
FAST:Fast Analysis of Sequences Toolbox
Cookbook

Katherine C.H. Amrine & David H. Ardell

January 7, 2015

Contents

1 Recipes 2

2 Tutorials 2
2.1 Prelude . 2

2.1.1 The FAST definition of “FastA format” 2
2.1.2 Use man pages for full documentation 3

2.2 Example 1: Prototyping a pipeline to cut, reverse comple-
ment, and translate a gene by coordinate from a genome . . . 3
2.2.1 Calculating sequence length 3
2.2.2 Cut out a subsequence by coordinate with fascut . . 3
2.2.3 Computing reverse complement of a sequence with fasrc 4
2.2.4 Translating a sequence with fasxl 4
2.2.5 Computing codon usage with fascodon 4
2.2.6 Computing base composition with fascomp 4

2.3 Example 2: Reformatting, selecting and transforming align-
ments in FAST . 5
2.3.1 Reformatting alignment data with fasconvert 5
2.3.2 Selecting sequences with fasgrep 5
2.3.3 Reformatting gap characters with fastr 6
2.3.4 Degapping sites with alncut 6

2.4 Example 3: partitioning files based on ncbi taxonomy 6
2.4.1 Reformat the description to allow for fastax sorting . . 7

2.5 Example 4: Retrieve a subset of sequences based on a list of
identifiers . 8

1

2.5.1 Note on searching for identifiers 8

These examples are executable from the installation directory.

1 Recipes

2 Tutorials

2.1 Prelude

2.1.1 The FAST definition of “FastA format”

FastA format began with the FastA search utilities of William Pearson. For
FAST, “fasta format” means what is conventionally called “multi-fasta” for-
mat of sequence or alignment data, largely as implementated in BioPerl in
the module Bio::SeqIO::fasta.

In the FAST implementation of “fasta format”, multiple sequence records
may appear in a single file or input stream. Sequence data may contain
gap characters. The logical elements of a sequence record are its identifier,
description and sequence. The identifier (indicated with id in the example
here) and description (desc) together make the identifier line of a sequence
record, that must begin with the sequence record start symbol > on a single
line. The description begins after the first block of white-space on this line
(indicated with <space>). The sequence of a record appears immediately
after its identifier line and may continue over multiple lines until the next
record.

In FAST, the description may be broken into multiple fields defined by
a delimiter (indicated with <delim>). FAST uses a “one-based” indexing of
fields as indicated here:

>seq1-id<space>seq1-desc-field1<delim>seq1-desc-field2<delim>...
seq1-sequence
seq1-sequence
...
seq1-sequence
>seq2-id<space>seq2-desc-field1<delim>seq2-desc-field2<delim>...
seq2-sequence
seq2-sequence
...
seq2-sequence

2

2.1.2 Use man pages for full documentation

All FAST utilities follow UNIX conventions in having default and optional
behaviors. For more information about how to use and modify the behavior
of any FAST utility such as faswc, consult its manual page with e.g.:

man faswc

or alternatively:

perldoc faswc

2.2 Example 1: Prototyping a pipeline to cut, reverse com-
plement, and translate a gene by coordinate from a
genome

2.2.1 Calculating sequence length

Chromosome 1 from the Saccharomyces cerevisiae genome is available in
t/data/chr01.fsa. By default, faslen calculates the lengths of sequence
records on its input, and outputs its input, augmenting sequence descriptions
with its calculations using the tag (or name) length and a (name,value)
separator :, as in length:872. We can therefore easily obtain the length of
this chromosome sequence as follows:

faslen t/data/chr01.fsa | egrep ">"

Alternatively, faswc -c will output the length of the chromosome di-
rectly to STDOUT:

faswc -c t/data/chr01.fsa

2.2.2 Cut out a subsequence by coordinate with fascut

fascut will cut a subsequence by coordinate. For example, suppose we know
that the location of gene YAR030C in yeast chromosome 1 begins 186512 and
ends 186853 on the minus strand. Let’s cut this from our chromosome. The
following code will extract this subsequence in fasta format to STDOUT:

fascut 186512..186853 t/data/chr01.fsa

3

2.2.3 Computing reverse complement of a sequence with fasrc

Knowing that this is on the minus strand, we need to obtain the reverse
complement of this sequence. fasrc will compute this. The following code
will take the output of fascut as its input and return the reverse complemeht
in fasta file to STDOUT:

fascut 186512..186853 t/data/chr01.fsa | fasrc

2.2.4 Translating a sequence with fasxl

To translate this sequence, we extend the pipeline with the fasxl utility:

fascut 186512..186853 t/data/chr01.fsa | fasrc | fasxl

Examine the output, we will see that the peptide starts with a methion-
ine, and ends with a stop codon, indicated by the * character by default.

2.2.5 Computing codon usage with fascodon

If we are interested in the codon usage of our gene, we can edit the last
command-line (by typing up-arrow on most UNIX shells) and replace fasxl
with fascodon at the end of our pipeline. fascodon reprints the input
sequence with the counts of each codon with information on starts and stops
appended to the identifier. With the following code, we can see that the
most frequently used codon in this example is AAT (encoding an Arginine)

fascut 186512..186853 t/data/chr01.fsa | fasrc | fascodon

Appending the -t option to the command will give the codon frequencies
for both the input sequence and the reverse complement in a verbose table
format as follows

fascut 186512..186853 t/data/chr01.fsa | fasrc | fascodon -t

2.2.6 Computing base composition with fascomp

fascomp will return the base/protein composition of a sequence as an addi-
tion to the identifier. If we are interested in the normalized (option -n) base
composition of the first chromosome in a clean table format (option -t), we
can run the following:

fascomp -nt t/data/chr01.fsa

4

2.3 Example 2: Reformatting, selecting and transforming
alignments in FAST

2.3.1 Reformatting alignment data with fasconvert

A file with protein sequences that match a search for “P450” is available in
t/data/P450.fas under the FAST installation directory. Another file con-
tains this data aligned using clustalw with the name P450.clustalw2.aln.
The fasconvert tool can convert from fasta to many formats, or from many
formats to fasta, including clustalw to fasta as showin in the following ex-
ample

fasconvert -i clustalw -f t/data/P450.clustalw2.aln

The previous command automatically saves its output to an output file
of the same basename and an extension of .fas in the same directory of
the original file. The faswc utility will count the total number of sequences
and total number of nucleotides in a fasta file To look at the length of all
sequences, use the following code.

faswc t/data/P450.clustalw2.fas

which outputs
9 5013 t/data/P450.clustalw2.fas
9 5013 total
to STDOUT.

2.3.2 Selecting sequences with fasgrep

We can subset the output in many ways to get information we are interested
in, for example, if we want to get the original sequence with the gi number
“86475799”, we can use fasgrep, which will pull out sequences that match
a Perl regular expression. By default, fasgrep attempts to match sequence
identifiers:

fasgrep "86475799" t/data/P450.fas

We can retrieve the aligned version of this sequence as it has the same
identifier

fasgrep "86475799" t/data/P450.clustalw2.fas

5

2.3.3 Reformatting gap characters with fastr

fastr may be useful when we must change specific characters based on the
requirements of a bioinformatic program. For example, to reformat gap
characters in a fasta-format alignment from “-” to “.”.

fastr -s "-" "." t/data/P450.clustalw2.fas

2.3.4 Degapping sites with alncut

alncut also allows for editing of alignments based on their gap profile. This
utility is useful in many applications, including selecting gap-free sites for
input into phylogenetic softwares. To remove sites with at least one gap in
all sequences, we can do the following:

alncut -g t/data/P450.clustalw2.fas

We can then determine the length of the alignment by executing:

alncut -g t/data/P450.clustalw2.fas | faslen | head -1

And if we are interested in retaining only unique sequences, fasuniq ap-
pended to the output will collapse duplicate sequences to one, appending all
of the identifiers to one large identifier.

alncut -g t/data/P450.clustalw2.fas | faslen | fasuniq

2.4 Example 3: partitioning files based on ncbi taxonomy

The fastax tool is a powerful tool when one wants to partition data based
on their taxonomic affiliations. We can partition large datasets for sub-
set analyses, statistical comparisons, and other applications and preparation
of data. fastax depends on the user supplying a file with the tree struc-
ture already defined. In this example, we will use NCBI taxonomy. The
files necessary include a nodes file (in this case nodes.dmp) and a names
file (in this case, names.dmp). The nodes file consists of a line for each
taxonomic entry in NCBI with information about its class (superfamily,
genus, etc) and its parent node, indexed by its numeric identifier. These
files were retrieved from NCBI in a zipped package via FTP located at
pub/taxonomy/taxdump.tar.gz. The names.dmp file will link the numeric
identifier to any specific name that the entry can be named including its
scientific name, common name, and alternative spellings accepted by NCBI.

6

We will not create our own nodes and names files, but note that it can be
done if the user disagrees with the NCBI taxonomic structure, or requires
more specific partitions of their data.

The importance of structured sequence tags comes into play in this exam-
ple. As described above, the line above the sequence in a fasta file is indexed
by a “>” character followed by the identifier, followed by a space, and then
everything else is located in the description. fastax will need more structure
around the taxonomic classification. The program, by default, will search
by the description field, but the descrption field will have it’s own structure.
Note, if our description field only contains the species, or the TaxID, then
we don’t need to worry about structuring the description. If it is not the
only thing in our description, then we need to modify the description a bit,
or determine if there is a delimiter that already exists between the TaxID
and the other components of the description.

2.4.1 Reformat the description to allow for fastax sorting

If we look at our P450.fas file, we see that the description consists of “P450”
and then a space, and then a square bracket “[“, the species name, and then
a closing square bracket “]”. There is currently no identifier that is unique
surrounding only the species name. Open bracket and closed bracket are
two different characters, and using the open bracket as a delimiter will give
you the species name and the closed bracket in the second field, and this
will not match correctly. We will first change our description field to one
delimiter using the handy fastr tool. Arbitrarily, we will chose the double
quote character for our description delimiter.

fastr -d "[]" "\"" t/data/P450.fas

Now in standard output, we will see fasta file-formatted text with the
species name in the description in the sequence tag surrounded by quotes.
In this file, the beginning of the description is in field one, and the species in
field two. We can use this information to construct a command to pull out
the sequences that are in the taxonomic “Pooideae” tribe. Assuming that
nodes.dmp and names.dmp are in the same working directory, we can run
the following.

fastr -d "[]" "\"" t/data/P450.fas |
fastax -S \" -f 2 t/data/nodes.dmp t/data/names.dmp "Pooideae"

7

The output of this pipeline should be five sequences, including P450
sequences from the Triticum aestivum and Lolium rigidum species (classified
as species belonging to the Pooideae tribe).

2.5 Example 4: Retrieve a subset of sequences based on a
list of identifiers

fasgrep is a useful tool for retrieving subsets of sequences from large fasta
files. Often fasta files will contain an identifier line, and then one line fol-
lowing with a sequence corresponding to the previous identifier. If this is
always the case, parsing fasta files is fairly simple. When the sequence that
follows the identifier exists on multiple lines, the task of subsetting sequences
becomes more challenging. If we have a list of sequence identifiers in the file
ids.txt, we can write a bash wrapper, incorporating the unix cat command,
for the fasgrep command to search for this subset of sequences as follows:

for i in $(cat ids.txt); do fasgrep $i sequences.fas; done > subset.fas

Now we have a subest of sequences located in subset.fas that correspond
to the identifiers listed in ids.txt.

2.5.1 Note on searching for identifiers

Fasgrep works with perl regular expression syntax.It is often beneficial to
code the identifiers in ids.txt with some sort of a line or a word anchor. For
example, if you are looking for a complete identifier like sequence_1 but
have sequences in your file named sequence_11 and sequence_12,

fasgrep "sequence_1" sequences.fas

will return all three sequences. If you’d like to just look for sequence_1,
adding a line anchor, such as:

fasgrep "sequence_1$" sequences.fas

will return sequence_1 and skip sequence_11 and sequence_12. This
only works if sequence_1 is at the end of your identifier. If you are looking for
sequence_1 within a larger identifier, you may need to take extra precautions
to not retrieve other names that are more specific to the structure of your
identifiers.

8

	Recipes
	Tutorials
	Prelude
	The FAST definition of ``FastA format''
	Use man pages for full documentation

	Example 1: Prototyping a pipeline to cut, reverse complement, and translate a gene by coordinate from a genome
	Calculating sequence length
	Cut out a subsequence by coordinate with fascut
	Computing reverse complement of a sequence with fasrc
	Translating a sequence with fasxl
	Computing codon usage with fascodon
	Computing base composition with fascomp

	Example 2: Reformatting, selecting and transforming alignments in FAST
	Reformatting alignment data with fasconvert
	Selecting sequences with fasgrep
	Reformatting gap characters with fastr
	Degapping sites with alncut

	Example 3: partitioning files based on ncbi taxonomy
	Reformat the description to allow for fastax sorting

	Example 4: Retrieve a subset of sequences based on a list of identifiers
	Note on searching for identifiers

