
Report on Starfish v. 1.22
A Perl-based System for Text-Embedded

Programming and Preprocessing

(Starfish Version 1.22, Document Revision 392)

Vlado Kešelj

May 15, 2016

Abstract

This report is meant to be the most up-to-date documentation on Starfish. However,
it has not been completed yet. A large part of it is a direct POD Documentation
generated from in-code documentation.

Starfish is an open-source, Perl-based system for macro processing and text-
embedded programming. It demonstrates an elegant and simple methodology based
on regular expression matching and rewriting, which is implemented in Perl in a
relatively transparent way.

The main idea is similar to the text-embedding style of PHP and other sys-
tems, many of which where also implemented as Perl modules, but there are several
essential novel features of Starfish.

Contents

1 Introduction 2
1.1 Text-Embedded Programming . 2
1.2 Overview . 3

2 Related Work 4

3 Starfish Use 5
3.1 Hooks . 5
3.2 Iterative Processing . 5

4 System Design 7
4.1 Function digest . 7
4.2 Function scan . 7

5 Starfish Reference 8
5.1 Styles . 8

A POD Documentation 9
A.1 NAME . 9
A.2 SYNOPSIS . 9
A.3 DESCRIPTION . 9
A.4 EXAMPLES . 10
A.5 PREDEFINED VARIABLES AND FIELDS 15
A.6 METHODS . 16
A.7 PREDEFINED FUNCTIONS . 19
A.8 STYLES . 23
A.9 STYLE SPECIFIC PREDEFINED FUNCTIONS 24
A.10 LIMITATIONS AND BUGS . 24
A.11 THANKS . 24
A.12 AUTHORS . 25
A.13 SEE ALSO . 25

1

Chapter 1

Introduction

1.1 Text-Embedded Programming

The concept of text-embedded programming is well-known and popular: snippets
of source code are embedded in a document, and during processing, the snippets
are replaced with the result of their evaluation. The technique is mainly used for
generating HTML documents. Examples of programming languages or frameworks
that use it are PHP, ASP, and JSP.

The code snippets are marked in text with starting and ending delimiters, which
function as escape sequences that toggle on and off the code processing. Typical
string delimiters are “<?” and “?>” or “<?php” and “?>” in PHP, “<\%” and “\%>”
in ASP, and “<?” and “!>” in ePerl. During processing, the text outside the code
snippets is left intact, while the code snippets are evaluated and the evaluation
results are used to replace the snippets. For example, in PHP, we could prepare an
HTML document such as:

<html><head><title>PHP Test</title></head>

<body>

<?php echo ’<p>Hello World</p>’; ?> </body></html>

and after processing with the PHP interpreter, the following output would be pro-
duced:

<html><head><title>PHP Test</title></head>

<body>

<p>Hello World</p>

</body></html>

Embedding the code inthis way is sometimes called escaping because a starting
delimiter, such as “<?” serves as an escape sequence, triggering special processing

2

of the snippet. Another kind of escaping, referred to as the advanced escaping in
PHP is illustrated with the following example:

Good <?php if ($hour < 12) { ?> Morning <?php } else { ?> Evening

<?php } ?>

We will refer to this kind of escaping as inverted escaping. Inverted escaping can
be interpreted in the following way: The complete input text is treated as code in
which the plain text, i.e., the non-code text, is embedded between ‘?>’ and ‘<?php’
delimiters and it is translated into an ‘echo "string";’ statement; and similarily,
any part of the form ‘?> plain text <?’ is interpreted as the statement:

echo " plain text ";

An implicit delimiter ‘?>’ is assumed at the beginning of the text and an implicit
delimiter ‘<?php’ is assumed at the end of text. Although it is relatively easy to
implement, we do not use inverted escaping in Starfish since its benefits are not very
clear. On the other hand, inverted escaping does not follow the priciple that each
snippet should be a well-defined block of code Additionally, Perl offers a plethora of
string delimiting options, such as q/.../ and <<’EOT’, which can be used in place
of inverted escaping to include larger parts of plain text.

1.2 Overview

After this introductory chapter, Chapter 2 discusses related work, Chapter 3 presents
user documentation, Chapter 4 describes the system design, and Chapter 5 gives
more starfish details for reference. Chapter A contains the POD documentation.
This documenation is written as a part of code and is included in the man page as
well. As such, it is meant to be a reference that may be frequently needed during
coding and actual use of Starfish.

3

Chapter 2

Related Work

We will describe here some previous work on Perl-based embedded programming.
Our vision for text-embedded framework is not that it is a major characteristic of
a programming language, but it should be an orthogonal framework that allows
several programming languages as options.

The Perl programming language is particularly suitable for implementation of
text-embedded capability due to its string-processing functionalities, and its ability
for run-time code code interpretation and execution (the ‘eval’ function). In 1998,
when I started thinking about a need for a system like this, there was a system that
partially implemented needed functionality; it was called ePerl.

The langauge ePerl was develope by Ralf S. Engelshall in the period from 1996
yo 1998. It is an embedded Perl langauge in the sense that we described, but
ultimately there were two reasons why it did not fit my requirements: (1) it seemed
to be too heavy-weight, and (2) it did not support the update mode, that will be
described in the next chapters. Let us explain the “too heavy-weight” comment: The
language ePerl is a package of 195KB, created by modifying the Perl source code
and requiring compilation during installation. We prefer a more convenient solution,
which requires that the standard Perl is installed, and our solution is installed as a
Perl module. Some other authors noted the heavy-weight nature of ePerl as well.

For example, David Ljung Madison developed an “ePerl hack,” which is a Perl
script of some 1400 lines that has functionality similar to ePerl.

Text::Template by Mark Jason Dominus is another Perl module with similar
functionality. An interesting and probably indepenent simiarity is that Starfish uses
$O vas the output variable, while $OUT is used in Text::Template.

!!!

4

Chapter 3

Starfish Use

This chapter describes some implementational topic regarding Starfish.
...

3.1 Hooks

Starfish uses the concept of a “hook” (or triggers) and evaluators to initiate pro-
cessing on a text. The name “hook” is inspired by a similar term used in Emacs.
For example, the delimiters ‘<?’ and ‘!>’ represent a hook, which is associated with
an evaluator that will evaluate the code between the delimiters and produce the
result that will replace the hook. In the update mode, the code will be replaced
with something like:
<? code !>

#+

...output

#-

while in the replace mode, the code is replaced with “...output,”.
...

The regex hooks pass captured substrings as argumements to the replacement
function. If the whole captured string ($&) is needed, it can be obtained from
$self->{currenttoken}.
...

3.2 Iterative Processing

In the default mode of processing, Starfish reads input file, processes it, and writes
it back to the output file if the output is different. The processing of the text could

5

be repeated. The number of iterations is set by default to 1, but it could be larger.
If the number of iterations is very large, the number of actual iterations could be
smaller if a fixed point is reached earlier. A typical code of setting the number of
iterations to 2 is the following:

$Star->{Loops} = 2;

We can read the number of the current loop with $Star->{CurrentLoop}.
In case of replace mode, the iterations are repeated on the original input file and

only in the last iteration the replaced output is produced.

6

Chapter 4

System Design

4.1 Function digest

4.2 Function scan

Scans text and finds the next token.

7

Chapter 5

Starfish Reference

5.1 Styles

There is a set of predefined styles for different input files: HTML (html), HTML
templating style (.html.sfish), TeX (tex), Java (java), Makefile (makefile), PostScript
(ps), Python (python), and Perl (perl).

8

Appendix A

POD Documentation

A.1 NAME

Text::Starfish.pm and starfish - A Perl-based System for Text-Embedded Program-
ming and Preprocessing

A.2 SYNOPSIS

starfish [-o=outputfile] [-e=initialcode] [-replace] [-mode=mode] file...
where files usually contain some Perl code, delimited by <? and !>. To produce

output to be inserted into the file, use variable $O or function echo.

A.3 DESCRIPTION

(The documentation is probably not up to date.)
Starfish is a system for Perl-based text-embedded programming and preprocess-

ing, which relies on a unifying regular expression rewriting methodology. If you
know Perl and php, you probably know the basic idea: embed Perl code inside the
text, execute it is some way, and interleave the output with the text. Very similar
projects exist and some of them are listed in §A.13. Starfish is, however, unique
in several ways. One important difference between starfish and similar programs
(e.g. php) is that the output does not necessarily replace the code, but it follows the
code by default. It is attempted with Starfish to provide a universal text-embedded
programming language, which can be used with different types of textual files.

There are two files in this package: a module (Starfish.pm) and a small script
(starfish) that provides a command-line interface to the module. The options for
the script are described in subsection ”starfish cmd list of file names and options”.

9

The earlier name of this module was SLePerl (Something Like ePerl), but it was
changed it to starfish – sounds better and easier to type. One option was ‘oyster,’
but some people are thinking about using it for Perl beans, and there is a (yet
another) Perl module for embedded Perl Text::Oyster, so it was not used.

The idea with the ‘starfish’ name is: the Perl code is embedded into a text, so
the text is equivalent to a shellfish containing pearls. A starfish comes by and eats
the shellfish... Unlike a natural starfish, this starfish is interested in pearls and
does not normally touch most of the surrounding meat.

A.4 EXAMPLES

A simple example

A simple example, after running starfish on a file containing:

<? $O= "Hello world!" !>

we get the following output:

<? $O= "Hello world!" !>

#+

Hello world!

#-

The output will not change after running the script several times. The same
effect is achieved with:

<? echo "Hello world! !>

The function echo simply appends its parameters to the special variable $O.
Some parameters can be changed, and they vary according to style, which de-

pends on file extension. Since the code is not stable, they are not documented, but
here is a list of some of them (possibly incorrect):

- code prefix and suffix (e.g., <? !>)

- output prefix and suffix (e.g., \n#+\n \n#-\n)

- code preparation (e.g., s/\\n(?:#+|%+\/\/+)/\\n/g)

10

HTML Examples

Example 1

If we have an HTML file, e.g., 7.html with the following content:

<HEAD>

<BODY>

<!--<? $O="This code should be replaced by this." !>-->

</BODY>

then after running the command

starfish -replace -o=7out.html 7.html

the file 7out.html will contain:

<HEAD>

<BODY>

This code should be replaced by this.

</BODY>

The same effect would be obtained with the following line:

<!--<? echo "This code should be replaced by this." !>-->

Output file permissions

The permissions of the output file will not be changed. But if it does not exist, then:

starfish -replace -o=7out.html -mode=0644 7.html

makes sure it has all-readable permission.

Example 2

Input file 21.html:

<!--<? use CGI qw/:standard/;

echo comment(’AUTOMATICALLY GENERATED - DO NOT EDIT’);

!>-->

<HTML><HEAD>

<TITLE>Some title</TITLE>

</HEAD>

<BODY>

<!--<? echo "Put this." !>-->

</BODY>

</HTML>

11

Output:

<!-- AUTOMATICALLY GENERATED - DO NOT EDIT -->

<HTML><HEAD>

<TITLE>Some title</TITLE>

</HEAD>

<BODY>

Put this.

</BODY>

</HTML>

Example from a Makefile

LIST=first second third\

fourth fifth

<? echo join "\n", getmakefilelist $Star->{INFILE}, ’LIST’ !>

#+

first

second

third

fourth

fifth

#-

Beside $O, $Star is another predefined variable: It refers to the Starfish object
currently processing the text.

Example from a TeX file

% <? $Star->Style(’TeX’) !>

% For version 1 of a document

% <? #$Star->addHook("\n%Begin1","\n%End1",’s/\n%+/\n/g’);

% #$Star->addHook("\n%Begin2","\n%End2",’s/\n%*/\n%/g’);

% #For version 2

% $Star->addHook("\n%Begin1","\n%End1",’s/\n%*/\n%/g’);

% $Star->addHook("\n%Begin2","\n%End2",’s/\n%+/\n/g’);

% !>

%Begin1

%Document 1

%End1

12

%Begin2

Document 2

%End2

Example with Test/Release versions (Java)

Suppose you have a stanalone java file p.java, and you want to have two versions:

p_t.java -- for complete code with all kinds of testing code, and

p.java -- clean release version.

Solution:
Copy p.java to p t.java and modify p t.java to be like:

/** Some Java file. */

//<? $O = defined($Release) ?

// "public class p {\n" :

// "public class p_t {\n";

//!>//+

public class p_t {

//-

public static int main(String[] args) {

//<? $O = " ".(defined $Release ?

//qq[System.out.println("Test version");] :

//qq[System.out.println("Release version");]);

//!>//+

System.out.println("Release version");//-

return 0;

}

}

In Makefile, add lines for updating p t.java, and generating p.java (readonly, so
that you do not modify it accidentally):

p.java: p_t.java

starfish -o=$@ -e=’$$Release=1’ -mode=0400 $<

tmp.ind: p_t.java

starfish $<

touch tmp.ind

13

Command-line Examples

The following are the reference examples. For further information, please lookup
the explanations of the command-line options and arguments.

starfish -mode=0400 -replace -o=paper.tex -mode=0400 paper.tex.sfish
In the above line, Starfish is used on top of a TeX/LaTeX file. The Starfish

is separated from the .tex file to keep the source clean. However, a user in this
situation may by mistake start editing the paper.tex file, so we set the output file
mode to 0400 to prevent this accidental editing.

Macros

Note: This is a quite old part of Starfish and needs a revision. Macros are a form
of code folding (related terms: holophrasting, ellusion(?)), expressed in the Starfish
framework.

Starfish includes a set of macro features (primitive, but in progress). There
are two modes, hidden macros and not hidden, which are indicated using variable
$Star->{HideMacros}, e.g.:

starfish -e=’$Star->{HideMacros}=1’ *.sfish

starfish *.sfish

Macros are activated with:

<? $Star->defineMacros() !>

In Java mode, a macro can be defined in this way:

//m!define macro name

...

//m!end

After //m!end, a newline is mandatory. After running Starfish, the definition
will disapear in this place and it will be appended as an auxdefine at the end of file.

In the following way, it can be defined and expanded in the same place:

//m!defe macro name

...

//m!end

A macro is expanded by:

//m!expand macro name

14

When macro is expanded it looks like this:

//m!expanded macro name

...

//m!end

Macro is expanded even in hidden mode by:

//m!fexpand macro name

and then it is expanded into:

//m!fexpanded macro name

...

//m!end

Hidden macros are put at the end of file in this way:

//auxdefine macro name

...

//endauxdefine

Old macro definition can be overriden by:

//m!newdefe macro name

...

//m!end

A.5 PREDEFINED VARIABLES AND FIELDS

$O

After executing a snippet, the contents of this variable represent the snippet output.

$Star

More precisely, it is $::Star. $Star is the Starfish object executing the current code
snipet (this). There can be a more such objects active at a time, due to executing
Starfish from a starfish snippet. The name is introduced into the main namespace,
which might be a questionable decision.

15

$Star->{INFILE}
Name of the current input file.

$Star->{Loops}
Controls the number of iterations. The default value is 1, but we may want to repeat
starfishing the text several times, or even until a fix-point is reached. For example,
by setting the number of Loops to be at least 2, as in:

$Star->{Loops} = 2 if $Star->{Loops}<2;

we require Starfish to proces the input in at least two iterations.

$Star->{Out}
Output content of the current processing unit. For example, to use #-style line
comments in the replace Starfish mode, one can make a final substitution in an
HTML file:

<!--<? $Star->{Out} =~ s/^#.*\n//mg; !>-->

It is important to have in mind that the contents of this variable is the output
processed so far, so any final output processing should be done in a snippet where
no new output is produced.

$Star->{OUTFILE}
If option -o=* is used, then this variable contains the name of the specified output
file.

A.6 METHODS

Text::Starfish->new(options)

The method for creation of a new Starfish object. If we are already processing within
a Starfish object, we may use a shorter variant $Star->new().

The options, given as arguments, are a list of strings, which may include the
following:

-infile=* Specifies the name of the input file (field INFILE). The file will not
be read.

16

-copyhooks Copies hooks from the Star object ($::Star). This option is also
available in loadinclude, getinclude, and include, from which it is passed to new.
It causes the new object to have similar properties as the current Star object. It
could be generalized to include any specified object, or to use the prototype object
that is given to the constructor, but there does not seem to be need for this gener-
alization. More precisely, -copyhooks copies the fields: Style, CodePreparation,
LineComment, and per-component copies the array hook.

$o->add hook($ht,...)

Adds a new hook. The first argument is the hook type, which is a string. The
following is the list of hook types with descriptions:

regex, regex, replace

The hook type regex is followed by a regular expression and a replace argu-
ment. Whenever a regular expression is matched in text, it is “starfished”
according to the argument replace. If the argument replace is the string
“comment”, it is treated as the comment. If the argument replace is code,
it is used as the evaluation code. For example, the following source in an
HTML file:

<!--<? $Star->add_hook(’regex’, qr/^.section:(\w+)\s+(.*)/,

sub { $_="<a name\"$_[2]\"><h3>$_[3]</h3" }) !>-->

line before

.section:overview Document Overview

line after

will produce the following output, in the replace mode:

line before

<a name"overview"><h3>Document Overview</h3

line after

$o->addHook

This method is deprecated. It will be gradually replaced with add hook, which is
better defined since it includes hook type.

Adds a new hook. The method can take two or three parameters:

($prefix, $suffix, $evaluator)

17

or

($regex, $replacement)

In the case of three parameters ($prefix, $suffix, $evaluator), the param-
eter $prefix is the starting delimiter, $suffix is the ending delimiter, and $evaluator
is the evaluator. The parameters $prefix and $suffix can either be strings, which are
matched exactly, or regular expressions. An empty ending delimiter will match the
end of input. The evaluator can be provided in the following ways:

special string ’default’

in which case the default Starfish evaluator is used,

special strings ’ignore’ and ’echo’

’ignore’ ignores the hook and produces no echo, ’echo’ simply echos the contests
between the delimiters.

other strings

are interpreted as code which is embedded in an evaluator by providing a local
$, $self which is the current Starfish object, $p - the prefix, and $s the suffix.
After executing the code $p.$.$s is returned, unless in the replacement mode,
in which $ is returned.

code reference (sub {...})

is interpreted as code which is embedded in an evaluator. The local $ provides
the captured string. Three arguments are also provided to the code: $p - the
prefix, $, and $s - the suffix. The result is the value of $.

For the format with two parameters, ($regex, $replacement), currently in this
mode addHook understands replacement ’comment’ and code reference (e.g., sub {
... }). The replacement ’comment’ will repeat the token in the non-replace mode,
and remove it in the replace mode; e.i., equivalent to no echo. The regular expression
is matched in the multi-line mode, so ˆ and $ can be used to match beginning and
ending of a line. (Caveat: Due to the way how scanner works, beginning of a line
starts after the end of previously matched token.)

Example:

$Star->addHook(qr/^#.*\n/, ’comment’);

$o->last update()

Or just last update(), returns the date of the last update of the output.

18

$o->process files(@args)

Similar to the function starfish cmd, but it expects already built Starfish object
with properly set options. Actually, starfish cmd calls this method after creating
the object and returns the object.

$o->rmHook($p,$s)

Removes a hook specified by the starting delimiter $p, and the ending delimiter $s.

$o->rmAllHooks()

Removes all hooks. If no hooks are added, then after exiting the current snippet
it will not be possible to detect another snippet later. A typical usage could be as
follows:

$Star->rmAllHooks();

$Star->addHook(’<?starfish ’,’?>’, ’default’);

$o->setStyle($s)

Sets a particular style of the source file. Currently implemented options are: html,
java, latex, makefile, perl, ps, python, TeX, and tex. If the parameter $s is not
given, the stile given in $o->{STYLE} will be used if defined, otherwise it will be
guessed from the file name in $o->{INFILE}. If it cannot be correctly guessed, it
will be the Perl style.

A.7 PREDEFINED FUNCTIONS

include(filename and options) – starfish a file and echo

Reads, starfishes the file specified by file name, and echos the contents. Similar to
PHP include. Uses getinclude function.

getinclude(filename and options) – starfish a file and return

Reads, starfishes the file specified by file name, and returns the contents (see also
include to echo the content implicitly). By default, the program will not break if
the file does not exist. The option -noreplace will starfish file in a non-replace mode.
The default mode is replace and that is usually the mode that is needed in includes
(non-replace may lead to a suprising behaviour). The option -require will cause
program to croak if the file does not exist. It is similar to the PHP function require.

19

A special function named require is not used since require is a Perl reserved word.
Another interesting option is -copyhooks, for using hooks and some other relevant
properties from the Star object ($::Star). This option is eventually passed to new,
so you can see the constructor new for more details.

The code for get include is the following:

sub getinclude($@) {

my $sf = loadinclude(@_);

$sf->digest();

return $sf->{Out};

}

and it can be used as a useful template for using loadinclude directly. The
function loadinclude creates a Starfish object, and reads the file, however it is not
digested yet, so one can modify the object before this.

loadinclude(filename and options) – load file and get ready
to digest

The first argument is a filename. Loadinclude will interpret the options -replace,
-noreplace, and -require. A Starfish object is created by passing the file name as
an -infile argument, and by passing other options as arguments. The file is read
and the object is returned. By default, the program will not break if the file does
not exist or is not readable, but it will return undef value instead of an object. See
also documentation about include, getinclude, and new.

-noreplace option will set up the Starfish object in the no-replace mode. The
default mode is replace and that is usually the mode that is needed in includes. The
option -require will cause program to croak if the file does not exist. An interesting
option is -copyhooks, which is documented in the new method.

read starfish conf

This function is usually called at the begining of a starfish file, in order to read local
configuration. it tests whethere there exists a filed named starfish.conf in the
current directory. If it does exist, it checks for the same file in the parent directory,
then gran-parent directory, etc. Once the process stops, is starts executing the
configuration files in the order from first ancestor down. For each file, it changes
directory to the corresponding directory, and requires (in Perl style) the file in the
package main.

20

starfish cmd list of file names and options

The function starfish cmd is called by the script starfish with the @ARGV list as
the list of arguments. The function can also be used from Perl code to ”starfish” a
file, e.g.,

starfish_cmd(’somefile.txt’, ’-o=outfile’, ’-replace’);

The arguments of the functions are provided in a similar fashion as argument to
the command line. As a reminder, the command usage of the script starfish is:

starfish [-o=outputfile] [-e=initialcode] [-replace] [-mode=mode] file...
The options are described below:

-o=outputfile

specifies an output file. By default, the input file is used as the output file.
If the specified output file is ’-’, then the output is produced to the standard
output.

-e=initialcode

specifies the initial Perl code to be executed.

-replace

will cause the embedded code to be replaced with the output. WARNING:
Normally used only with -o.

-mode=mode

specifies the mode for the output file. By default, the mode of the source file
is used (the first one if more outputs are accumulated using -o). If an output
file is specified, and the mode is specified, then starfish will set temporarily
the u+w mode of the output file in order to write to that file, if needed.

Those were the options.

appendfile filename, list

appends list elements to the file.

echo string

appends string to the special variable $0.

21

DATE AND TIME FUNCTIONS

current year

returns the current year in string format.

file modification time

Returns modification time of this file (in format of Perl time).

file modification date

Returns modification date of this file (in format: Month DD, YYYY).

FILE FUNCTIONS

getfile file

grabs the content of the file into a string or a list.

getmakefilelist makefile, var

returns a list, which is a list of words assigned to the variable var ; e.g.,

FILE_LIST=file1 file2 file3\

file4

<? echo join "\n", getmakefilelist $Star->{INFILE}, ’FILE_LIST’ !>

Embedded variables are not handled.

putfile filename, list

opens file, writes the list elements to the file, and closes it. ‘putfile filename’
”touches” the file.

read records string

The function takes one string argument. If it starts with ’file=’ then the rest
of the string is treated as a file name, which contents replaces the string in
further processing. The string is translated into a list of records (hashes) and
a reference to the list is returned. The records are separated by empty line,
and in each line an attribute and its value are separated by the first colon (:).
A line can be continued using backslash (\) at the end of line, or by starting
the next line with a space or tab. Ending a line with \ effectively removes
the ”\\\n” string at the end of line, but ”\n[\t]” combination is replaced
with ”\n”. Comments, starting with the hash sign (#) are allowed between
records. An example is:

22

id:1

name: J. Public

phone: 000-111

id:2

etc.

If an attribute is repeated, it will be renamed to an attribute of the form att-1,
att-2, etc.

read starfish conf

Reads recursively (up the dir tree) configuration files starfish.conf.

A.8 STYLES

There is a set of predefined styles for different input files: HTML (html), HTML
templating style (.html.sfish), TeX (tex), Java (java), Makefile (makefile), PostScript
(ps), Python (python), and Perl (perl).

HTML Style (html)

HTML Templating Style (.html.sfish)

This style is similar to the HTML style, but it is supposed to be run in the replace
mode towards a target .html file, so it allows for more hooks. The character # (hash)
at the beginning of a line denotes a comment.

Makefile Style (makefile)

The main code hooks are <? and >.
Interestingly, the makefile style has similar special requirements as Python. For

example, in the following expansion:

starfish: tmp

starfish Makefile

#<? if (-e "file.tex.sfish")

#{ echo "\tstarfish -o=tmp/file.tex -replace file.tex.sfish" } !>

#+

starfish -o=tmp/file.tex -replace file.tex.sfish

#-

it is convenient to have the embedded output indented in the same way as the
embedded code.

23

A.9 STYLE SPECIFIC PREDEFINED FUNC-

TIONS

get verbatim file(filename)

Specific to LaTeX mode. Reads textual file filename and returns a string ready for
inclusion in a LaTeX document. It untabifies the file contests for proper represen-
tation of whitespace. The function code is basically:

return "\\begin{verbatim}\n".

untabify(scalar(getfile($f))).

"\\ end{verbatim}\n";

Note: There is no space betwen \\ and end{verbatim}.

htmlquote(string)

The following definition is taken from the CIPP project.
(http://aspn.activestate.com/ASPN/CodeDoc/CIPP/CIPP/Manual.html, link does

not seem to be active any more)
This command quotes the content of a variable, so that it can be used inside a

HTML option or <TEXTAREA> block without the danger of syntax clashes. The
following conversions are done in this order:

& => &

< => <

" => "

A.10 LIMITATIONS AND BUGS

The script swallows the whole input file at once, so it may not work on small-memory
machines and with huge files.

A.11 THANKS

I’d like to thank Steve Yeago, Tony Cox, Tony Abou-Assaleh for comments, and
Charles Ikeson for suggesting the include function and other comments.

24

A.12 AUTHORS

2001-2015 Vlado Keselj http://web.cs.dal.ca/~vlado

and contributing authors:

2007 Charles Ikeson (overhaul of test.pl)

This script is provided ”as is” without expressed or implied warranty. This is
free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

The latest version can be found at http://web.cs.dal.ca/~vlado/srcperl/.

A.13 SEE ALSO

There are several projects similar to Starfish. Some of them are text-embedded
programming projects such as PHP with different programming languages, and there
are similar Perl-based projects. When I was thinking about a need of a framework
like this one (1998), I have found ePerl project. However, it was too heavy weight
for my purposes, and it did not support the ”update” mode, vs. replace mode of
operation. I learned about more projects over time and they are included in the list
below.

[ePerl] ePerl

This script is somewhat similar to ePerl, about which you can read at

http://www.ossp.org/pkg/tool/eperl/. It was developed by Ralf S. Engelshall
in the period from 1996 to 1998.

php

http://www.php.net

[ePerl-h] ePerl hack by David Ljung Madison

This is a Perl script simulating the ePerl functionality, but with obviously
much lower weight. It is developed by David Ljung Madison, and can be
found at the URL: http://marginalhacks.com/Hacks/ePerl/

[Text::Template] Perl module Text::Template by Mark Jason Dominus.

http://search.cpan.org/~mjd/Text-Template/ Text::Template is a module with
similar functionality as Starfish. An interesting similarity is that the output
variable in Text::Template is called $OUT, compared to $O in Starfish.

25

[HTML::Mason] Perl module HTML::Mason by Jonathan Swartz, Dave
Rolsky, and Ken Williams.

http://search.cpan.org/~drolsky/HTML-Mason-1.28/lib/HTML/Mason/Devel.pod
The module HTML::Mason can also be seen as an embedded Perl system, but
it is a larger system with the design objective being a ”high-performance,
dynamic web site authoring system”.

[HTML::EP] Perl Module HTML::EP - a system for embedding Perl into
HTML, by Jochen Wiedmann.

http://search.cpan.org/~jwied/HTML-EP-MSWin32/lib/HTML/EP.pod It seems
that the module was developed in 1998-99. Provides a good CGI support, run-
time support, session handling, a database server interface.

26

