript can
use the XMLHTTPRequest8 object to communicate with a Web server, for example to retrieve data
to update part of the Web page. Because only a part of the page is updated the whole page does
not have to be re-rendered, improving the user experience. The Javascript does not block when
sending or receiving data using the XMLHTTPRequest, allowing the browser to continue processing
the Web page. Therefore, AJAX is useful for creating Web pages that need to poll a server. The
XMLHTTPRequest object can also be used to send data to the Web server.

3 Use-case: RealityGrid Computational Steering System

This section presents the use-case which has motivated the project of this paper. Traditionally, a
scientist runs large-scale simulations non-interactively. A text file describing the initial conditions
and parameters for the simulation is prepared. Then, the simulation is submitted to a batch queue,
waiting until there are sufficient resources available for it to be executed. The simulation runs
entirely according to the prepared input file and outputs the results to disk for the user to examine
later.

This technique is suitable for some forms of investigation, but for others it can lead to a very
inefficient use of resources. A solution to this problem is to provide the scientist with a way
to interact with the simulation while it is running — a process that is called “computational
steering” [MvWvL99]. This may be as simple as allowing the user to monitor the values of some
parameters in the simulation and, if necessary, to edit the values of other parameters. However,
to aid the scientist in making informed decisions, it is often necessary to make it possible to see a
visualisation of some aspect of the simulated system as it evolves.

The RealityGrid Computational Steering System (RCSS) [PHPP05] provides a scientist with
tools for performing steering for both local and remote simulations, potentially in collaboration
with others. In a Grid context, it is the ability to steer remote simulations that is of importance.
The RCSS implements this functionality using WSRF as implemented in WSRF::Lite.

The architecture of the system is shown in Figure 1 and consists of four principal components:
the steered simulation built against the RealityGrid steering library, the Steering Web Service
(SWS), the Registry and the Steering Client. The Registry is implemented as a WS-ServiceGroup
(part of the WSRF standard) and is hosted in a WSRF::Lite Container. The SWS is implemented
as a WS-Resource and is also hosted in a WSRF::Lite Container (which may be the same as that of
the Registry). The simulation communicates with the SWS using the RealityGrid steering library
which in turn uses the gSOAP toolkit9 to perform SOAP messaging.

The SWS effectively provides a Web service interface to the steerable simulation with the major-
ity of the functionality provided through standard WSRF operations such as GetResourceProperty
and SetResourceProperty (Section 2.1). This Web service interface has made it possible to con-
struct a variety of steering clients. These include a desktop steering client which enables the user to
connect to multiple simulations simultaneously, as well as displaying (continuously updating) plots

8http://www.w3.org/TR/XMLHttpRequest/
9http://gsoap2.sourceforge.net

4

http://www.w3.org/TR/XMLHttpRequest/
http://gsoap2.sourceforge.net


WSRF::Lite
Container

Simulation

Steering 
Library

Steering 
Web Service

Steering
Client

WSRF::Lite
Container

publish

updates

updates

steered values

find

steered values

polling

polling

Registry

Figure 1: Architecture of the WSRF-based RealityGrid Computational Steering System.

of parameter values. A client based upon the Microsoft .NET framework has also been developed
for PDA and Smartphone platforms [HK06]. Finally, a Web-portal based steering client [BEG+05]
has also previously been developed using the GridSphere10 framework. This provides some of the
functionality of the desktop client but does not update automatically. Of all the steering clients
mentioned so far, this is perhaps the most convenient from a user perspective due to the removal of
the need to install any software — a Web browser is all that is required. However, it requires user
interaction for updating and, from an administration point of view, the installation of the required
GridSphere environment is quite an overhead to deployment.

The next section presents the AJAX-based client that circumvents these limitations.

4 The RealityGrid AJAX client

This section provides a detailed description of the RealityGrid AJAX steering client to show how
AJAX, REST and WSRF can be combined. The overall architecture of the system is illustrated in
Figure 2.

WSRF::Lite attempts to make WS-Resources more “RESTful” by maping certain WSRF op-
erations to HTTP methods: GetResourcePropertyDocument maps to HTTP GET, PutResour-
cePropertyDocument maps to HTTP PUT and Destroy maps to HTTP DELETE. For example,
an HTTP GET on an HTTP URI from the address element of a WS-Resource in WSRF::Lite
returns the ResourcePropertyDocument for the WS-Resource. Similarly an HTTP PUT on the
same URI will replace the ResourcePropertyDocument and an HTTP DELETE will destroy the
WS-Resource. The ResourcePropertyDocument returned in response to an HTTP GET will not
be encoded in SOAP, and if the developer includes an XSLT transformation for the WS-Resource
then WSRF::Lite will automatically include a link to the XSLT in the ResourcePropertyDocument.

10http://www.gridsphere.org

5

http://www.gridsphere.org


WSRF::Lite ContainerBrowser

JavaScript

updates 

XHTML

Polling (HTTP GET)

ResourcePropertyDocument

SWS

SVG
CSS

Steering command (HTTP POST)

updates 

events 

Figure 2: Architecture of the AJAX-based steering client and Steering Web Service.

A RealityGrid user wishing to attach to a running simulation enters the URI from the address
element of the EPR of the SWS (which may be obtained by querying the Registry — Figure 1)
in the location field of the Web browser. After hitting “return”, the Web browser performs an
HTTP GET on the URI. The WSRF::Lite Container hosting the SWS responds by returning the
ResourcePropertyDocument of the SWS. The ResourcePropertyDocument will include a link to the
XSLT transformation for the SWS ResourcePropertyDocument. However, this XML processing
instruction does not invalidate the ResourcePropertyDocument (see Section 2.3). On receipt of
the ResourcePropertyDocument, the browser follows the processing instruction and retrieves the
associated XSLT document from the WSRF::Lite Container.

Once the XSLT document is retrieved, the Web browser uses it to transform the XML of the
ResourcePropertyDocument into an XHTML document which is rendered (as shown in Figure 3,
for example). Clients that are not Web browsers or clients that do not understand XSLT, may
ignore the XSLT transfromation.

Embedding the XSL stylesheet in the retrieved ResourcePropertyDocument causes the trans-
formation to happen on the client-side. However, other mechanisms could achieve the same result
by applying the transformation on the server-side and HTTP is able to provide support for this
through content negotiation.

The XSLT transformation is sufficient to extract parameter values from the
ResourcePropertyDocument and display a representation of them in an attractive fashion,
however it is only a static representation. AJAX enables the Web browser to modify parts of
the XHTML document without reloading the whole page. As indicated in Figure 2, the XHTML
document contains a reference to a Javascript file and makes use of the functions defined therein
to provide functionality beyond that of displaying the values of key ResourceProperties. This
includes the ability to perform automatic polling of the WS-Resource for updating the Web page
and partial user-triggered updates of the WS-Resource’s properties.

The polling is performed by a Javascript function invoked at regular intervals (the size of the
interval can be controlled by the user). This function performs an HTTP GET request on the

6



Figure 3: Screenshot of the Control Panel of the Web Steering Client displayed in Firefox.

WS-Resource, but the processing of the result is performed within the function, so as to update
only the relevant parts of the XHTML document being displayed by the browser.

In addition to the automatic updates, Javascript enables the implementation of graphical wid-
gets such as panels and buttons that can be used to build a Graphical User Interface (GUI). This
GUI enables the user to interact with and change the values of properties in the WS-Resource.

The ResourceProperties of an SWS can be divided into two categories: (1) meta-data describing
the SWS and the simulation including information such as the TerminationTime of the SWS and
the name of the running application, and (2) data and parameters pertaining to the simulation
being steered. From these two categories, the user interface was designed to have four separate
“panels” and a navigation bar:

• Control Panel: this panel enables the user to control the Web Steering Client itself as well as
to send generic commands (such as detach or stop) to the steered simulation. It displays the
meta-data derived from the Resource Property Document of the SWS — see Figure 3;

• Steering Panel: this panel is similar to that of our original desktop steering client. It has
four sections: Monitored (read-only) Parameters, Steered (writable) Parameters, Data IO
and Checkpoint Types;

• Plot Panel: this panel is managed almost entirely by Javascript methods for drawing plots
based on the data displayed in the Steering Panel (particularly “Monitored Parameters”);

7



• Debug Panel: developing a relatively complex application in Javascript is difficult due to the
lack of debugging tools; this panel allows debugging output to be displayed and also incor-
porates a text area in which the most recent XML exchanged between the XMLHTTPRequest
object and the SWS may be viewed; and

• Navigation bar: this is a part of the interface with buttons to switch between each of the
panels mentioned above.

In addition to the ability to poll the SWS and thus monitor the parameter values of the simu-
lation, a steering client must also permit the user to change the values of (steerable) parameters.
In this steering client, a SOAP message containing a SetResourceProperty call is constructed and
sent using the Javascript XMLHTTPRequest via an HTTP POST. It is therefore possible to update
the ResourceProperties of the SWS which in turn results in the steered simulation picking up new
parameter values from it.

This approach was taken here because the SWS does not yet implement the SetResourceProp-
ertyDocument method. Once that method is implemented, it will be possible for the steering client
to simply do an HTTP PUT of the XML containing the updated ResourceProperty — there will
be no need to construct a SOAP message.

Previous experience with other steering clients has shown that users find the ability to view plots
of parameter histories very useful, particularly due to the feedback they can provide on steering
activity. This function is provided in this client through a combination of Javascript and SVG 11.
Javascript code logs the parameter values obtained through polling the SWS and constructs a
plot using SVG. Figure 4 shows an example obtained by monitoring the system temperature in a
Molecular Dynamics simulation of crystalline Silicon. At a SEQUENCE NUM of approximately
6400 the target temperature is steered from a value of 1500K up to a value of 2000K. The response
in the system temperature can be seen in the plot.

5 Conclusions

The paper has illustrated that combining AJAX and REST with WSRF can be a very effective
approach to creating Grid clients. It provides a bridge between the world of Grid computing that
extensively uses WSRF and the World Wide Web. For the RealityGrid project the advantages
of the AJAX client are clear: users require only a Web browser and no longer need to install
client software, clients and services can be updated without danger of version mis-match between
server and client, and the RealityGrid steering client can be integrated into Mashups 12. Another
important factor for RealityGrid was that it did not require any modifications to the existing code
base implemented for WSRF::Lite; all that was required was the creation of XSLT and Javascript
files to be included in the installation of WSRF::Lite.

Future work will include supporting the cache facilities of HTTP. This will allow the client
to use conditional GET so that it will only receive a new set of ResourceProperties if they have
changed since the last retrieval, thus reducing the network load and the client processing overhead.

11http://www.w3.org/Graphics/SVG/
12http://www-128.ibm.com/developerworks/library/x-mashups.html

8

http://www.w3.org/Graphics/SVG/
http://www-128.ibm.com/developerworks/library/x-mashups.html


Figure 4: Screenshot of the Plot Panel displayed in Firefox.

References

[ABC+01] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham, Paul
Grosso, Eduardo Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman, and Steve
Zilles. Extensible Stylesheet Language (XSL) Version 1.0. October 2001. http:
//www.w3.org/TR/xsl/.

[BEG+05] Mark G. Beckett, Matthew D. Egbert, Paul J. Graham, Kevin Stratford, and Jean-
Christophe Desplat. The realitygrid steering portal. In Proceedings of the UK e-
Science All Hands Conference, Nottingham, 2005. Available from www.allhands.
org.uk/2005/proceedings/papers/484.pdf.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. January 2005. http://www.ietf.org/rfc/rfc3986.txt.

[ECM99] ECMA. ECMA-262: ECMAScript Language Specification. ECMA (European As-
sociation for Standardizing Information and Communication Systems), third edition,
December 1999. http://www.ecma-international.org/publications/standards/
Ecma-262.htm.

[FFG+04] Ian Foster, Jeffrey Frey, Steve Graham, Steve Tuecke, Karl Czajkowski, Don Fer-
guson, Frank Leymann, Martin Nally, Igor Sedukhin, David Snelling, Tony Storey,
William Vambenepe, and Sanjiva Weerawarana. Modeling stateful resources with
web services, May 2004. http://www-128.ibm.com/developerworks/library/
ws-resource/ws-modelingresources.pdf.

9

http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
www.allhands.org.uk/2005/proceedings/papers/484.pdf
www.allhands.org.uk/2005/proceedings/papers/484.pdf
http://www.ietf.org/rfc/rfc3986.txt
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www-128.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www-128.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf


[FGM+99] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masin-
ter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
June 1999. http://www.ietf.org/rfc/rfc2616.txt.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000. http://www.ics.
uci.edu/∼fielding/pubs/dissertation/top.htm.

[GKM+06] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, Ian Robinson, and Igor Se-
dukhin, editors. Web Services Resource 1.2 (WS-Resource). Organization for the
Advancement of Structured Information Standards (OASIS), April 2006. http:
//docs.oasis-open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf.

[GT06] Steve Graham and Jem Treadwell, editors. Web Services Resource Properties 1.2
(WS-ResourceProperties). Organization for the Advancement of Structured In-
formation Standards (OASIS), April 2006. http://docs.oasis-open.org/wsrf/
wsrf-ws resource properties-1.2-spec-os.pdf.

[HK06] Ian R. Holmes and Roy S. Kalawsky. The realitygrid PDA and smartphone clients:
Developing effective handheld user interfaces for e-science. In Proceedings of the UK
e-Science All Hands Conference, Nottingham, 2006.

[moz06] Core JavaScript 1.5 Reference. Mozilla, August 2006. http://developer.mozilla.
org/en/docs/Core JavaScript 1.5 Reference.

[MvWvL99] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational steering
environments. Future Generation Computer Systems, 15:119–129, 1999.

[PHPP05] S. M. Pickles, R. Haines, R. L. Pinning, and A. R. Porter. A practical toolkit for
computational steering. Philosophical Transactions of the Royal Society, A363:1843–
1853, 2005.

[XSL99] XSL transformations (XSLT) version 1.0, November 1999. http://www.w3.org/TR/
xslt.

10

http://www.ietf.org/rfc/rfc2616.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

	Introduction
	Underlying technologies and concepts
	Web Service Resource Framework (WSRF)
	Representational State Transfer (REST)
	Extensible Stylesheet Language Transformations (XSLT)
	Asynchronous Javascript and XML (AJAX)

	Use-case: RealityGrid Computational Steering System
	The RealityGrid AJAX client
	Conclusions

