Perl Programmers Reference Guide

Perl Version 5.004
21-Jun—-1997

"There’s more than one way to do it."
—— Larry Wall, Author of the Perl Programming Language

Author: Perl5-Porters@perl.org

blank

perldelta Perl Programmers Reference Guide perldelta

NAME
perldelta — what's new for perl5.004

DESCRIPTION
This document describes differences between the 5.003 release (as documdegiamming Perl
second edition—the Camel Book) and this one.
Supported Environments
Perl5.004 builds out of the box on Unix, Plan 9, LynxOS, VMS, 0S/2, QNX, AmigaOS, and Windows NT.
Perl runs on Windows 95 as well, but it cannot be built there, for lack of a reasonable command interpreter.
Core Changes
Most importantly, many bugs were fixed, including several security problems. S€bahgesfile in the
distribution for details.
List assignment to %ENV works
%ENV = () and%ENV = @list now work as expected (except on VMS where it generates a fatal error).

"Can't locate Foo.pm in @INC" error now lists @INC

Compilation option: Binary compatibility with 5.003
There is a new Configure question that asks if you want to maintain binary compatibility with Perl 5.003. If
you choose binary compatibility, you do not have to recompile your extensions, but you might have symbol
conflicts if you embed Perl in another application, just as in the 5.003 release. By default, binary
compatibility is preserved at the expense of symbol table pollution.

$PERL50OPTenvironment variable
You may now put Perl options in i ERL50PTenvironment variable. Unless Perl is running with taint
checks, it will interpret this variable as if its contents had appeared on a "#!perl" line at the beginning of your
script, except that hyphens are optional. PERL50OPT may only be used to set the following switches:
—[DIMUdmw] .

Limitations on —M, —-m, and —T options
The—-Mand-moptions are no longer allowed on #ie line of a script. If a script needs a module, it should
invoke it with theuse pragma.

The -T option is also forbidden on thg line of a script, unless it was present on the Perl command line.
Due to the way#! works, this usually means that must be in the first argument. Thus:

#!/usr/bin/perl =T —w
will probably work for an executable script invokedsagsptname , while:
#!/usr/bin/perl —w =T

will probably fail under the same conditions. (Non-Unix systems will probably not follow this rule.) But
perl scriptname is guaranteed to fail, since then there is no chane& &feing found on the command
line before it is found on thé line.

More precise warnings

If you removed the-w option from your Perl 5.003 scripts because it made Perl too verbose, we recommend
that you try putting it back when you upgrade to Perl 5.004. Each new perl version tends to remove some
undesirable warnings, while adding new warnings that may catch bugs in your scripts.

Deprecated: Inherited AUTOLOADor non—-methods

Before Perl 5.004AUTOLOADunNctions were looked up as methods (using@i8&Ahierarchy), even when
the function to be autoloaded was called as a plain function Ke@:bar()), not a method (e.qg.
Foo—->bar() or$obj->bar()).

21-Jun—-1997 Perl Version 5.004 3

perldelta Perl Programmers Reference Guide perldelta

Perl 5.005 will use method lookup only for methoA8ITOLOAB. However, there is a significant base of
existing code that may be using the old behavior. So, as an interim step, Perl 5.004 issues an optional
warning when a non—-method uses an inheed OLOAD

The simple rule is: Inheritance will not work when autoloading hon—-methods. The simple fix for old code
is: In any module that used to depend on inheriéib OLOADor non—-methods from a base class named
BaseClass , executeeAUTOLOAD = \&BaseClass::AUTOLOAD during startup.

Previously deprecated %OVERLOAD is no longer usable

Using %OVERLOAD to define overloading was deprecated in 5.003. Overloading is now defined using the
overload pragma. %OVERLOAD is still used internally but should not be used by Perl scripise8ead
for more details.

Subroutine arguments created only when they‘re modified

In Perl 5.004, nonexistent array and hash elements used as subroutine parameters are brought into existence
only if they are actually assigned to (\@).

Earlier versions of Perl vary in their handling of such arguments. Perl versions 5.002 and 5.003 always
brought them into existence. Perl versions 5.000 and 5.001 brought them into existence only if they were not
the first argument (which was almost certainly a bug). Earlier versions of Perl never brought them into

existence.

For example, given this code:

undef @a; undef %a;
sub show { print $_[0] };
sub change {$_[0]++ };
show($a[2]);
change($a{b});

After this code executes in Perl 5.08&{b} exists but$a[2] does not. In Perl 5.002 and 5.003, both
$a{b} and$a[2] would have existed (bd#a[2]'s value would have been undefined).

Group vector changeable with ~ $)
The$) special variable has always (well, in Perl 5, at least) reflected not only the current effective group,
but also the group list as returned by getgroups() C function (if there is one). However, until this
release, there has not been a way to cakbétgroups() C function from Perl.

In Perl 5.004, assigning) is exactly symmetrical with examining it: The first number in its string value
is used as the effective gid; if there are any numbers after the first one, they are passed to the
setgroups() C function (if there is one).

Fixed parsing of $$<digit , &$<digit , etc.
Perl versions before 5.004 misinterpreted any type marker followed'bguid a digit. For example$$0"
was incorrectly taken to meafi{$}0" instead of ${$0}". This bug is (mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two widely—used
modules depend on the old meaning®$0" in a string. So Perl 5.004 still interpre@$«digit " in the

old (broken) way inside strings; but it generates this message as a warning. And in Perl 5.005, this special
treatment will cease.

No resetting of $. on implicit close
The documentation for Perl 5.0 has always stated®has not reset when an already—open file handle is
reopened with no intervening call ¢tose . Due to a bug, perl versions 5.000 through 5did3eset$.
under that circumstance; Perl 5.004 does not.

wantarray may return undef
The wantarray operator returns true if a subroutine is expected to return a list, and false otherwise. In
Perl 5.004wantarray can also return the undefined value if a subroutine’s return value will not be used at
all, which allows subroutines to avoid a time—consuming calculation of a return value if it isn‘t going to be

4 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

used.

Changes to tainting checks

A bug in previous versions may have failed to detect some insecure conditions when taint checks are turned
on. (Taint checks are used in setuid or setgid scripts, or when explicitly turned on wifh itheocation

option.) Although it's unlikely, this may cause a previously—working script to now fail — which should be
construed as a blessing, since that indicates a potentially—serious security hole was just plugged.

The new restrictions when tainting include:

No glob() or<*

These operators may spawn the C shell (csh), which cannot be made safe. This restriction will be
lifted in a future version of Perl when globbing is implemented without the use of an external program.

No spawning if tainted $CDPATH, $ENV, $BASH_ENV
These environment variables may alter the behavior of spawned programs (especially shells) in ways
that subvert security. So now they are treated as dangerous, in the m&iR&r ahd$PATH.

No spawning if tainted $TERMdoesn't look like a terminal name

Some termcap libraries do unsafe things WTHERM. However, it would be unnecessarily harsh to
treat all$TERMvalues as unsafe, since only shell metacharacters can cause trékiEERM. So a

tainted STERMis considered to be safe if it contains only alphanumerics, underscores, dashes, and
colons, and unsafe if it contains other characters (including whitespace).

New Opcode module and revised Safe module

A new Opcode module supports the creation, manipulation and application of opcode masks. The revised
Safe module has a new API and is implemented using the new Opcode module. Please read the new Opcode
and Safe documentation.

Embedding improvements

In older versions of Perl it was not possible to create more than one Perl interpreter instance inside a single
process without leaking like a sieve and/or crashing. The bugs that caused this behavior have all been fixed.
However, you still must take care when embedding Perl in a C program. See the updated perlembed
manpage for tips on how to manage your interpreters.

Internal change: FileHandle class based on 10::* classes

File handles are now stored internally as type 10::Handle. The FileHandle module is still supported for
backwards compatibility, but it is now merely a front end to the 10::* modules — specifically, 10::Handle,
10::Seekable, and 10::File. We suggest, but do not require, that you use the 10::* modules in new code.

In harmony with this changéGLOB{FILEHANDLE} is now just a backward—compatible synonym for
*GLOB{IO} .
Internal change: PerllO abstraction interface

It is now possible to build Perl with AT's sfio 10 package instead of stdio. Swerlapio for more
details, and th&NSTALL file for how to use it.

New and changed syntax

$coderef- (PARAMS)

A subroutine reference may now be suffixed with an arrow and a (possibly empty) parameter list. This
syntax denotes a call of the referenced subroutine, with the given parameters (if any).

This new syntax follows the pattern $hashref->{FOO} and$aryref->[$foo]: You may
now write &$subref($foo) as$subref->($foo). All of these arrow terms may be chained;
thus,&{$table—>{FOO}}($bar) may now be writte$table—>{FOO}->($bar).

21-Jun—-1997 Perl Version 5.004 5

perldelta Perl Programmers Reference Guide perldelta

New and changed builtin constants

_ PACKAGE__
The current package name at compile time, or the undefined value if there is no current package (due
to apackage; directive). Like_ FILE__ and__LINE__, PACKAGE__doesnot interpolate
into strings.

New and changed builtin variables

$"E Extended error message on some platforms. (Also knoEdSENDED OS_ERRGORyou use
English).
$"H The current set of syntax checks enabledusy strict . See the documentation sifict for

more details. Not actually new, but newly documented. Because it is intended for internal use by Perl
core components, there is nse English long name for this variable.

$"M By default, running out of memory it is not trappable. However, if compiled for this, Perl may use the
contents of$"M as an emergency pool aftdie() ing with this message. Suppose that your Perl
were compiled with —-DEMERGENCY_SBRK and used Perl‘'s malloc. Then

$"M ='a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. SE®N®BIBALL file for information on how
to enable this option. As a disincentive to casual use of this advanced feature, thengsés no
English long name for this variable.

New and changed builtin functions

delete on slices
This now works. (e.glelete @ENV{'PATH', ‘'MANPATH'})

flock

is now supported on more platforms, prefers fcntl to lockf when emulating, and always flushes before
(un)locking.

printf and sprintf
Perl now implements these functions itself; it doesn't use the C library furspiamif() any
more, except for floating—point numbers, and even then only known flags are allowed. As a result, it is
now possible to know which conversions and flags will work, and what they will do.

The new conversions in PerBgrintf() are:

%i a synonym for %d

%p a pointer (the address of the Perl value, in hexadecimal)

%n special: *stores* the number of characters output so far
into the next variable in the parameter list

The new flags that go between #and the conversion are:

prefix octal with "0", hex with "0x"
h interpret integer as C type "short" or "unsigned short"
\% interpret integer as Perl’s standard integer type

Also, where a number would appear in the flags, an asterisk ("*") may be used instead, in which case
Perl uses the next item in the parameter list as the given number (that is, as the field width or
precision). If a field width obtained through "*" is negative, it has the same effect as the ‘-’ flag:
left—justification.

Seesprintf for a complete list of conversion and flags.

6 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

keys as an Ivalue

As an lvaluekeys allows you to increase the number of hash buckets allocated for the given hash.
This can gain you a measure of efficiency if you know the hash is going to get big. (This is similar to
pre—extending an array by assigning a larger numd&#dcoray.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it. These buckets will be retained even if you
do %hash = () ; useundef %hash if you want to free the storage whi#éhash is still in scope.

You can‘t shrink the number of buckets allocated for the hash kejrgg in this way (but you needn‘t
worry about doing this by accident, as trying has no effect).

my() in Control Structures

You can now useamy() (with or without the parentheses) in the control expressions of control
structures such as:

while (defined(my $line = <>)) {
$line = Ic $line;

} continue {
print $line;

}

if ((my $answer = <STDIN>) =~ /*y(es)?$/i) {
user_agrees();

} elsif ($answer =~ /*n(0)?%/i) {
user_disagrees();

}else {
chomp $answer;
die "$answer’ is neither ‘yes’ nor ‘no™;

}

Also, you can declare a foreach loop control variable as lexical by preceding it with the word "my".
For example, in:

foreach my $i (1, 2, 3) {
some_function();

}

$i is a lexical variable, and the scopebofextends to the end of the loop, but not beyond it.
Note that you still cannot usey() on global punctuation variables suctbasand the like.

pack() and unpack()

A new format ‘w’ represents a BER compressed integer (as defined in ASN.1). Its format is a
sequence of one or more bytes, each of which provides seven bits of the total value, with the most
significant first. Bit eight of each byte is set, except for the last byte, in which bit eight is clear.

Both pack() andunpack() now fail when their templates contain invalid types. (Invalid types
used to be ignored.)

sysseek()

The newsysseek() operator is a variant gfeek() that sets and gets the file's system read/write
position, using the Iseek(2) system call. It is the only reliable way to seek beforesysiagd()
orsyswrite() . Its return value is the new position, or the undefined value on failure.

use VERSION

If the first argument toise is a number, it is treated as a version number instead of a module name. If
the version of the Perl interpreter is less than VERSION, then an error message is printed and Perl
exits immediately. Becausese occurs at compile time, this check happens immediately during the
compilation process, unlikeequire VERSION , which waits until runtime for the check. This is

21-Jun—-1997 Perl Version 5.004 7

perldelta Perl Programmers Reference Guide perldelta

often useful if you need to check the current Perl version bek®éng library modules which have
changed in incompatible ways from older versions of Perl. (We try not to do this more than we have
to.)

use Module VERSION LIST
If the VERSION argument is present between Module and LIST, tharsthevill call the VERSION
method in class Module with the given version as an argument. The default VERSION method,
inherited from the UNIVERSAL class, croaks if the given version is larger than the value of the
variable$Module::VERSION. (Note that there is not a comma after VERSION!)

This version—checking mechanism is similar to the one currently used in the Exporter module, but it is
faster and can be used with modules that don‘t use the Exporter. It is the recommended method for
new code.

prototype(FUNCTION)
Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION is a reference to or the name of the function whose prototype you want to retrieve. (Not
actually new; just never documented before.)

srand

The default seed fasrand , which used to béime , has been changed. Now it's a heady mix of
difficult—-to—predict system-dependent values, which should be sufficient for most everyday purposes.

Previous to version 5.004, callingnd without first callingsrand would yield the same sequence of
random numbers on most or all machines. Now, when perl sees that you're readtingand haven't

yet calledsrand , it callssrand with the default seed. You should still cedand manually if your

code might ever be run on a pre-5.004 system, of course, or if you want a seed other than the default.

$_ as Default

Functions documented in the Camel to defaul$tonow in fact do, and all those that do are so
documented iperlfunc

m//gc does not reset search position on failure
Them//g match iteration construct has always reset its target string‘s search position (which is visible
through thepos operator) when a match fails; as a result, the m#ég match after a failure starts
again at the beginning of the string. With Perl 5.004, this reset may be disabled by adding the "c" (for
"continue") modifier, i.eim//gc . This feature, in conjunction with th& zero—width assertion,
makes it possible to chain matches together. pSdep andperlre.

m//x ignores whitespace before ?*+{}

The m//x construct has always been intended to ignore all unescaped whitespace. However, before
Perl 5.004, whitespace had the effect of escaping repeat modifiers like ™" or "?"; for example,
*p/x was (mis)interpreted da*b/x . This bug has been fixed in 5.004.

nested sub{} closures work now
Prior to the 5.004 release, nested anonymous functions didn‘t work right. They do now.

formats work right on changing lexicals
Just like anonymous functions that contain lexical variables that change (like a lexical index variable
for aforeach loop), formats now work properly. For example, this silently failed before (printed
only zeros), but is fine now:

my $i;

foreach $i (1..10) {
write;

}

format =
my i is @#

8 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

New builtin methods
The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa(CLASS)
isa returnstrueif its object is blessed into a subclas€oASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to check
what a reference points to. Example:

use UNIVERSAL qgw(isa);
if(isa($ref, 'ARRAY")) {

}

can(METHOD)
can checks to see if its object has a method cad&EX'HODIf it does then a reference to the sub is
returned; if it does not thamdefis returned.

VERSION([NEED])
VERSIONTreturns the version number of the class (package). If the NEED argument is given then it
will check that the current version (as defined by $W&RSIONvariable in the given package) not
less than NEED; it will die if this is not the case. This method is normally called as a class method.
This method is called automatically by MERSIONform of use .

use A 1.2 gw(some imported subs);

implies:

A->VERSION(1.2);
NOTE: can directly uses Perl's internal code for method lookup,iaad uses a very similar method and
caching strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not nesal to
UNIVERSALIn order to make these methods available to your program. This is necessary only if you wish
to haveisa available as a plain subroutine in the current package.

TIEHANDLE now supported
Seeperltie for other kinds ofie() s.

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return an object of some sort. The
reference can be used to hold some internal information.

sub TIEHANDLE {
print "<shout>\n";
my $i;
return bless \$i, shift;

}

PRINT this, LIST
This method will be triggered every time the tied handle is printed to. Beyond its self reference it also
expects the list that was passed to the print function.

sub PRINT {
$r = shift;
$$r++;

21-Jun—-1997 Perl Version 5.004 9

perldelta Perl Programmers Reference Guide perldelta

return print join($, => map {uc} @_), $\;
}
PRINTF this, LIST

This method will be triggered every time the tied handle is printed to witprtht() function.
Beyond its self reference it also expects the format and list that was passed to the printf function.

sub PRINTF {
shift;
my $fmt = shift;
print sprintf($fmt, @_)."\n";
}

READ this LIST
This method will be called when the handle is read from viagthe orsysread functions.
sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";

}
READLINE this
This method will be called when the handle is read from. The method should return undef when there
iS no more data.
sub READLINE {
$r = shift;
return "PRINT called $$r times\n"
}
GETC this
This method will be called when tigetc function is called.

sub GETC { print "Don’t GETC, Get Perl"; return "a";

DESTROY this
As with the other types of ties, this method will be called when the tied handle is about to be destroyed.
This is useful for debugging and possibly for cleaning up.

sub DESTROY {
print "</shout>\n";

}
Malloc enhancements

Four new compilation flags are recognized by malloc.c. (They have no effect if perl is compiled with system
malloc() .)
-DDEBUGGING_MSTATS

If perl is compiled wittDEBUGGING_MSTAT&fined, you can print memory statistics at runtime by

running Perl thusly:

env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on exit; with a value of 1, the statistics
ares printed only on exit. (If you want the statistics at an arbitrary time, you'll need to install the
optional module Devel::Peek.)

10 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

-DEMERGENCY_SBRK

If this macro is defined, running out of memory need not be a fatal error: a memory pool can allocated
by assigning to the special variaeM. See'$"M".

-DPACK_MALLOC

Perl memory allocation is by bucket with sizes close to powers of two. Because of these malloc
overhead may be big, especially for data of size exactly a power of tR&ACK_MALLOG defined,

perl uses a slightly different algorithm for small allocations (up to 64 bytes long), which makes it
possible to have overhead down to 1 byte for allocations which are powers of two (and appear quite
often).

Expected memory savings (with 8-byte alignmenalignbytes) is about 20% for typical Perl
usage. Expected slowdown due to additional malloc overhead is in fractions of a percent (hard to
measure, because of the effect of saved memory on speed).

-DTWO_POT_OPTIMIZE

Similarly to PACK_MALLOCthis macro improves allocations of data with size close to a power of
two; but this works for big allocations (starting with 16K by default). Such allocations are typical for
big hashes and special-purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M allocation will not affect speed
of execution, since the tail of such a chunk is not going to be touched (and thus will not require real
memory). However, it may result in a premature out—of-memory error. So if you will be manipulating
very large blocks with sizes close to powers of two, it would be wise to define this macro.

Expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks); expected slowdown is negligible.

Miscellaneous efficiency enhancements

Functions that have an empty prototype and that do nothing but return a fixed value are now inlined (e.g.
sub PI () {3.14159 }).

Each unique hash key is only allocated once, no matter how many hashes have an entry with that key. So
even if you have 100 copies of the same hash, the hash keys never have to be reallocated.

Support for More Operating Systems
Support for the following operating systems is new in Perl 5.004.

Win32

Perl 5.004 now includes support for building a "native" perl under Windows NT, using the Microsoft Visual
C++ compiler (versions 2.0 and above). The resulting perl can be used under Windows 95 (if it is installed
in the same directory locations as it got installed in Windows NT). This port includes support for perl
extension building tools lik¥MakeMakerandh2xs so that many extensions available on the Comprehensive
Perl Archive Network (CPAN) can now be readily built under Windows NT. See http://www.perl.com/ for
more information on CPAN, andEADME.win32for more details on how to get started with building this
port.

There is also support for building perl under the Cygwin32 environment. Cygwin32 is a set of GNU tools
that make it possible to compile and run many UNIX programs under Windows NT by providing a mostly
UNIX-like interface for compilation and execution. SREADME.cygwin3Zor more details on this port,

and how to obtain the Cygwin32 toolkit. This port has not been as well tested as the "native" port described
above (which is not as well tested as we'd like either :)

Plan 9
SeeREADME.plan9

21-Jun—-1997 Perl Version 5.004 11

perldelta Perl Programmers Reference Guide perldelta

QNX
SeeREADME.qgnx
AmigaOS
SeeREADME.amigaas
Pragmata
Six new pragmatic modules exist:
use autouse MODULE = qw(subl sub2 sub3)
Defersrequire MODULE until someone calls one of the specified subroutines (which must be
exported by MODULE). This pragma should be used with caution, and only when necessary.
use blib
use blib ‘dir’
Looks for MakeMaker-likeblib' directory structure starting iir (or current directory) and working
back up to five levels of parent directories.
Intended for use on command line with option as a way of testing arbitrary scripts against an
uninstalled version of a package.
use constant NAME = VALUE
Provides a convenient interface for creating compile—time constants, See
Constant Functions in perlsub
use locale
Tells the compiler to enable (or disable) the use of POSIX locales for builtin operations.
Whenuse locale is in effect, the current LC_CTYPE locale is used for regular expressions and
case mapping; LC_COLLATE for string ordering; and LC_NUMERIC for numeric formating in printf
and sprintf (bunot in print). LC_NUMERIC is always used in write, since lexical scoping of formats
is problematic at best.
Eachuse locale orno locale affects statements to the end of the enclosing BLOCK or, if not
inside a BLOCK, to the end of the current file. Locales can be switched and queried with
POSIX::setlocale()
Seeperllocalefor more information.
use ops
Disable unsafe opcodes, or any named opcodes, when compiling Perl code.
use vmsish
Enable VMS-specific language features. Currently, there are three VMS-specific features available:
‘status’, which make$? andsystem return genuine VMS status values instead of emulating POSIX;
‘exit’, which makesexit take a genuine VMS status value instead of assumingxitat is an
error; and ‘time‘, which makes all times relative to the local time zone, in the VMS tradition.
Modules

Required Updates

Though Perl 5.004 is compatible with almost all modules that work with Perl 5.003, there are a few
exceptions:

Module Required Version for Perl 5.004
Filter Filter-1.12
LWP libwww—perl-5.08

Tk Tk400.202 (-w makes noise)

12

Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

Also, the majordomo mailing list program, version 1.94.1, doesn‘t work with Perl 5.004 (nor with perl 4),
because it executes an invalid regular expression. This bug is fixed in majordomo version 1.94.2.
Installation directories

The installperl script now places the Perl source files for extensions in the architecture—specific library
directory, which is where the shared libraries for extensions have always been. This change is intended to
allow administrators to keep the Perl 5.004 library directory unchanged from a previous version, without
running the risk of binary incompatibility between extensions’ Perl source and shared libraries.

Module information summary
Brand new modules, arranged by topic rather than strictly alphabetically:

CGl.pm Web server interface ("Common Gateway Interface")
CGl/Apache.pm Support for Apache’s Perl module

CGl/Carp.pm Log server errors with helpful context
CGl/Fast.pm Support for FastCGl (persistent server process)
CGlI/Push.pm Support for server push

CGl/Switch.pm Simple interface for multiple server types

CPAN Interface to Comprehensive Perl Archive Network
CPAN::FirstTime Utility for creating CPAN configuration file
CPAN::Nox Runs CPAN while avoiding compiled extensions
10.pm Top-level interface to 10::* classes

IO/File.pm 1O::File extension Perl module

IO/Handle.pm 10::Handle extension Perl module

IO/Pipe.pm 10::Pipe extension Perl module

I0/Seekable.pm 10::Seekable extension Perl module
I0/Select.pm 10::Select extension Perl module

I0/Socket.pm 10::Socket extension Perl module

Opcode.pm Disable named opcodes when compiling Perl code

ExtUtils/Embed.pm Utilities for embedding Perl in C programs
ExtUtils/testlib.pm Fixes up @INC to use just-built extension

FindBin.pm Find path of currently executing program
Class/Struct.pm Declare struct-like datatypes as Perl classes
File/stat.pm By—name interface to Perl’s builtin stat
Net/hostent.pm By—-name interface to Perl’s builtin gethost*
Net/netent.pm By—name interface to Perl’s builtin getnet*

Net/protoent.pom By-name interface to Perl’s builtin getproto*
Net/servent.pm By—-name interface to Perl’s builtin getserv*
Time/gmtime.pm By—name interface to Perl’s builtin gmtime
Time/localtime.pm By-name interface to Perl’s builtin localtime

Time/tm.pm Internal object for Time::{gm,local}time
User/grent.pm By—-name interface to Perl’s builtin getgr*
User/pwent.pm By—name interface to Perl’s builtin getpw*

Tie/RefHash.pm Base class for tied hashes with references as keys
UNIVERSAL.pm Base class for *ALL* classes

Fentl

New constants in the existing Fcntl modules are now supported, provided that your operating system
happens to support them:

F_GETOWN F_SETOWN
O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC

21-Jun—-1997 Perl Version 5.004 13

perldelta Perl Programmers Reference Guide perldelta

O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl opesteopen() and fentl() and the basic
database modules like SDBM_File. For the exact meaning of these and other Fcntl constants please refer to
your operating system's documentation fiontl() andopen() .

In addition, the Fcntl module now provides these constants for use with the Perl dimsriafpr
LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where therfloskfjo system call, Perl
emulates it). However, for historical reasons, these constants are not exported unless they are explicitly
requested with the ":flock" tag (eugse Fcntl “:flock’).

The 10 module provides a simple mechanism to load all of the 10 modules at one go. Currently this
includes:

10::Handle
10::Seekable
10::File
10::Pipe
10::Socket

For more information on any of these modules, please see its respective documentation.

Math::Complex

The Math::Complex module has been totally rewritten, and now supports more operations. These are
overloaded:

+ — * [** <=> neg ~ abs sqrt exp log sin cos atan2 " (stringify)
And these functions are now exported:

pii Re Im arg
log10 logn In cbrt root
tan

csc sec cot

asin acos atan
acsc asec acot
sinh cosh tanh
csch sech coth
asinh acosh atanh
acsch asech acoth
cplx cplxe

Math::Trig

This new module provides a simpler interface to parts of Math::Complex for those who need trigonometric
functions only for real numbers.

DB_File

There have been quite a few changes made to DB_File. Here are a few of the highlights:
° Fixed a handful of bugs.

° By public demand, added support for the standard hash furectiists()

° Made it compatible with Berkeley DB 1.86.

° Made negative subscripts work with RECNO interface.

14

Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

° Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default mode from 0640 to
0666.

° Made DB_File automatically import tiepen() constants (O_RDWR, O_CREAT etc.) from Fcntl, if
available.

° Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of changes. Everything after DB_File 1.01
has been added since 5.003.

Net::Ping
Major rewrite — support added for both udp echo and real icmp pings.
Object-oriented overrides for builtin operators
Many of the Perl builtins returning lists now have object-oriented overrides. These are:
File::stat
Net::hostent
Net::netent
Net::protoent
Net::servent
Time::gmtime
Time::localtime

User::grent
User::pwent

For example, you can now say

use File::stat;
use User::pwent;
$his = (stat($filename)—>st_uid == pwent($whoever)->pw_uid);

Utility Changes
pod2html

Sends converted HTML to standard output

The pod2htmlutility included with Perl 5.004 is entirely new. By default, it sends the converted
HTML to its standard output, instead of writing it to a file like Perl 5.0@¢®@d2htmldid. Use the
—outfile=FILENAME option to write to a file.

xsubpp

void XSUBs now default to returning nothing
Due to a documentation/implementation bug in previous versions of Perl, XSUBs with a return type of
void have actually been returning one value. Usually that value was the GV for the XSUB, but
sometimes it was some already freed or reused value, which would sometimes lead to program failure.

In Perl 5.004, if an XSUB is declared as returniog , it actually returns no value, i.e. an empty list
(though there is a backward—compatibility exception; see below). If your XSUB really does return an
SV, you should give it a return type &Y * .

For backward compatibilitygsubpptries to guess whethevaid XSUB is reallyvoid or if it wants
to return arSV * . It does so by examining the text of the XSUBxstibppfinds what looks like an
assignment t&T(0) , it assumes that the XSUB's return type is re@Ny* .

C Language API Changes

gv_fetchmethod and perl_call_sv

The gv_fetchmethod function finds a method for an object, just like in Perl 5.003. The GV it
returns may be a method cache entry. However, in Perl 5.004, method cache entries are not visible to

21-Jun—-1997 Perl Version 5.004 15

perldelta Perl Programmers Reference Guide perldelta

users; therefore, they can no longer be passed diregibritacall_sv . Instead, you should use the
GvCVmacro on the GV to extract its CV, and pass the Qpetb call_sv

The most likely symptom of passing the resulgef fetchmethod to perl_call_sv is Perl's
producing an "Undefined subroutine called" error onseondcall to a given method (since there is
no cache on the first call).

perl_eval_pv
A new function handy for eval‘ing strings of Perl code inside C code. This function returns the value
from the eval statement, which can be used instead of fetching globals from the symbol table. See
perlguts perlembedandperlcall for details and examples.

Extended API for manipulating hashes
Internal handling of hash keys has changed. The old hashtable API is still fully supported, and will
likely remain so. The additions to the API allow passing keyS\&s, so thatied hashes can be
given real scalars as keys rather than plain strings (nontied hashes still can only use strings as keys).
New extensions must use the new hash access functions and macros if they wisB\% kegs.
These additions also make it feasible to maniptEes (hash entries), which can be more efficient.
Seeperlgutsfor details.

Documentation Changes

Many of the base and library pods were updated. These new pods are included in section 1:

perldelta
This document.

perifaq
Frequently asked questions.

perllocale
Locale support (internationalization and localization).

peritoot
Tutorial on Perl OO programming.

perlapio
Perl internal 10 abstraction interface.
perlmodlib

Perl module library and recommended practice for module creation. Extractegdrionod(which is
much smaller as a result).

perldebug
Although not new, this has been massively updated.

perlsec
Although not new, this has been massively updated.

New Diagnostics

Several new conditions will trigger warnings that were silent before. Some only affect certain platforms.
The following new warnings and errors outline these. These messages are classified as follows (listed in
increasing order of desperation):

(W) A warning (optional).

(D) A deprecation (optional).

(S) A severe warning (mandatory).

(F) A fatal error (trappable).

(P) An internal error you should never see (trappable).
(X) A very fatal error (nontrappable).

16

Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

(A) An alien error message (not generated by Perl).

"my" variable %s masks earlier declaration in same scope
(S) A lexical variable has been redeclared in the same scope, effectively eliminating all access to the
previous instance. This is almost always a typographical error. Note that the earlier variable will still
exist until the end of the scope or until all closure referents to it are destroyed.

%s argument is not a HASH element or slice
(F) The argument tdelete() =~ must be either a hash element, such as

$foo{$bar}
$ref->[12]->{"susie"

or a hash slice, such as

@foo{$bar, $baz, $xyzzy}
@{$ref->[12]H{"susie", "queue"}
Allocation too large: %lx
(X) You can't allocate more than 64K on an MS-DOS machine.

Allocation too large
(F) You can't allocate more than 2731+"small amount" bytes.

Applying %s to %s will act on scalar(%s)
(W) The pattern match (//), substitution (s///), and translation (tr///) operators work on scalar values. If
you apply one of them to an array or a hash, it will convert the array or hash to a scalar value — the
length of an array, or the population info of a hash — and then work on that scalar value. This is
probably not what you meant to do. $gepandmapfor alternatives.

Attempt to free nonexistent shared string
(P) Perl maintains a reference counted internal table of strings to optimize the storage and access of
hash keys and other strings. This indicates someone tried to decrement the reference count of a string
that can no longer be found in the table.

Attempt to use reference as Ivalue in substr
(W) You supplied a reference as the first argumerstutastr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first.sGestr

Can't redefine active sort subroutine %s
(F) Perl optimizes the internal handling of sort subroutines and keeps pointers into them. You tried to
redefine one such sort subroutine when it was currently active, which is not allowed. If you really
want to do this, you should wrisert { &func } @x instead ofort func @x

Can't use bareword ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowgerii®ée

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Internal error trying to resolve overloading specified by a method name (as opposed to a subroutine
reference).
Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsudbr commentary and workarounds.
Constant subroutine %s undefined

(S) You undefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsudbr commentary and workarounds.

21-Jun—-1997 Perl Version 5.004 17

perldelta Perl Programmers Reference Guide perldelta

Copy method did not return a reference

(F) The method which overloads "=" is buggy. S&py Constructar
Died

(F) You passedie() an empty string (the equivalent die

both$@and$_ were empty.

) or you called it with no args and

Exiting pseudo-block via %s
(W) You are exiting a rather special block construct (like a sort block or subroutine) by unconventional
means, such as a goto, or a loop control statementso8ee

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to 252 characters for simple names,
somewhat more for compound names (fke:B). You've exceeded Perl‘s limits. Future versions
of Perl are likely to eliminate these arbitrary limitations.

lllegal character %s (carriage return)
(F) A carriage return character was found in the input. This is an error, and not a warning, because
carriage return characters can break multi-line strings, including here documentpr{etg.,
<<EOF;).

lllegal switch in PERL50PT: %s
(X) The PERL5OPT environment variable may only be used to set the following switches:
-[DIMUdmw] .

Integer overflow in hex number
(S) The literal hex humber you have specified is too big for your architecture. On a 32-bit architecture
the largest hex literal is OXFFFFFFFF.

Integer overflow in octal number
(S) The literal octal number you have specified is too big for your architecture. On a 32-bit
architecture the largest octal literal is 037777777777.

internal error: glob failed

(P) Something went wrong with the external program(s) usedldbr and<*.c> . This may mean
that your csh (C shell) is broken. If so, you should change all of the csh-related variables in config.sh:
If you have tcsh, make the variables refer to it as if it were csh (e.g.
full_csh="/usr/bin/tcsh’); otherwise, make them all empty (except thatsh should be
‘undef’) so that Perl will think csh is missing. In either case, after editing config.sh, run
.IConfigure -S and rebuild Perl.

Invalid conversion in %s: "%s"

(W) Perl does not understand the given format conversiorsyBef.

Invalid type in pack: ‘%s’
(F) The given character is not a valid pack type. [k

Invalid type in unpack: ‘%s’
(F) The given character is not a valid unpack type. uBpack

Name "%s::%s" used only once: possible typo

(W) Typographical errors often show up as unique variable names. If you had a good reason for having
a unigue name, then just mention it again somehow to suppress the message Ydrs pragma
is provided for just this purpose).

Null picture in formline

(F) The first argument to formline must be a valid format picture specification. It was found to be
empty, which probably means you supplied it an uninitialized value p&#erm

18 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

Offset outside string
(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer. This is
difficult to imagine. The sole exception to this is thgsread() ing past the buffer will extend the
buffer and zero pad the new area.

Out of memory!
(X|F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way Perl was compiled.
By default it is not trappable. However, if compiled for this, Perl may use the contebftsl afs an
emergency pool aftetie() ing with this message. In this case the error is trapeiuie

Out of memory during request for %s
(F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request. However, the request was judged large enough (compile-time
default is 64K), so a possibility to shut down by trapping this error is granted.

panic: frexp
(P) The library functiorirexp() failed, making printf("%f") impossible.

Possible attempt to put comments in qw() list
(W) gw() lists contain items separated by whitespace; as with literal strings, comment characters are
not ignored, but are instead treated as literal data. (You may have used different delimiters than the
exclamation marks parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

@list = qw(
a# acomment
b # another comment

)i
when you should have written this:
@list = qw(
a
b
)i
If you really want comments, build your list the old—fashioned way, with quotes and commas:
@list = (

‘a’, #acomment
'b’, # another comment

)i
Possible attempt to separate words with commas

(W) gw() lists contain items separated by whitespace; therefore commas aren‘t needed to separate the
items. (You may have used different delimiters than the parentheses shown here; braces are also
frequently used.)

You probably wrote something like this:
gw!a, b, cl;

which puts literal commas into some of the list items. Write it without commas if you don‘t want them
to appear in your data:

gw!'abcl;

21-Jun—-1997 Perl Version 5.004 19

perldelta Perl Programmers Reference Guide perldelta

Scalar value @%s{%s} better written as $%s{%s}

(W) You've used a hash slice (indicated by @) to select a single element of a hash. Generally it's
better to ask for a scalar value (indicatedbhy The difference is tha@ifoo{&bar} always behaves

like a scalar, both when assigning to it and when evaluating its argument, @fole&bar}

behaves like a list when you assign to it, and provides a list context to its subscript, which can do weird
things if you're expecting only one subscript.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’

(P) Overloading resolution over @ISA tree may be broken by importing stubs. Stubs should never be
implicitely created, but explicit calls wan may break this.

Too late for "=T" option
(X) The #! line (or local equivalent) in a Perl script contains-theoption, but Perl was not invoked
with =T in its argument list. This is an error because, by the time Perl discov&rinaa script, it's
too late to properly taint everything from the environment. So Perl gives up.

untie attempted while %d inner references still exist
(W) A copy of the object returned frotie (ortied) was still valid whermuntie was called.

Unrecognized character %s

(F) The Perl parser has no idea what to do with the specified character in your Perl script (or eval).
Perhaps you tried to run a compressed script, a binary program, or a directory as a Perl program.

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl executables, some of
which may support fork, some not. Try changing the name you call Perlgsrito , perl__ , and
S0 on.

Use of "$$<digit " to mean "${$}<digit " is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed&'byafid a digit. For
example, $$0" was incorrectly taken to meafi{$}0" instead of ${$0}". This bug is (mostly)
fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two
widely-used modules depend on the old meanindg$0™ in a string. So Perl 5.004 still interprets
"$$<digit " in the old (broken) way inside strings; but it generates this message as a warning. And
in Perl 5.005, this special treatment will cease.

Value of %s can be "0"; test with defined()

(W) In a conditional expression, you used <HANDLE, <* (glokdch() , or readdir() as a
boolean value. Each of these constructs can return a value of "0"; that would make the conditional
expression false, which is probably not what you intended. When using these constructs in conditional
expressions, test their values with tlefined operator.

Variable "%s" may be unavailable

(W) An inner (nestedqnonymousubroutine is inside mamedsubroutine, and outside that is another
subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable defined in the
outermost subroutine. For example:

sub outermost { my $a; sub middle { sub{$a }}}

If the anonymous subroutine is called or referenced (directly or indirectly) from the outermost
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is called or
referenced when the outermost subroutine is not active, it will see the value of the shared variable as it
was before and during the *first* call to the outermost subroutine, which is probably not what you
want.

20 Perl Version 5.004 21-Jun-1997

perldelta Perl Programmers Reference Guide perldelta

In these circumstances, it is usually best to make the middle subroutine anonymous, ssibd}the
syntax. Perl has specific support for shared variables in nested anonymous subroutines; a named
subroutine in between interferes with this feature.

Variable "%s" will not stay shared

(W) An inner (nested)hamed subroutine is referencing a lexical variable defined in an outer
subroutine.

When the inner subroutine is called, it will probably see the value of the outer subroutine's variable as
it was before and during the *first* call to the outer subroutine; in this case, after the first call to the
outer subroutine is complete, the inner and outer subroutines will no longer share a common value for
the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itself, then
the outer and inner subroutines witvershare the given variable.

This problem can usually be solved by making the inner subroutine anonymous, usnog the
syntax. When inner anonymous subs that reference variables in outer subroutines are called or
referenced, they are automatically rebound to the current values of such variables.

Warning: something's wrong

(W) You passedvarn() an empty string (the equivalent whrn
and$_ was empty.

) or you called it with no args

llI-formed logical name |%s]| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Since it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce nonstandard names, or it
may indicate that a logical name table has been corrupted.

Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you‘re using an obsolete version of Perl, and this should
not happen anyway.

Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

prefix1;prefix2
or
prefix1 prefix2

with nonempty prefixl and prefix2. frefixl is indeed a prefix of a builtin library search path,
prefix2 is substituted. The error may appear if components are not found, or are too long. See
"PERLLIB_PREFIX" inREADME.0s2

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find dheshell in. See
"PERL_SH_DIR" inREADME.0s2

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix applications die in silence. It
is considered a feature of the OS/2 port. One can easily disable this by appropriate sighandlers, see
Signals in perlipc See also "Process terminated by SIGTERM/SIGINTREADME.o0s2

BUGS

If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/, the Perl Home

21-Jun—-1997 Perl Version 5.004 21

perldelta Perl Programmers Reference Guide perldelta

Page.

If you believe you have an unreported bug, please rurpéhnbug program included with your release.
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl =V , will be sent off to perlbug@perl.conto be analysed by the Perl porting team.

SEE ALSO

The Changesfile for exhaustive details on what changed.

The INSTALL file for how to build Perl. This file has been significantly updated for 5.004, so even veteran
users should look through it.

The README file for general stuff.
The Copyingdfile for copyright information.

HISTORY

Constructed by Tom Christiansen, grabbing material with permission from innumerable contributors, with
kibitzing by more than a few Perl porters.

Last update: Wed May 14 11:14:09 EDT 1997

22

Perl Version 5.004 21-Jun-1997

perlfaq Perl Programmers Reference Guide perlfaq

NAME
perlfag - frequently asked questions about Fibfe: 1997/04/24 22:46:08)

DESCRIPTION
This document is structured into the following sections:

perlfaq: Structural overview of the FAQ.
This document.

perlfaql: General Questions About Perl
Very general, high—level information about Perl.

perlfaq2: Obtaining and Learning about Perl
Where to find source and documentation to Perl, support and training, and related matters.

perlfaq3: Programming Tools
Programmer tools and programming support.

perlfaqg4: Data Manipulation
Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data issues.

perifag5: Files and Formats

I/0 and the "f" issues: filehandles, flushing, formats and footers.
perifaq6: Regexps

Pattern matching and regular expressions.

perlfaq7: General Perl Language Issues
General Perl language issues that don't clearly fit into any of the other sections.

perlfaq8: System Interaction
Interprocess communication (IPC), control over the user-interface (keyboard, screen and pointing
devices).

perlfaq9: Networking
Networking, the Internet, and a few on the web.

Where to get this document

This document is posted regularly to comp.lang.perl.announce and several other related newsgroups. It is
available in a variety of formats from CPAN in the /CPAN/doc/FAQs/FAQ/ directory, or on the web at
http://www.perl.com/perl/faq/ .

How to contribute to this document
You may mail corrections, additions, and suggestions to perlfag-suggestions@perl.com . Mail sent to the
old perlfaq alias will merely cause the FAQ to be sent to you.

What will happen if you mail your Perl programming problems to the authors
Your questions will probably go unread, unless they‘re suggestions of new questions to add to the FAQ, in
which case they should have gone to the perlfag—suggestions@perl.com instead.

You should have read section 2 of this faq. There you would have learned that comp.lang.perl.misc is the
appropriate place to go for free advice. If your question is really important and you require a prompt and
correct answer, you should hire a consultant.

Credits

When | first began the Perl FAQ in the late 80s, | never realized it would have grown to over a hundred
pages, nor that Perl would ever become so popular and widespread. This document could not have been
written without the tremendous help provided by Larry Wall and the rest of the Perl Porters.

21-Jun—-1997 Perl Version 5.004 23

perlfaq Perl Programmers Reference Guide perlfaq

Author and Copyright Information
Copyright (¢) 1997 Tom Christiansen and Nathan Torkington. All rights reserved.

Noncommercial Reproduction

Permission is granted to distribute this document, in part or in full, via electronic means or printed copy
providing that (1) that all credits and copyright notices be retained, (2) that no charges beyond reproduction
be involved, and (3) that a reasonable attempt be made to use the most current version available.

Furthermore, you may include this document in any distribution of the full Perl source or binaries, in its
verbatim documentation, or on a complete dump of the CPAN archive, providing that the three stipulations
given above continue to be met.

Commercial Reproduction

Requests for all other distribution rights, including the incorporation in part or in full of this text or its code
into commercial products such as but not limited to books, magazine articles, or CD-ROMs, must be made
to perlfag-legal@perl.com. Any commercial use of any portion of this document without prior written
authorization by its authors will be subject to appropriate action.

Disclaimer

This information is offered in good faith and in the hope that it may be of use, but is not guaranteed to be
correct, up to date, or suitable for any particular purpose whatsoever. The authors accept no liability in
respect of this information or its use.

Changes

24/April/97

Style and whitespace changes from Chip, new question on reading one character at a time from a
terminal using POSIX from Tom.

23/April/97

Added http://www.oasis.leo.org/perl/ tperlfaqg2 Style fix to perlfag3 Added floating point
precision, fixed complex number arithmetic, cross-references, caveat for Text::Wrap, alternative
answer for initial capitalizing, fixed incorrect regexp, added example of Tie::IxHagperiimg4

Added example of passing and storing filehandles, added commfgrtiagq5 Restored variable
suicide, and added mass commentingpsrlifaq7Z Added Net::Telnet, fixed backticks, added
reader/writer pair to telnet question, added FindBin, grouped module questions tog@idiag8
Expanded caveats for the simple URL extractor, gave LWP example, added CGI security question,
expanded on the email address answeeitfaqQ

25/March/97

Added more info to the binary distribution sectionpeflfag2 Added Net::Telnet tperlfagé Fixed
typos inperlfag8 Added mail sending exampleperlfag9 Added Merlyn‘s columns tperlfag2

18/March/97
Added the DATE to the NAME section, indicating which sections have changed.

Mentioned SIGPIPE angkerlipcin the forking open answer perifag8
Fixed description of a regular expressioparlifag4

17/March/97 Version
Various typos fixed throughout.

Added new question on Perl BNF parlfag?.

Initial Release: 11/March/97

This is the initial release of version 3 of the FAQ); consequently there have been no changes since its
initial release.

24 Perl Version 5.004 21-Jun-1997

perlfaql Perl Programmers Reference Guide perlfaql

NAME
perlfagl — General Questions About P&Révision: 1.12$, $Date: 1997/04/24 22:43:38%)

DESCRIPTION
This section of the FAQ answers very general, high—level questions about Perl.

What is Perl?

Perl is a high—level programming language with an eclectic heritage written by Larry Wall and a cast of
thousands. It derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the
Unix shell, and at least a dozen other tools and languages. Perl's process, file, and text manipulation facilities
make it particularly well-suited for tasks involving quick prototyping, system utilities, software tools,
system management tasks, database access, graphical programming, networking, and world wide web
programming. These strengths make it especially popular with system administrators and CGI script authors,
but mathematicians, geneticists, journalists, and even managers also use Perl. Maybe you should, too.

Who supports Perl? Who develops it? Why is it free?

The original culture of the pre—populist Internet and the deeply—held beliefs of Perl's author, Larry Wall,
gave rise to the free and open distribution policy of perl. Perl is supported by its users. The core, the
standard Perl library, the optional modules, and the documentation you‘re reading now were all written by
volunteers. See the personal note at the end of the README file in the perl source distribution for more
details.

In particular, the core development team (known as the Perl Porters) are a rag—tag band of highly altruistic
individuals committed to producing better software for free than you could hope to purchase for money.
You may snhoop on pending developments via news://genetics.upenn.edu/perl.porters—gw/ and
http://www.frii.com/~gnat/perl/porters/summary.html.

While the GNU project includes Perl in its distributions, there's no such thing as "GNU Perl". Perl is not
produced nor maintained by the Free Software Foundation. Perl's licensing terms are also more open than
GNU software's tend to be.

You can get commercial support of Perl if you wish, although for most users the informal support will more
than suffice. See the answer to "Where can | buy a commercial version of perl?" for more information.

Which version of Perl should | use?

You should definitely use version 5. Version 4 is old, limited, and no longer maintained; its last patch
(4.036) was in 1992. The most recent production release is 5.004. Further references to the Perl language in
this document refer to this production release unless otherwise specified. There may be one or more official
bug fixes for 5.004 by the time you read this, and also perhaps some experimental versions on the way to the
next release.

What are perl4 and perl5?

Perl4 and perl5 are informal names for different versions of the Perl programming language. It's easier to
say "perl5" than it is to say "the 5(.004) release of Perl", but some people have interpreted this to mean
there's a language called "perl5", which isn‘t the case. Perl5 is merely the popular name for the fifth major

release (October 1994), while perl4 was the fourth major release (March 1991). There was also a perll (in
January 1988), a perl2 (June 1988), and a perl3 (October 1989).

The 5.0 release is, essentially, a complete rewrite of the perl source code from the ground up. It has been
modularized, object-oriented, tweaked, trimmed, and optimized until it almost doesn‘t look like the old
code. However, the interface is mostly the same, and compatibility with previous releases is very high.

To avoid the "what language is perl5?" confusion, some people prefer to simply use "perl" to refer to the
latest version of perl and avoid using "perl5" altogether. It's not really that big a deal, though.
How stable is Perl?

Production releases, which incorporate bug fixes and new functionality, are widely tested before release.
Since the 5.000 release, we have averaged only about one production release per year.

21-Jun—-1997 Perl Version 5.004 25

perlfaql Perl Programmers Reference Guide perlfaql

Larry and the Perl development team occasionally make changes to the internal core of the language, but all
possible efforts are made toward backward compatibility. While not quite all perl4 scripts run flawlessly
under perl5, an update to perl should nearly never invalidate a program written for an earlier version of perl
(barring accidental bug fixes and the rare new keyword).

Is Perl difficult to learn?

Perl is easy to start learning — and easy to keep learning. It looks like most programming languages you‘re
likely to have had experience with, so if you‘ve ever written an C program, an awk script, a shell script, or
even an Excel macro, you're already part way there.

Most tasks only require a small subset of the Perl language. One of the guiding mottos for Perl development
is "there's more than one way to do it" (TMTOWTDI, sometimes pronounced "tim toady"). Perl's learning
curve is therefore shallow (easy to learn) and long (there's a whole lot you can do if you really want).

Finally, Perl is (frequently) an interpreted language. This means that you can write your programs and test
them without an intermediate compilation step, allowing you to experiment and test/debug quickly and
easily. This ease of experimentation flattens the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind of programming experience, an
understanding of regular expressions, and the ability to understand other people's code. If there's something
you need to do, then it's probably already been done, and a working example is usually available for free.
Don't forget the new perl modules, either. They‘re discussed in Part 3 of this FAQ, along with the CPAN,
which is discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?

Favorably in some areas, unfavorably in others. Precisely which areas are good and bad is often a personal
choice, so asking this question on Usenet runs a strong risk of starting an unproductive Holy War.

Probably the best thing to do is try to write equivalent code to do a set of tasks. These languages have their
own newsgroups in which you can learn about (but hopefully not argue about) them.

Can | do [task] in Perl?

Perl is flexible and extensible enough for you to use on almost any task, from one-line file—processing tasks
to complex systems. For many people, Perl serves as a great replacement for shell scripting. For others, it
serves as a convenient, high—level replacement for most of what they‘d program in low-level languages like
C or C++. lIt's ultimately up to you (and possibly your management ...) which tasks you'll use Perl for and
which you won't.

If you have a library that provides an API, you can make any component of it available as just another Perl
function or variable using a Perl extension written in C or C++ and dynamically linked into your main perl
interpreter. You can also go the other direction, and write your main program in C or C++, and then link in
some Perl code on the fly, to create a powerful application.

That said, there will always be small, focused, special-purpose languages dedicated to a specific problem
domain that are simply more convenient for certain kinds of problems. Perl tries to be all things to all
people, but nothing special to anyone. Examples of specialized languages that come to mind include prolog
and matlab.

When shouldn‘t | program in Perl?

When your manager forbids it — but do consider replacing them :-).

Actually, one good reason is when you already have an existing application written in another language
that's all done (and done well), or you have an application language specifically designed for a certain task
(e.g. prolog, make).

For various reasons, Perl is probably not well-suited for real-time embedded systems, low—level operating
systems development work like device drivers or context—switching code, complex multithreaded
shared—memory applications, or extremely large applications. You'll notice that perl is not itself written in
Perl.

26

Perl Version 5.004 21-Jun-1997

perlfaql Perl Programmers Reference Guide perlfaql

The new native—code compiler for Perl may reduce the limitations given in the previous statement to some
degree, but understand that Perl remains fundamentally a dynamically typed language, and not a statically
typed one. You certainly won't be chastized if you don't trust nuclear—plant or brain—surgery monitoring
code to it. And Larry will sleep easier, too — Wall Street programs not withstanding. :-)

What's the difference between "perl" and "Perl"?

One bit. Oh, you weren't talking ASCII? :-) Larry now uses "Perl" to signify the language proper and "perl"
the implementation of it, i.e. the current interpreter. Hence Tom's quip that "Nothing but perl can parse
Perl." You may or may not choose to follow this usage. For example, parallelism means "awk and perl" and
"Python and Perl" look ok, while "awk and Perl" and "Python and perl" do not.

Is it a Perl program or a Perl script?
It doesn‘t matter.

In "standard terminology" programhas been compiled to physical machine code once, and can then be be
run multiple times, whereasszript must be translated by a program each time it's used. Perl programs,
however, are usually neither strictly compiled nor strictly interpreted. They can be compiled to a byte code
form (something of a Perl virtual machine) or to completely different languages, like C or assembly
language. You can't tell just by looking whether the source is destined for a pure interpreter, a parse-tree
interpreter, a byte code interpreter, or a native—code compiler, so it's hard to give a definitive answer here.

What is a JAPH?

These are the "just another perl hacker" signatures that some people sign their postings with. About 100 of
the of the earlier ones are available from http://www.perl.com/CPAN/misc/japh .

Where can | get a list of Larry Wall witticisms?

Over a hundred quips by Larry, from postings of his or source code, can be found at
http://www.perl.com/CPAN/misc/lwall-quotes .

How can | convince my sysadmin/supervisor/employees to use version (5/5.004/Perl instead of
some other language)?

If your manager or employees are wary of unsupported software, or software which doesn't officially ship
with your Operating System, you might try to appeal to their self-interest. If programmers can be more
productive using and utilizing Perl constructs, functionality, simplicity, and power, then the typical
manager/supervisor/employee may be persuaded. Regarding using Perl in general, it's also sometimes
helpful to point out that delivery times may be reduced using Perl, as compared to other languages.

If you have a project which has a bottleneck, especially in terms of translation, or testing, Perl almost
certainly will provide a viable, and quick solution. In conjunction with any persuasion effort, you should not
fail to point out that Perl is used, quite extensively, and with extremely reliable and valuable results, at many
large computer software and/or hardware companies throughout the world. In fact, many Unix vendors now
ship Perl by default, and support is usually just a news—posting away, if you can‘t find the answer in the
comprehensivdocumentation, including this FAQ.

If you face reluctance to upgrading from an older version of perl, then point out that version 4 is utterly
unmaintained and unsupported by the Perl Development Team. Another big sell for Perl5 is the large
number of modules and extensions which greatly reduce development time for any given task. Also mention
that the difference between version 4 and version 5 of Perl is like the difference between awk and C++.
(Well, ok, maybe not quite that distinct, but you get the idea.) If you want support and a reasonable
guarantee that what you‘re developing will continue to work in the future, then you have to run the supported
version. That probably means running the 5.004 release, although 5.003 isn‘t that bad (it's just one year and
one release behind). Several important bugs were fixed from the 5.000 through 5.002 versions, though, so
try upgrading past them if possible.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. peskéaq for
distribution information.

21-Jun—-1997 Perl Version 5.004 27

perlfaq2 Perl Programmers Reference Guide perlfaq2

NAME
perlfag2 — Obtaining and Learning about P8R¢vision: 1.16$, $Date: 1997/04/23 18:04:09)

DESCRIPTION

This section of the FAQ answers questions about where to find source and documentation for Perl, support
and training, and related matters.

What machines support Perl? Where do | get it?

The standard release of Perl (the one maintained by the perl development team) is distributed only in source
code form. You can find this at http://www.perl.com/CPAN/src/latest.tar.gz, which is a gzipped archive in
POSIX tar format. This source builds with no porting whatsoever on most Unix systems (Perl's native
environment), as well as Plan 9, VMS, QNX, OS/2, and the Amiga.

Although it's rumored that the (imminent) 5.004 release may build on Windows NT, this is yet to be proven.
Binary distributions for 32—bit Microsoft systems and for Apple systems can be found
http://www.perl.com/CPAN/ports/ directory. Because these are not part of the standard distribution, they
may and in fact do differ from the base Perl port in a variety of ways. You'll have to check their respective
release notes to see just what the differences are. These differences can be either positive (e.g. extensions for
the features of the particular platform that are not supported in the source release of perl) or negative (e.g.
might be based upon a less current source release of perl).

A useful FAQ for Win32 Perl users is
http://www.endcontsw.com/people/evangelo/Perl_for_Win32_FAQ.html
How can | get a binary version of Perl?

If you don‘t have a C compiler because for whatever reasons your vendor did not include one with your
system, the best thing to do is grab a binary version of gcc from the net and use that to compile perl with.
CPAN only has binaries for systems that are terribly hard to get free compilers for, not for Unix systems.

Your first stop should be http://www.perl.com/CPAN/ports to see what information is already available. A
simple installation guide for MS-DOS is available at http://www.cs.ruu.nl/~piet/perl5dos.html , and
similarly for Windows 3.1 at http://www.cs.ruu.nl/~piet/perlwin3.html .

| don't have a C compiler on my system. How can | compile perl?
Since you don‘t have a C compiler, you're doomed and your vendor should be sacrificed to the Sun gods.
But that doesn‘t help you.

What you need to do is get a binary version of gcc for your system first. Consult the Usenet FAQs for your
operating system for information on where to get such a binary version.
| copied the Perl binary from one machine to another, but scripts don‘t work.

That's probably because you forgot libraries, or library paths differ. You really should build the whole
distribution on the machine it will eventually live on, and then typeke install . Most other
approaches are doomed to failure.

One simple way to check that things are in the right place is to print out the hard—coded @INC which perl is
looking for.

perl —e 'print join("\n",@INC)’
If this command lists any paths which don‘t exist on your system, then you may need to move the
appropriate libraries to these locations, or create symlinks, aliases, or shortcuts appropriately.
You might also want to check odbw do | keep my own module/library directory? in perlfaq8
| grabbed the sources and tried to compile but gdbm/dynamic loading/malloc/linking/... failed.
How do | make it work?

Read thdNSTALL file, which is part of the source distribution. It describes in detail how to cope with most
idiosyncracies that the Configure script can‘t work around for any given system or architecture.

28 Perl Version 5.004 21-Jun-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

What modules and extensions are available for Perl? What is CPAN? What does CPAN/src/...
mean?

CPAN stands for Comprehensive Perl Archive Network, a huge archive replicated on dozens of machines all
over the world. CPAN contains source code, non—native ports, documentation, scripts, and many
third—party modules and extensions, designed for everything from commercial database interfaces to
keyboard/screen control to web walking and CGI scripts. The master machine for CPAN is
ftp://ftp.funet.fi/pub/languages/perl/CPAN/, but you can use the address
http://www.perl.com/CPAN/CPAN.html to fetch a copy from a "site near you". See
http://www.perl.com/CPAN (without a slash at the end) for how this process works.

CPAN/path/... is a naming convention for files available on CPAN sites. CPAN indicates the base directory
of a CPAN mirror, and the rest of the path is the path from that directory to the file. For instance, if you're
using ftp://ftp.funet.fi/pub/languages/perl/CPAN as your CPAN site, the file CPAN/misc/japh file is
downloadable as ftp://ftp.funet.fi/pub/languages/perl/CPAN/misc/japh .

Considering that there are hundreds of existing modules in the archive, one probably exists to do nearly
anything you can think of. Current categories under CPAN/modules/by—category/ include perl core modules;
development support; operating system interfaces; networking, devices, and interprocess communication;
data type utilities; database interfaces; user interfaces; interfaces to other languages; filenames, file systems,
and file locking; internationalization and locale; world wide web support; server and daemon utilities;
archiving and compression; image manipulation; mail and news; control flow utilities; filehandle and 1/O;
Microsoft Windows modules; and miscellaneous modules.

Is there an ISO or ANSI certified version of Perl?
Certainly not. Larry expects that he'll be certified before Perl is.

Where can | get information on Perl?
The complete Perl documentation is available with the perl distribution. If you have perl installed locally,
you probably have the documentation installed as well: type perl if you're on a system resembling
Unix. This will lead you to other important man pages. If you're not on a Unix system, access to the
documentation will be different; for example, it might be only in HTML format. But all proper perl
installations have fully—accessible documentation.

You might also tryperldoc perl in case your system doesn‘t have a proper man command, or it's been
misinstalled. If that doesn‘t work, try looking in /usr/local/lib/perl5/pod for documentation.

If all else fails, consult the CPAN/doc directory, which contains the complete documentation in various
formats, including native pod, troff, html, and plain text. There's also a web page at
http://www.perl.com/perl/info/documentation.html that might help.

It's also worth noting that there's a PDF version of the complete documentation for perl available in the
CPAN/authors/id/BMIDD directory.

Many good books have been written about Perl — see the section below for more details.

What are the Perl newsgroups on USENET? Where do | post questions?
The now defunct comp.lang.perl newsgroup has been superseded by the following groups:

comp.lang.perl.announce Moderated announcement group
comp.lang.perl.misc Very busy group about Perl in general
comp.lang.perl.modules Use and development of Perl modules
comp.lang.perl.tk Using Tk (and X) from Perl

comp.infosystems.www.authoring.cgi Writing CGlI scripts for the Web.

There is also USENET gateway to the mailing list used by the crack Perl development team (perl5—porters)
at news://genetics.upenn.edu/perl.porters—gw/ .

21-Jun—-1997 Perl Version 5.004 29

perlfaq2 Perl Programmers Reference Guide perlfaq2

Where should | post source code?

You should post source code to whichever group is most appropriate, but feel free to cross-post to
comp.lang.perl.misc. If you want to cross—post to alt.sources, please make sure it follows their posting
standards, including setting the Followup—To header line to NOT include alt.sources; see their FAQ for
details.

Perl Books

A number books on Perl and/or CGI programming are available. A few of these are good, some are ok, but
many aren‘t worth your money. Tom Christiansen maintains a list of these books, some with extensive
reviews, at http://www.perl.com/perl/critiques/index.html.

The incontestably definitive reference book on Perl, written by the creator of Perl and his apostles, is now in
its second edition and fourth printing.

Programming Perl (the "Camel Book"):
Authors: Larry Wall, Tom Christiansen, and Randal Schwartz
ISBN 1-56592-149-6 (English)
ISBN 4-89052-384-7 (Japanese)
(French and German translations in progress)

Note that O'Reilly books are color—coded: turquoise (some would call it teal) covers indicate perl5 coverage,
while magenta (some would call it pink) covers indicate perl4 only. Check the cover color before you buy!

What follows is a list of the books that the FAQ authors found personally useful. Your mileage may (but, we
hope, probably won't) vary.

If you're already a hard—core systems programmer, then the Camel Book just might suffice for you to learn
Perl from. But if you‘re not, check out the "Llama Book". It currently doesn‘t cover perl5, but the 2nd
edition is nearly done and should be out by summer 97:

Learning Perl (the Llama Book):
Author: Randal Schwartz, with intro by Larry Wall
ISBN 1-56592-042-2 (English)
ISBN 4-89502-678-1 (Japanese)
ISBN 2-84177-005-2 (French)
ISBN 3-930673-08-8 (German)

Another stand-out book in the turquoise O'Reilly Perl line is the "Hip Owls" book. It covers regular
expressions inside and out, with quite a bit devoted exclusively to Perl:

Mastering Regular Expressions (the Cute Owls Book):
Author: Jeffrey Friedl
ISBN 1-56592-257-3

You can order any of these books from O'ReilyAssociates, 1-800-998-9938. Local/overseas is
1-707-829-0515. If you can locate an O‘Reilly order form, you can also fax to 1-707-829-0104. See
http://www.ora.com/ on the Web.

Recommended Perl books that are not from O'Reilly are the following:

Cross—Platform Perl, (for Unix and Windows NT)
Author: Eric F. Johnson
ISBN: 1-55851-483-X

How to Set up and Maintain a World Wide Web Site, (2nd edition)
Author: Lincoln Stein, M.D., Ph.D.
ISBN: 0-201-63462-7

CGI Programming in C & Perl,
Author: Thomas Boutell
ISBN: 0-201-42219-0

30 Perl Version 5.004 21-Jun-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

Note that some of these address specific application areas (e.g. the Web) and are not general-purpose
programming books.

Perl in Magazines

The Perl Journal is the first and only magazine dedicated to Perl. It is published (on paper, not online)
quarterly by Jon Orwant (orwant@tpj.com), editor. Subscription information is at http://tpj.com or via email
to subscriptions@tpj.com.

Beyond this, two other magazines that frequently carry high—quality articles on Perl are Web Techniques
(see http://lwww.webtechniques.com/) and Unix Review (http://www.unixreview.com/). Randal Schwartz's
Web Technique's columns are available on the web at http://www.stonehenge.com/merlyn/WebTechniques/

Perl on the Net: FTP and WWW Access

To get the best (and possibly cheapest) performance, pick a site from the list below and use it to grab the
complete list of mirror sites. From there you can find the quickest site for you. Remember, the following list
is notthe complete list of CPAN mirrors.

http://www.perl.com/CPAN (redirects to another mirror)
http://www.perl.org/CPAN
ftp://ftp.funet.fi/pub/languages/perl/CPAN/
http://www.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.cs.colorado.edu/pub/perl/CPAN/

http:/www.oasis.leo.org/perl/ has, amongst other things, source to versions 1 through 5 of Perl.

What mailing lists are there for perl?

Most of the major modules (tk, CGl, libwww-perl) have their own mailing lists. Consult the documentation
that came with the module for subscription information. The following are a list of mailing lists related to
perl itself.

If you subscribe to a mailing list, it behooves you to know how to unsubscribe from it. Strident pleas to the
list itself to get you off will not be favorably received.

MacPerl
There is a mailing list for discussing Macintosh Perl. Contact "mac—perl-request@iis.ee.ethz.ch".

Also see Matthias Neeracher's (the creator and maintainer of MacPerl) webpage at
http://www.iis.ee.ethz.ch/~neeri/macintosh/perl.html for many links to interesting MacPerl sites, and
the applications/MPW tools, precompiled.

Perl5—-Porters

The core development team have a mailing list for discussing fixes and changes to the language. Send

mail to "perl5-porters—-request@perl.org" with help in the body of the message for information on
subscribing.

NTPerl

This list is used to discuss issues involving Win32 Perl 5 (Windows NT and Win95). Subscribe by
emailing ListManager@ActiveWare.com with the message body:

subscribe Perl-Win32-Users

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, email the following in the message body to the same address like so:

unsubscribe Perl-Win32-Users

You can also check http://www.activeware.com/ and select "Mailing Lists" to join or leave this list.

21-Jun—-1997 Perl Version 5.004 31

perlfaq2 Perl Programmers Reference Guide perlfaq2

Perl-Packrats

Discussion related to archiving of perl materials, particularly the Comprehensive PerlArchive Network
(CPAN). Subscribe by emailing majordomo@cis.ufl.edu:

subscribe perl-packrats

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, simple prepend the same command with an "un", and mail to the same
address like so:

unsubscribe perl-packrats

Archives of comp.lang.perl.misc

Have you tried Deja News or Alta Vista?

ftp.cis.ufl.edu:/pub/perl/comp.lang.perl.*/monthly has an almost complete collection dating back to 12/89
(missing 08/91 through 12/93). They are kept as one large file for each month.

You'll probably want more a sophisticated query and retrieval mechanism than a file listing, preferably one
that allows you to retrieve articles using a fast—access indices, keyed on at least author, date, subject, thread
(as in "trn") and probably keywords. The best solution the FAQ authors know of is the MH pick command,
but it is very slow to select on 18000 articles.

If you have, or know where can be found, the missing sections, please let perlfag—suggestions@perl.com
know.

Perl Training

While some large training companies offer their own courses on Perl, you may prefer to contact individuals
near and dear to the heart of Perl development. Two well-known members of the Perl development team
who offer such things are Tom Christiansen <perl-classes@perl.com and Randal Schwartz
<perl-training—info@stonehenge.com, plus their respective minions, who offer a variety of professional
tutorials and seminars on Perl. These courses include large public seminars, private corporate training, and
fly—ins to Colorado and Oregon. See http://www.perl.com/perl/info/training.html for more details.

Where can | buy a commercial version of Perl?

In a sense, Perl alreatsycommercial software: It has a licence that you can grab and carefully read to your
manager. It is distributed in releases and comes in well-defined packages. There is a very large user
community and an extensive literature. The comp.lang.perl.* newsgroups and several of the mailing lists
provide free answers to your questions in near real-time. Perl has traditionally been supported by Larry,
dozens of software designers and developers, and thousands of programmers, all working for free to create a
useful thing to make life better for everyone.

However, these answers may not suffice for managers who require a purchase order from a company whom
they can sue should anything go wrong. Or maybe they need very serious hand-holding and contractual
obligations. Shrink—wrapped CDs with perl on them are available from several sources if that will help.

Or you can purchase a real support contract. Although Cygnus historically provided this service, they no
longer sell support contracts for Perl. Instead, the Paul Ingram Group will be taking up the slack through The
Perl Clinic. The following is a commercial from them:

"Do you need professional support for Perl and/or Oraperl? Do you need a support contract with defined
levels of service? Do you want to pay only for what you need?

"The Paul Ingram Group has provided quality software development and support services to some of the
world's largest corporations for ten years. We are now offering the same quality support services for Perl at
The Perl Clinic. This service is led by Tim Bunce, an active perl porter since 1994 and well known as the
author and maintainer of the DBI, DBD::Oracle, and Oraperl modules and author/co—maintainer of The Perl
5 Module List. We also offer Oracle users support for Perl5 Oraperl and related modules (which Oracle is
planning to ship as part of Oracle Web Server 3). 20% of the profit from our Perl support work will be
donated to The Perl Institute."

32

Perl Version 5.004 21-Jun-1997

perlfaq2 Perl Programmers Reference Guide perlfaq2

For more information, contact the The Perl Clinic:

Tel: +44 1483 424424

Fax: +44 1483 419419

Web: http://www.perl.co.uk/

Email: perl-support-info@perl.co.uk or Tim.Bunce@ig.co.uk

Where do | send bug reports?
If you are reporting a bug in the perl interpreter or the modules shipped with perl, use the perlbug program in
the perl distribution or email your report to perlbug@perl.com.

If you are posting a bug with a non-standard port (see the answer to "What platforms is Perl available for?"),
a binary distribution, or a non-standard module (such as Tk, CGl, etc), then please see the documentation
that came with it to determine the correct place to post bugs.

Read the perlbug man page (perl5.004 or later) for more information.

What is perl.com? perl.org? The Perl Institute?

perl.org is the official vehicle for The Perl Institute. The motto of TPI is "helping people help Perl help
people" (or something like that). It's a non—profit organization supporting development, documentation, and
dissemination of perl. Current directors of TPI include Larry Wall, Tom Christiansen, and Randal Schwartz,
whom you may have heard of somewhere else around here.

The perl.com domain is Tom Christiansen's domain. He created it as a public service long before perl.org
came about. It's the original PBS of the Perl world, a clearinghouse for information about all things Perlian,
accepting no paid advertisements, glossy gifs, or (gasp!) java applets on its pages.

How do | learn about object-oriented Perl programming?

perltoot (distributed with 5.004 or later) is a good place to start. Alsolobj, perlref, and perlmod are
useful references, whilgerlbothas some excellent tips and tricks.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. peskaq for
distribution information.

21-Jun—-1997 Perl Version 5.004 33

perlfaq3 Perl Programmers Reference Guide perlfaq3

NAME
perlfag3 — Programming Tool$Revision: 1.22$, $Date: 1997/04/24 22:43:43)
DESCRIPTION
This section of the FAQ answers questions related to programmer tools and programming support.

How do | do (anything)?

Have you looked at CPAN (seerlfaqd? The chances are that someone has already written a module that
can solve your problem. Have you read the appropriate man pages? Here's a brief index:

Objects perlref, perimod, perlobj, perltie

Data Structures perlref, perllol, perldsc

Modules perlmod, perlmodlib, perlsub

Regexps perlre, perlfunc, perlop

Moving to perl5 perltrap, perl

Linking w/C perixstut, perlxs, perlcall, perlguts, perlembed

Various http://www.perl.com/CPAN/doc/FMTEYEWTK/index.html

(not a man—page but still useful)
perltocprovides a crude table of contents for the perl man page set.

How can | use Perl interactively?
The typical approach uses the Perl debugger, described in the perldebug(l) man page, on an "empty"
program, like this:
perl —de 42

Now just type in any legal Perl code, and it will be immediately evaluated. You can also examine the
symbol table, get stack backtraces, check variable values, set breakpoints, and other operations typically
found in symbolic debuggers

Is there a Perl shell?

In general, no. The Shell.pm module (distributed with perl) makes perl try commands which aren‘t part of
the Perl language as shell commands. perlsh from the source distribution is simplistic and uninteresting, but
may still be what you want.

How do | debug my Perl programs?
Have you usedw?

Have you trieduse strict ?

Did you check the returns of each and every system call?
Did you readperltrap?

Have you tried the Perl debugger, describegeiridebug@

How do I profile my Perl programs?
You should get the Devel::DProf module from CPAN, and also use Benchmark.pm from the standard
distribution. Benchmark lets you time specific portions of your code, while Devel::DProf gives detailed
breakdowns of where your code spends its time.

How do | cross—reference my Perl programs?
The B::Xref module, shipped with the new, alpha-release Perl compiler (not the general distribution), can be
used to generate cross-reference reports for Perl programs.

perl -MO=Xref[,OPTIONS] foo.pl

34 Perl Version 5.004 21-Jun-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

Is there a pretty—printer (formatter) for Perl?

There is no program that will reformat Perl as much as indent(1) will do for C. The complex feedback
between the scanner and the parser (this feedback is what confuses the vgrind and emacs programs) makes it
challenging at best to write a stand—alone Perl parser.

Of course, if you simply follow the guidelinesperistyle you shouldn‘t need to reformat.

Your editor can and should help you with source formatting. The perl-mode for emacs can provide a
remarkable amount of help with most (but not all) code, and even less programmable editors can provide
significant assistance.

If you are using to using vgrind program for printing out nice code to a laser printer, you can take a stab at
this using http://www.perl.com/CPAN/doc/misc/tips/working.vgrind.entry, but the results are not particularly
satisfying for sophisticated code.

Is there a ctags for Perl?
There's a simple one at http://www.perl.com/CPAN/authors/id/TOMC/scripts/ptags.gz which may do the
trick.

Where can | get Perl macros for vi?
For a complete version of Tom Christiansen's vi configuration file, see ftp:/ftp.perl.com/pub/vi/toms.exrc,
the standard benchmark file for vi emulators. This runs best with nvi, the current version of vi out of
Berkeley, which incidentally can be built with an embedded Perl interpreter — see
http://www.perl.com/CPAN/src/misc .

Where can | get perl-mode for emacs?
Since Emacs version 19 patchlevel 22 or so, there have been both a perl-mode.el and support for the perl
debugger built in. These should come with the standard Emacs 19 distribution.

In the perl source directory, you'll find a directory called "emacs”, which contains a cperl-mode that
color—codes keywords, provides context—sensitive help, and other nifty things.

Note that the perl-mode of emacs will have fits with "main‘foo" (single quote), and mess up the indentation
and hilighting. You should be using "main::foo", anyway.

How can | use curses with Perl?
The Curses module from CPAN provides a dynamically loadable object module interface to a curses library.

How can | use X or Tk with Perl?
Tk is a completely Perl-based, object-oriented interface to the Tk toolkit that doesn't force you to use Tcl
just to get at Tk. Sx is an interface to the Athena Widget set. Both are available from CPAN.

How can | generate simple menus without using CGI or Tk?
The http://www.perl.com/CPAN/authors/id/SKUNZ/perimenu.v4.0.tar.gz module, which is curses-based,
can help with this.

Can | dynamically load C routines into Perl?
If your system architecture supports it, then the standard perl on your system should also provide you with
this via the DynalLoader module. Regaetixstutfor details.

What is undump?
See the next questions.

How can | make my Perl program run faster?

The best way to do this is to come up with a better algorithm. This can often make a dramatic difference.
Chapter 8 in the Camel has some efficiency tips in it you might want to look at.

Other approaches include autoloading seldom-used Perl code. See the AutoSplit and AutoLoader modules
in the standard distribution for that. Or you could locate the bottleneck and think about writing just that part
in C, the way we used to take bottlenecks in C code and write them in assembler. Similar to rewriting in C is

21-Jun—-1997 Perl Version 5.004 35

perlfaq3 Perl Programmers Reference Guide perlfaq3

the use of modules that have critical sections written in C (for instance, the PDL module from CPAN).

In some cases, it may be worth it to use the backend compiler to produce byte code (saving compilation
time) or compile into C, which will certainly save compilation time and sometimes a small amount (but not
much) execution time. See the question about compiling your Perl programs.

If you're currently linking your perl executable to a shared libc.so, you can often gain a 10-25%
performance benefit by rebuilding it to link with a static libc.a instead. This will make a bigger perl
executable, but your Perl programs (and programmers) may thank you for it. S48TA&L file in the
source distribution for more information.

Unsubstantiated reports allege that Perl interpreters that use sfio outperform those that don't (for 10 intensive
applications). To try this, see tReSTALL file in the source distribution, especially the "Selecting File 10
mechanisms" section.

The undump program was an old attempt to speed up your Perl program by storing the already—compiled
form to disk. This is no longer a viable option, as it only worked on a few architectures, and wasn‘t a good
solution anyway.

How can | make my Perl program take less memory?

When it comes to time—space tradeoffs, Perl nearly always prefers to throw memory at a problem. Scalars in
Perl use more memory than strings in C, arrays take more that, and hashes use even more. While there's still

a lot to be done, recent releases have been addressing these issues. For example, as of 5.004, duplicate hash
keys are shared amongst all hashes using them, so require no reallocation.

In some cases, usirgybstr() orvec() to simulate arrays can be highly beneficial. For example, an
array of a thousand booleans will take at least 20,000 bytes of space, but it can be turned into one 125-byte
bit vector for a considerable memory savings. The standard Tie::SubstrHash module can also help for
certain types of data structure. If you‘'re working with specialist data structures (matrices, for instance)
modules that implement these in C may use less memory than equivalent Perl modules.

Another thing to try is learning whether your Perl was compiled with the system malloc or with Perl's builtin
malloc. Whichever one it is, try using the other one and see whether this makes a difference. Information
about malloc is in théNSTALL file in the source distribution. You can find out whether you are using
perl‘'s malloc by typingerl —-V:usemymalloc

Is it unsafe to return a pointer to local data?

No, Perl's garbage collection system takes care of this.

sub makeone {
my @a=(1..10);
return \@a;

}

for$i(1..10)¢
push @many, makeone();

}
print $many[4][5], "\n";
print "@many\n";

How can | free an array or hash so my program shrinks?

You can‘t. Memory the system allocates to a program will never be returned to the system. That's why
long-running programs sometimes re—exec themselves.

However, judicious use afy() on your variables will help make sure that they go out of scope so that Perl
can free up their storage for use in other parts of your program. niMB: variables also execute about

10% faster than globals.) A global variable, of course, never goes out of scope, so you can'‘t get its space
automatically reclaimed, althougindef() ing and/ordelete() ing it will achieve the same effect. In
general, memory allocation and de—allocation isn‘t something you can or should be worrying about much in

36

Perl Version 5.004 21-Jun-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

Perl, but even this capability (preallocation of data types) is in the works.

How can | make my CGl script more efficient?

Beyond the normal measures described to make general Perl programs faster or smaller, a CGI program has
additional issues. It may be run several times per second. Given that each time it runs it will need to be
re—compiled and will often allocate a megabyte or more of system memory, this can be a killer. Compiling
into Cisn‘t going to help youbecause the process start—up overhead is where the bottleneck is.

There are at least two popular ways to avoid this overhead. One solution involves running the Apache HTTP
server (available from http://www.apache.org/) with either of the mod_perl or mod_fastcgi plugin modules.
With mod_perl and the Apache::* modules (from CPAN), httpd will run with an embedded Perl interpreter
which pre-compiles your script and then executes it within the same address space without forking. The
Apache extension also gives Perl access to the internal server API, so modules written in Perl can do just
about anything a module written in C can. With the FCGI module (from CPAN), a Perl executable compiled
with sfio (see theINSTALL file in the distribution) and the mod_fastcgi module (available from
http://www.fastcgi.com/) each of your perl scripts becomes a permanent CGl daemon processes.

Both of these solutions can have far-reaching effects on your system and on the way you write your CGl
scripts, so investigate them with care.

How can | hide the source for my Perl program?

Delete it. :-) Seriously, there are a number of (mostly unsatisfactory) solutions with varying levels of
"security".

First of all, however, yowan't take away read permission, because the source code has to be readable in
order to be compiled and interpreted. (That doesn‘'t mean that a CGl script‘s source is readable by people on
the web, though.) So you have to leave the permissions at the socially friendly 0755 level.

Some people regard this as a security problem. If your program does insecure things, and relies on people
not knowing how to exploit those insecurities, it is not secure. It is often possible for someone to determine
the insecure things and exploit them without viewing the source. Security through obscurity, the name for
hiding your bugs instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN). But crackers might be able to decrypt

it. You can try using the byte code compiler and interpreter described below, but crackers might be able to
de—-compile it. You can try using the native—code compiler described below, but crackers might be able to

disassemble it. These pose varying degrees of difficulty to people wanting to get at your code, but none can
definitively conceal it (this is true of every language, not just Perl).

If you‘'re concerned about people profiting from your code, then the bottom line is that nothing but a
restrictive licence will give you legal security. License your software and pepper it with threatening
statements like "This is unpublished proprietary software of XYZ Corp. Your access to it does not give you
permission to use it blah blah blah." We are not lawyers, of course, so you should see a lawyer if you want
to be sure your licence's wording will stand up in court.

How can | compile my Perl program into byte code or C?

Malcolm Beattie has written a multifunction backend compiler, available from CPAN, that can do both these
things. Itis as of Feb—1997 in late alpha release, which means it's fun to play with if you‘re a programmer
but not really for people looking for turn—key solutions.

Pleaseunderstand that merely compiling into C does not in and of itself guarantee that your code will run
very much faster. That's because except for lucky cases where a lot of native type inferencing is possible,
the normal Perl run time system is still present and thus will still take just as long to run and be just as big.
Most programs save little more than compilation time, leaving execution no more than 10-30% faster. A
few rare programs actually benefit significantly (like several times faster), but this takes some tweaking of
your code.

Malcolm will be in charge of the 5.005 release of Perl itself to try to unify and merge his compiler and
multithreading work into the main release.

21-Jun—-1997 Perl Version 5.004 37

perlfaq3 Perl Programmers Reference Guide perlfaq3

You'll probably be astonished to learn that the current version of the compiler generates a compiled form of
your script whose executable is just as big as the original perl executable, and then some. That's because as
currently written, all programs are prepared for adutil() statement. You can tremendously reduce this

cost by building a shared libperl.so library and linking against that. SdBISTALL podfile in the perl

source distribution for details. If you link your main perl binary with this, it will make it miniscule. For
example, on one author's system, /usr/bin/perl is only 11Kk in size!

How can | get ‘#!perl’ to work on [MS-DOS,NT,...]?

For OS/2 just use
extproc perl =S —your_switches

as the first line irf.cmd file (-S due to a bug in cmd.exe's ‘extproc’ handling). For DOS one should first
invent a corresponding batch file, and codify iIAbTERNATIVE_SHEBANGsee thdNSTALL file in the
source distribution for more information).

The Win95/NT installation, when using the Activeware port of Perl, will modify the Registry to associate the
.pl extension with the perl interpreter. If you install another port, or (eventually) build your own Win95/NT
Perl using WinGCC, then you'll have to modify the Registry yourself.

Macintosh perl scripts will have the the appropriate Creator and Type, so that double-clicking them will
invoke the perl application.

IMPORTANT! Whatever you do, PLEASE don't get frustrated, and just throw the perl interpreter into your
cgi—bin directory, in order to get your scripts working for a web server. This is an EXTREMELY big
security risk. Take the time to figure out how to do it correctly.

Can | write useful perl programs on the command line?

Yes. Readperlrun for more information. Some examples follow. (These assume standard Unix shell
quoting rules.)

sum first and last fields

perl —lane 'print $F[0] + $F[-1]

identify text files

perl —le 'for(@ARGV) {print if -f && -T _} *

remove comments from C program

perl —0777 —pe 's{*.*?*/}{}gs’ foo.c

make file a month younger than today, defeating reaper daemons
perl —e '$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)’ *

find first unused uid

perl —le '$i++ while getpwuid($i); print $i’

display reasonable manpath
echo $PATH | perl -nl -072 -e’
s![M+]*$!man!&&-d&&!$s{$_}++&&push@m,$_;END{print'@m"}

Ok, the last one was actually an obfuscated perl entry. :-)

Why don'‘t perl one-liners work on my DOS/Mac/VMS system?

The problem is usually that the command interpreters on those systems have rather different ideas about
guoting than the Unix shells under which the one-liners were created. On some systems, you may have to
change single—quotes to double ones, which you @&t do on Unix or Plan9 systems. You might also

have to change a single % to a %%.

For example:

Unix
perl —e "print "Hello world\n™

38

Perl Version 5.004 21-Jun-1997

perlfaq3 Perl Programmers Reference Guide perlfaq3

DOS, etc.
perl —e "print \"Hello world\n\

Mac
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

#VMS
perl —e "print ""Hello world\n

The problem is that none of this is reliable: it depends on the command interpreter. Under Unix, the first two
often work. Under DOS, it's entirely possible neither works. If 4DOS was the command shell, I'd probably
have better luck like this:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is much like
Unix shells in its support for several quoting variants, except that it makes free use of the Mac's non—-ASCII
characters as control characters.

I'm afraid that there is no general solution to all of this. It is a mess, pure and simple.
[Some of this answer was contributed by Kenneth Albanowski.]

Where can | learn about CGI or Web programming in Perl?

For modules, get the CGI or LWP modules from CPAN. For textbooks, see the two especially dedicated to
web stuff in the question on books. For problems and questions related to the web, like "Why do | get 500
Errors" or "Why doesn‘t it run from the browser right when it runs fine on the command line", see these
sources:

The Idiot’s Guide to Solving Perl/CGI Problems, by Tom Christiansen
http://www.perl.com/perl/faqg/idiots—guide.html

Frequently Asked Questions about CGI Programming, by Nick Kew
ftp://rtfm.mit.edu/pub/usenet/news.answers/www/cgi—faq
http://www3.pair.com/webthing/docs/cgi/fags/cgifag.shtml

Perl/CGI programming FAQ, by Shishir Gundavaram and Tom Christiansen
http://www.perl.com/perl/faqg/perl-cgi—fag.html

The WWW Security FAQ, by Lincoln Stein
http://www-genome.wi.mit.edu/WWW/fags/www-security—faqg.html

World Wide Web FAQ, by Thomas Boutell
http://www.boutell.com/faq/
Where can | learn about object-oriented Perl programming?

perltootis a good place to start, and you canpegobj andperlbotfor reference. Perltoot didn‘t come out
until the 5.004 release, but you can get a copy (in pod, html, or postscript) from
http://www.perl.com/CPAN/doc/FMTEYEWTK/ .

Where can | learn about linking C with Perl? [h2xs, xsubpp]

If you want to call C from Perl, start witherlxstuf moving on toperlxs xsubpp andperlguts If you want
to call Perl from C, then reguerlembedperlcall, andperlguts Don't forget that you can learn a lot from
looking at how the authors of existing extension modules wrote their code and solved their problems.

I've read perlembed, perlguts, etc., but | can‘'t embed perl in
my C program, what am | doing wrong?
Download the ExtUtils::Embed kit from CPAN and run ‘make test’. If the tests pass, read the pods again

and again and again. |If they fail, sperlbug and send a bugreport with the outputnofke test
TEST_VERBOSE=hlong withperl -V

21-Jun—-1997 Perl Version 5.004 39

perlfaq3 Perl Programmers Reference Guide perlfaq3

When | tried to run my script, | got this message. What does it
mean?

perldiag has a complete list of perl's error messages and warnings, with explanatory text. You can also use
the splain program (distributed with perl) to explain the error messages:

perl program 2>diag.out
splain [-V] [-p] diag.out

or change your program to explain the messages for you:
use diagnostics;

or
use diagnostics —verbose;

What's MakeMaker?
This module (part of the standard perl distribution) is designed to write a Makefile for an extension module
from a Makefile.PL. For more information, sertUtils::MakeMaker

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. peskéaq for
distribution information.

40 Perl Version 5.004 21-Jun-1997

ExtUtils::MakeMaker

perlfaq4 Perl Programmers Reference Guide perlfaq4

NAME
perlfag4 — Data ManipulatiorfRevision: 1.19%, $Date: 1997/04/24 22:43:5%)

DESCRIPTION

The section of the FAQ answers question related to the manipulation of data as numbers, dates, strings,
arrays, hashes, and miscellaneous data issues.

Data: Numbers

Why am | getting long decimals (eg, 19.9499999999999) instead of the numbers | should be getting
(eg, 19.95)?
Internally, your computer represents floating—point numbers in binary. Floating—point numbers read in from
a file, or appearing as literals in your program, are converted from their decimal floating—point
representation (eg, 19.95) to the internal binary representation.

However, 19.95 can't be precisely represented as a binary floating—point number, just like 1/3 can‘t be
exactly represented as a decimal floating—point number. The computer's binary representation of 19.95,
therefore, isn‘t exactly 19.95.

When a floating—point number gets printed, the binary floating—point representation is converted back to
decimal. These decimal numbers are displayed in either the format you specifyrimitf) , or the

current output format for numbers (s&# in perlvar if you use print.$# has a different default value

in Perl5 than it did in Perl4. Changifg yourself is deprecated.

This affectsall computer languages that represent decimal floating—point numbers in binary, not just Perl.
Perl provides arbitrary—precision decimal numbers with the Math::BigFloat module (part of the standard Perl
distribution), but mathematical operations are consequently slower.

To get rid of the superfluous digits, just use a formatggtf("%.2f", 19.95)) to get the required
precision.

Why isn't my octal data interpreted correctly?

Perl only understands octal and hex numbers as such when they occur as literals in your program. If they are
read in from somewhere and assigned, no automatic conversion takes place. You must expbcit{y use

or hex() if you want the values converteadct() interprets both hex ("0x350") numbers and octal ones
("0350" or even without the leading "0", like "377"), whilex() only converts hexadecimal ones, with or
without a leading "0x", like "0x255", "3A", "ff", or "deadbeef".

This problem shows up most often when people try usihghod() , mkdir() , umask() , or
sysopen() , which all want permissions in octal.

chmod(644, $file); # WRONG —- perl —w catches this
chmod(0644, $file); # right

Does perl have a round function? What about ceil() and floor() ?
Trig functions?

For rounding to a certain number of diggprintf() or printf() is usually the easiest route.

The POSIX module (part of the standard perl distribution) impleneeii(3 |, floor() , and a number of
other mathematical and trigonometric functions.

In 5.000 to 5.003 Perls, trigopnometry was done in the Math::Complex module. With 5.004, the Math::Trig
module (part of the standard perl distribution) implements the trigonometric functions. Internally it uses the
Math::Complex module and some functions can break out from the real axis into the complex plane, for
example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

21-Jun—-1997 Perl Version 5.004 41

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | convert bits into ints?

To turn a string of 1s and Os like ‘10110110’ into a scalar containing its binary value, ysackife
function (documented ipack in perlfuny:

$decimal = pack(’B8’, '10110110’);
Here's an example of going the other way:
$binary_string = join("’, unpack('B*', "\x29"));

How do | multiply matrices?

Use the Math::Matrix or Math::MatrixReal modules (available from CPAN) or the PDL extension (also
available from CPAN).

How do | perform an operation on a series of integers?
To call a function on each element in an array, and collect the results, use:

@results = map { my_func($_) } @array;
For example:
@triple = map { 3 *$_} @single;
To call a function on each element of an array, but ignore the results:

foreach Siterator (@array) {
&my_func($iterator);

}
To call a function on each integer in a (small) range,camuuse:
@results = map { &my_func($_) } (5 .. 25);

but you should be aware that the operator creates an array of all integers in the range. This can take a lot
of memory for large ranges. Instead use:

@results = ();

for ($i=5; $i < 500_005; $i++) {
push(@results, &my_func($i));

}

How can | output Roman numerals?
Get the http://www.perl.com/CPAN/modules/by—-module/Roman module.

Why aren‘t my random numbers random?

The short explanation is that you‘re getting pseudorandom numbers, not random ones, because that's how
these things work. A longer explanation is available on
http://www.perl.com/CPAN/doc/FMTEYEWTK/random, courtesy of Tom Phoenix.

You should also check out the Math::TrulyRandom module from CPAN.
Data: Dates

How do I find the week-of-the-year/day—of-the-year?
The day of the year is in the array returneddogaltime() (seelocaltime in perlfunk

$day_of_year = (localtime(time()))[7];
or more legibly (in 5.004 or higher):

use Time::localtime;
$day_of_year = localtime(time())—>yday;

You can find the week of the year by dividing this by 7:

42 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

$week_of_year = int($day_of_year / 7);
Of course, this believes that weeks start at zero.

How can | compare two date strings?
Use the Date::Manip or Date::DateCalc modules from CPAN.

How can | take a string and turn it into epoch seconds?

If it's a regular enough string that it always has the same format, you can split it up and pass the parts to
timelocal in the standard Time::Local module. Otherwise, you should look into one of the Date modules
from CPAN.

How can | find the Julian Day?

Neither Date::Manip nor Date::DateCalc deal with Julian days. Instead, there is an example of Julian date
calculation in http://www.perl.com/CPAN/authors/David_Muir_Sharnoff/modules/Time/JulianDay.pm.gz,
which should help.

Does Perl have a year 2000 problem?

Not unless you use Perl to create one. The date and time functions supplied with perl (gmtime and localtime)
supply adequate information to determine the year well beyond 2000 (2038 is when trouble strikes). The year
returned by these functions when used in an array context is the year minus 1900. For years between 1910
and 1999 thihappengo be a 2-digit decimal number. To avoid the year 2000 problem simply do not treat
the year as a 2—digit number. It isn't.

When gmtime() and localtime() are used in a scalar context they return a timestamp string that
contains a fully-expanded year. For exampiimestamp = gmtime(1005613200) sets
$timestamp to "Tue Nov 13 01:00:00 2001". There's no year 2000 problem here.

Data: Strings

How do | validate input?

The answer to this question is usually a regular expression, perhaps with auxiliary logic. See the more
specific questions (numbers, email addresses, etc.) for detalils.

How do | unescape a string?

It depends just what you mean by "escape”. URL escapes are dealt patifaqQ Shell escapes with the
backslash (\) character are removed with:

sN\(.)/$1/g;
Note that this won‘t expand \n or \t or any other special escapes.

How do | remove consecutive pairs of characters?
To turn "abbcccd" into "abccd™:

s/()\1/$1/g;

How do | expand function calls in a string?

This is documented iperlref. In general, this is fraught with quoting and readability problems, but it is
possible. To interpolate a subroutine call (in a list context) into a string:

print "My sub returned @{[mysub(1,2,3)]} that time.\n",

If you prefer scalar context, similar chicanery is also useful for arbitrary expressions:
print "That yields ${\($n + 5)} widgets\n";

See also "How can | expand variables in text strings?" in this section of the FAQ.

How do I find matching/nesting anything?

This isn‘t something that can be tackled in one regular expression, no matter how complicated. To find
something between two single characters, a pattermd{Ke]*)x/ will get the intervening bits 1.

21-Jun—-1997 Perl Version 5.004 43

perlfaq4 Perl Programmers Reference Guide perlfaq4

For multiple ones, then something more liképha(.*?)omega/ would be needed. But none of these
deals with nested patterns, nor can they. For that you'll have to write a parser.

How do | reverse a string?
Usereverse() in a scalar context, as documentedeiverse

$reversed = reverse $string;

How do | expand tabs in a string?
You can do it the old—fashioned way:

1 while $string =~ sN\t+/"’ x (length($&) * 8 — length($‘) % 8)/e;
Or you can just use the Text::Tabs module (part of the standard perl distribution).

use Text::Tabs;
@expanded_lines = expand(@lines_with_tabs);

How do | reformat a paragraph?
Use Text::Wrap (part of the standard perl distribution):

use Text::Wrap;
print wrap("\t*,’ ', @paragraphs);

The paragraphs you give to Text::Wrap may not contain embedded newlines. Text::Wrap doesn't justify the
lines (flush-right).

How can | access/change the first N letters of a string?
There are many ways. If you just want to grab a copy, use substr:

$first_byte = substr($a, 0, 1);

If you want to modify part of a string, the simplest way is often tcsubstr() as an Ivalue:
substr($a, 0, 3) = "Tom";

Although those with a regexp kind of thought process will likely prefer
$a =~ s/*...[Tom/;

How do | change the Nth occurrence of something?

You have to keep track. For example, let's say you want to change the fifth occurrence of "whoever" or
"whomever" into "whosoever" or "whomsoever", case insensitively.

$count = 0;
s{((whom?)ever)}{
++$count == # is it the 5th?
? "${2}soever" # yes, swap
1 $1 # renege and leave it there
Yigex;

How can | count the number of occurrences of a substring within a string?

There are a number of ways, with varying efficiency: If you want a count of a certain single character (X)
within a string, you can use th#/ function like so:

$string = "ThisXlineXhasXsomeXx'sXinXit":
$count = ($string =~ tr/X//);
print "There are $count X charcters in the string";

This is fine if you are just looking for a single character. However, if you are trying to count multiple
character substrings within a larger stritrif/f ~ won't work. What you can do is wrapwdile() loop
around a global pattern match. For example, let's count negative integers:

44 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

$string = "-9 55 48 -2 23 =76 4 14 -44";
while ($string =~ /-\d+/g) { $Scount++ }
print "There are $count negative numbers in the string";
How do | capitalize all the words on one line?
To make the first letter of each word upper case:

$line =~ sAb(\WwW)A\US$1/g;

This has the strange effect of turnirdph‘t do it "into "Don'T Do It ". Sometimes you might want
this, instead (Suggested by Brian Foy <comdog@computerdog.com>):

Pstring =~ s/ (
(Mw) #at the beginning of the line
| #or
(\s\w) #preceded by whitespace

)
NU$1/xg;
$string =~ /([\Ww']+)Au\L$1/g;

To make the whole line upper case:
$line = uc($line);
To force each word to be lower case, with the first letter upper case:
$line =~ s/(\Ww+)\u\L$1/g;
How can | split a [character] delimited string except when inside
[character]? (Comma-—separated files)

Take the example case of trying to split a string that is comma-separated into its different fields. (We'll
pretend you said comma-separated, not comma-—delimited, which is different and almost never what you
mean.) You can‘t useplit(/,/) because you shouldn't split if the comma is inside quotes. For
example, take a data line like this:

SARO001,"™,"Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core Dumped"

Due to the restriction of the quotes, this is a fairly complex problem. Thankfully, we have Jeffrey Friedl,
author of a highly recommended book on regular expressions, to handle these for us. He suggests (assuming
your string is contained itext):

@new = ();
push(@new, $+) while $text =~ m{
"(NW*(2:\ NN ¥)*)",? - # groups the phrase inside the quotes
I (.12
Yox;
push(@new, undef) if substr($text,-1,1) eq ’,’;

If you want to represent quotation marks inside a quotation—-mark—delimited field, escape them with
backslashes (etijke \"this\"" . Unescaping them is a task addressed earlier in this section.

Alternatively, the Text::ParseWords module (part of the standard perl distribution) lets you say:

use Text::ParseWords;
@new = quotewords(",", 0, $text);

How do I strip blank space from the beginning/end of a string?
The simplest approach, albeit not the fastest, is probably like this:

$string =~ s/Ms*(*?)\s*$/$1/;

21-Jun—-1997 Perl Version 5.004 45

perlfaq4 Perl Programmers Reference Guide perlfaq4

It would be faster to do this in two steps:

$string =~ s/Ms+//;
$string =~ sN\s+$//;

Or more nicely written as:

for ($string) {
sIMs+//,
sh\s+$//;
}
How do | extract selected columns from a string?
Usesubstr() orunpack() , both documented iperifunc

How do I find the soundex value of a string?
Use the standard Text::Soundex module distributed with perl.

How can | expand variables in text strings?
Let's assume that you have a string like:

$text = 'this has a $foo in it and a $bar’;
$text =~ sA\$(\w+)/${$1}/q;

Before version 5 of perl, this had to be done with a double-eval substitution:
$text =~ s/(\$\w+)/$1/eeg;

Which is bizarre enough that you'll probably actually need an EEG afterwards. :-)

See also "How do | expand function calls in a string?" in this section of the FAQ.

What's wrong with always quoting " $vars"?

The problem is that those double—quotes force stringification, coercing numbers and references into strings,
even when you don‘t want them to be.

If you get used to writing odd things like these:

print "$var"; # BAD
$new = "$old"; # BAD
somefunc("$var"); # BAD

You'll be in trouble. Those should (in 99.8% of the cases) be the simpler and more direct:

print $var;
$new = $old;
somefunc($var);

Otherwise, besides slowing you down, you‘re going to break code when the thing in the scalar is actually
neither a string nor a number, but a reference:

func(\@array);
sub func {
my $aref = shift;
my $oref = "$aref’; # WRONG
}
You can also get into subtle problems on those few operations in Perl that actually do care about the
difference between a string and a number, such as the magicautoincrement operator or the
syscall() function.

46 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

Why don‘t my <<HERE documents work?
Check for these three things:
1. There must be no space after the << part.

2. There (probably) should be a semicolon at the end.
3. You can't (easily) have any space in front of the tag.

Data: Arrays

What is the difference between $array[l] and @array[1]?

The former is a scalar value, the latter an array slice, which makes it a list with one (scalar) value. You
should use$ when you want a scalar value (most of the time) and @ when you want a list with one scalar
value in it (very, very rarely; nearly never, in fact).

Sometimes it doesn‘t make a difference, but sometimes it does. For example, compare:
$good[0] = ‘some program that outputs several lines;

with
@bad[0] = ‘same program that outputs several lines’;

The-w flag will warn you about these matters.

How can | extract just the unique elements of an array?

There are several possible ways, depending on whether the array is ordered and whether you wish to
preserve the ordering.

a) If @in is sorted, and you want @out to be sorted:
$prev = 'nonesuch’;
@out = grep($_ ne $prev && ($prev =$_), @in);
This is nice in that it doesn‘t use much extra memory, simulating uniq(1)‘s behavior of removing only
adjacent duplicates.
b) If you don‘t know whether @in is sorted:
undef %saw;
@out = grep(I$saw{$_}++, @in);
c) Like (b), but @in contains only small integers:
@out = grep(!$saw[$_]++, @in);
d) A way to do (b) without any loops or greps:
undef %saw;
@saw{@in} = ();
@out = sort keys %saw; # remove sort if undesired
e) Like (d), but @in contains only small positive integers:

undef @ary;
@ary[@in] = @in;
@out = @ary;

How can | tell whether an array contains a certain element?

There are several ways to approach this. If you are going to make this query many times and the values are
arbitrary strings, the fastest way is probably to invert the original array and keep an associative array lying
about whose keys are the first array's values.

@blues = gw/azure cerulean teal turquoise lapis—lazuli/;
undef %is_blue;
for (@blues) { $is_blue{$_} =1}

21-Jun—-1997 Perl Version 5.004 47

perlfaq4 Perl Programmers Reference Guide perlfaq4

Now you can check wheth&is_blue{$some_color}. It might have been a good idea to keep the
blues all in a hash in the first place.

If the values are all small integers, you could use a simple indexed array. This kind of an array will take up
less space:

@primes = (2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31);

undef @is_tiny_prime;

for (@primes) { $is_tiny_prime[$_] =1;}
Now you check whetheSis_tiny_prime[$some_number].

If the values in question are integers instead of strings, you can save quite a lot of space by using bit strings
instead:

@articles = (1..10, 150..2000, 2017);
undef $read;
grep (vec($read,$_,1) = 1, @articles);

Now check whethevec($read,$n,1) is true for somé&n.
Please do not use

$is_there = grep $_ eq $whatever, @array;
or worse yet

$is_there = grep /$whatever/, @array;

These are slow (checks every element even if the first matches), inefficient (same reason), and potentially
buggy (what if there are regexp characterdvitatever?).

How do | compute the difference of two arrays? How do | compute the intersection of two arrays?

Use a hash. Here's code to do both and more. It assumes that each element is unique in a given array:

@union = @intersection = @difference = ();
%count = ();
foreach $element (@arrayl, @array2) { $count{$element}++ }
foreach $element (keys %count) {
push @union, $element;
push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;

}

How do I find the first array element for which a condition is true?
You can use this if you care about the index:
for ($i=0; $i < @array; $i++) {
if ($array[$i] eq "Waldo") {
$found_index = $i;
last;

}
}

Now $found_index has what you want.

How do | handle linked lists?
In general, you usually don't need a linked list in Perl, since with regular arrays, you can push and pop or
shift and unshift at either end, or you can use splice to add and/or remove arbitrary number of elements at
arbitrary points.

If you really, really wanted, you could use structures as descrilggtloscor perltootand do just what the
algorithm book tells you to do.

48 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | handle circular lists?
Circular lists could be handled in the traditional fashion with linked lists, or you could just do something like
this with an array:

unshift(@array, pop(@array)); # the last shall be first
push(@array, shift(@array)); # and vice versa
How do | shuffle an array randomly?

Here's a shuffling algorithm which works its way through the list, randomly picking another element to swap
the current element with:

srand;
@new = ();
@old =1 .. 10; # justademo
while (@old) {
push(@new, splice(@old, rand @old, 1));
}
For large arrays, this avoids a lot of the reshuffling:
srand;
@new = ();
@old =1 ..10000; # justa demo
for(@old){
my $r = rand @new+1;
push(@new,$new[$r]);
Snew[$r]=$_;
}

How do | process/modify each element of an array?
Usefor fforeach

for (@lines) {
s/foo/bar/;
trla-z][A-Z];
}

Here's another; let's compute spherical volumes:

for (@radii) {

$_*=3;

$_ *=(4/3) * 3.14159; # this will be constant folded
}

How do | select a random element from an array?
Use theand() function (seeand):

srand; # not needed for 5.004 and later
$index =rand @array;
$element = $array[$index];

How do | permute N elements of a list?

Here's a little program that generates all permutations of all the words on each line of input. The algorithm
embodied in th@ermut() function should work on any list:

#!/usr/bin/perl —n

permute - tchrist@perl.com
permut([split], []);

sub permut {

my @head = @{$_[0] };

21-Jun—-1997 Perl Version 5.004 49

perlfaq4 Perl Programmers Reference Guide perlfaq4

my @tail = @{ $_[1] };
unless (@head) {
stop recursing when there are no elements in the head
print "@tail\n";
}else {
for all elements in @head, move one from @head to @tail
and call permut() on the new @head and @talil
my(@newhead, @newtail, $i);
foreach $i (0 .. $#head) {
@newhead = @head;
@newtail = @tall;
unshift(@newtail, splice(@newhead, $i, 1));
permut([@newhead], [@newtall]);

}

How do | sort an array by (anything)?

Supply a comparison function sort() (described irsor):
@list = sort { $a <=> $b } @list;

The default sort function is cmp, string comparison, which would(%p2, 10) into (1, 10, 2)
<=>, used above, is the numerical comparison operator.

If you have a complicated function needed to pull out the part you want to sort on, then don‘t do it inside the
sort function. Pull it out first, because the sort BLOCK can be called many times for the same element.
Here's an example of how to pull out the first word after the first number on each item, and then sort those
words case-insensitively.

@idx = ();
for (@data) {
(Bitem) = Ad+\s*(\S+)/;
push @idx, uc($item);
}
@sorted = @data[sort { $idx[$a] cmp $idx[$b] } O .. $#idx |;

Which could also be written this way, using a trick that's come to be known as the Schwartzian Transform:

@sorted = map {$_->[0]}
sort { $a—>[1] cmp $b—>[1] }
map {[$_, uc((N\d+\s*(\S+)/)[0]] } @data;

If you need to sort on several fields, the following paradigm is useful.

@sorted = sort { field1($a) <=> field1($b) ||
field2($a) cmp field2($b) ||
field3($a) cmp field3($b)

} @data;

This can be conveniently combined with precalculation of keys as given above.
See http://www.perl.com/CPAN/doc/FMTEYEWTK/sort.html for more about this approach.

See also the question below on sorting hashes.

How do | manipulate arrays of bits?

Usepack() andunpack() , orelsevec() and the bitwise operations.

For example, this sevec to have bit N set i$ints[N] was set:

Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

$vec =",
foreach(@ints) { vec($vec,$_,1) =1}

And here's how, given a vector §ivec, you can get those bits into your @ints array:

sub bitvec_to_list {
my $vec = shift;
my @ints;
Find null-byte density then select best algorithm
if ($vec =~ tr\0// / length $vec > 0.95) {
use integer;
my $i;
This method is faster with mostly null-bytes
while($vec =~ /[M0)/g) {
$i = -9 + 8 * pos $vec;
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
}
}else {
This method is a fast general algorithm
use integer;
my $bits = unpack "b*", $vec;
push @ints, 0 if $bits =~ s/*(\d)// && $1;
push @ints, pos $bits while($bits =~ /1/g);
}

return \@ints;

}

This method gets faster the more sparse the bit vector is. (Courtesy of Tim Bunce and Winfried Koenig.)

Why does defined() return true on empty arrays and hashes?
Seedefinedin the 5.004 release or later of Perl.

Data: Hashes (Associative Arrays)

How do | process an entire hash?
Use theeach() function (seesach) if you don't care whether it's sorted:
while (($key,$value) = each %hash) {

print "$key = $value\n”;
}

If you want it sorted, you'll have to ugereach() on the result of sorting the keys as shown in an earlier
guestion.

What happens if | add or remove keys from a hash while iterating over it?
Don'‘t do that.

How do | look up a hash element by value?
Create a reverse hash:

%Dby_value = reverse %by_key;
$key = $by_value{$value};

21-Jun—-1997 Perl Version 5.004 51

perlfaq4 Perl Programmers Reference Guide perlfaq4

That's not particularly efficient. It would be more space-efficient to use:

while (($key, $value) = each %by_key) {
$by_value{$value} = $key;
}

If your hash could have repeated values, the methods above will only find one of the associated keys. This
may or may not worry you.

How can | know how many entries are in a hash?
If you mean how many keys, then all you have to do is take the scalar senskegkthe function:

$num_keys = scalar keys %hash;
In void context it just resets the iterator, which is faster for tied hashes.

How do | sort a hash (optionally by value instead of key)?

Internally, hashes are stored in a way that prevents you from imposing an order on key-value pairs. Instead,
you have to sort a list of the keys or values:

@keys = sort keys %hash; # sorted by key
@keys = sort {
$hash{$a} cmp $hash{$b}
} keys %hash; # and by value

Here we'll do a reverse numeric sort by value, and if two keys are identical, sort by length of key, and if that
fails, by straight ASCIl comparison of the keys (well, possibly modified by your locale pesésale.

@keys = sort {
$hash{$b} <=> $hash{$a}
I

length($b) <=> length($a)
|
$a cmp $b
} keys %hash;

How can | always keep my hash sorted?

You can look into using the DB_File module atid() using the$DB_BTREEhash bindings as
documented imn Memory Databases in DB_File

What's the difference between "delete" and "undef" with hashes?

Hashes are pairs of scalars: the first is the key, the second is the value. The key will be coerced to a string,
although the value can be any kind of scalar: string, number, or reference. |Bkekeys present in the

array, exists($key) will return true. The value for a given key can tmedef , in which case
$array{$key} will be undef while $exists{$key} will return true. This corresponds tBkey,

undef) being in the hash.

Pictures help... here's tBéary table:

keys values
+————— +—————— +
la |3 |
| x |7 |
| d [0 |
le |2]
+————— +—————— +
And these conditions hold
Sary{'a’} is true
Sary{'d’} is false

52 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide

perlfaq4

defined $ary{'d’} is true
defined $ary{’a’} is true
exists $ary{'a’} is true (perl5 only)

grep ($_eq’'a’, keys %ary) s true
If you now say

undef $ary{’a’}
your table now reads:

keys values

ndef|

c

N O N

[P —

and these conditions now hold; changes in caps:

Sary{’a’} is FALSE

Sary{’'d’} is false

defined $ary{'d’} is true

defined $ary{’a’} is FALSE

exists $ary{'a’} is true (perl5 only)

grep ($_eq’'a, keys %ary) s true

Notice the last two: you have an undef value, but a defined key!

Now, consider this:
delete $ary{'a’}
your table now reads:

keys values

® o X
N O N
—_ A

1
+
1 1 Il
+ + +

and these conditions now hold; changes in caps:

Sary{’a’} is false

Sary{’'d’} is false

defined $ary{'d’} is true

defined $ary{’a’} is false

exists $ary{'a’} is FALSE (perl5 only)

grep ($_eq'a’, keys %ary) is FALSE
See, the whole entry is gone!

Why don‘t my tied hashes make the defined/exists distinction?

They may or may not implement tB&ISTS() andDEFINED() methods differently. For example, there
isn‘t the concept of undef with hashes that are tied to DBM* files. This means the true/false tables above will
give different results when used on such a hash. It also means that exists and defined do the same thing with

a DBM* file, and what they end up doing is not what they do with ordinary hashes.

21-Jun—-1997 Perl Version 5.004

53

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | reset an each() operation part-way through?

Using keys %hash in a scalar context returns the number of keys in the hadhresets the iterator
associated with the hash. You may need to do this if yolasse to exit a loop early so that when you
re—enter it, the hash iterator has been reset.

How can | get the unique keys from two hashes?

First you extract the keys from the hashes into arrays, and then solve the uniquifying the array problem
described above. For example:

%seen = ();
for $element (keys(%foo), keys(%bar)) {
$seen{$element}++;

}

@uniq = keys %seen,;
Or more succinctly:

@uniq = keys %{{%fo0,%bar}};
Or if you really want to save space:

%seen = ();
while (defined ($key = each %fo0)) {
$seen{Skey}++;

}
while (defined ($key = each %bar)) {
$seen{Skey}++;
}
@uniq = keys %seen,;
How can | store a multidimensional array in a DBM file?

Either stringify the structure yourself (no fun), or else get the MLDBM (which uses Data::Dumper) module
from CPAN and layer it on top of either DB_File or GDBM_File.

How can | make my hash remember the order | put elements into it?
Use the Tie::IxHash from CPAN.

use Tie::IxHash;

tie(%omyhash, Tie::IxHash);

for ($i=0; $i<20; $i++) {
$myhash{$i} = 2*$i;

}

@keys = keys %myhash;

@keys =(0,1,2,3,...)

Why does passing a subroutine an undefined element in a hash create it?
If you say something like:
somefunc($hash{"nonesuch key here"});

Then that element "autovivifies"; that is, it springs into existence whether you store something there or not.
That's because functions get scalars passed in by referersmmdfunc() modifies$_[0], it has to be
ready to write it back into the caller's version.

This has been fixed as of perl5.004.

Normally, merely accessing a key's value for a nonexistent keyragesuse that key to be forever there.
This is different than awk's behavior.

54 Perl Version 5.004 21-Jun-1997

perlfaq4 Perl Programmers Reference Guide perlfaq4

How can | make the Perl equivalent of a C structure/C++ class/hash or array of hashes or arrays?
Use references (documented perlref). Examples of complex data structures are givepenidsc and
perllol. Examples of structures and object-oriented classes peglioot

How can | use a reference as a hash key?
You can't do this directly, but you could use the standard Tie::Refhash module distributed with perl.

Data: Misc

How do | handle binary data correctly?
Perl is binary clean, so this shouldn‘t be a problem. For example, this works fine (assuming the files are
found):
if (‘cat /Ivmunix' =~ /gzip/) {
print "Your kernel is GNU-zip enabled!\n";

}

On some systems, however, you have to play tedious games with "text" versus "binary" files. See
binmode in perlfunc

If you‘re concerned about 8-bit ASCII data, then gedlocale

If you want to deal with multibyte characters, however, there are some gotchas. See the section on Regular
Expressions.
How do | determine whether a scalar is a number/whole/integer/float?

Assuming that you don‘t care about IEEE notations like "NaN" or "Infinity", you probably just want to use a
regular expression.

warn "has nondigits" if AD/;

warn "not a whole number" unless /Md+$/;

warn "not an integer" unless /"=?\d+$/; # reject +3
warn "not an integer" unless /A[+=]2\d+$/;

warn "not a decimal number" unless /*~-\d+\.2\d*$/; # rejects .2
warn "not a decimal number" unless /*=?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /M([+=1?)(?=\d\.\d)\d*(\.\d*) ?([Ee]([+-]?\d+))?$/;

Or you could check out http://www.perl.com/CPAN/modules/by—module/String/String—Scanf-1.1.tar.gz
instead. The POSIX module (part of the standard Perl distribution) providsstdte andstrtod for
converting strings to double and longs, respectively.

How do | keep persistent data across program calls?
For some specific applications, you can use one of the DBM moduleangB8M_File More generically,
you should consult the FreezeThaw, Storable, or Class::Eroot modules from CPAN.

How do | print out or copy a recursive data structure?
The Data::Dumper module on CPAN is nice for printing out data structures, and FreezeThaw for copying
them. For example:

use FreezeThaw gw(freeze thaw);
$new = thaw freeze $old;

Where$old can be (a reference to) any kind of data structure you'd like. It will be deeply copied.

How do | define methods for every class/object?
Use the UNIVERSAL class (sé&NIVERSAIL.

21-Jun—-1997 Perl Version 5.004 55

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | verify a credit card checksum?
Get the Business::CreditCard module from CPAN.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

56 Perl Version 5.004 21-Jun-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

NAME
perlfag5 - Files and Format8Revision: 1.22%, $Date: 1997/04/24 22:44.08)

DESCRIPTION
This section deals with I/O and the "f* issues: filehandles, flushing, formats, and footers.

How do | flush/unbuffer a filehandle? Why must | do this?

The C standard 1/O library (stdio) normally buffers characters sent to devices. This is done for efficiency
reasons, so that there isn‘t a system call for each byte. Any time yquinige or write() in Perl,
you go though this bufferingsyswrite() circumvents stdio and buffering.

In most stdio implementations, the type of buffering and the size of the buffer varies according to the type of
device. Disk files are block buffered, often with a buffer size of more than 2k. Pipes and sockets are often
buffered with a buffer size between 1/2 and 2k. Serial devices (e.g. modems, terminals) are normally
line-buffered, and stdio sends the entire line when it gets the newline.

Perl does not support truly unbuffered output (except insofar as yaysamnte(OUT, $char, 1)).

What it does instead support is "command buffering”, in which a physical write is performed after every
output command. This isn‘t as hard on your system as unbuffering, but does get the output where you want
it when you want it.

If you expect characters to get to your device when you print them there, you'll want to autoflush its handle,
as in the older:

use FileHandle;
open(DEV, "<+/dev/tty"); # ceci n'est pas une pipe
DEV->autoflush(1);

or the newer 10::* modules:

use |0::Handle;
open(DEV, ">/dev/printer"); # but is this?
DEV->autoflush(1);

or even this:

use 10::Socket; # this one is kinda a pipe?

$sock = 10::Socket::INET->new(PeerAddr => 'www.perl.com’,
PeerPort => 'http(80)’,
Proto =>'tcp’);

die "$!" unless $sock;

$sock—>autoflush();
$sock—>print("GET N015\012");
$document = join(”, $sock—>getlines());
print "DOC IS: $document\n”;

Note the hardcoded carriage return and newline in their octal equivalents. This is the ONLY way (currently)
to assure a proper flush on all platforms, including Macintosh.

You can useelect() and the$| variable to control autoflushing (ség¢ andselec):

$oldh = select(DEV);
$=1;
select($oldh);

You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);

21-Jun—-1997 Perl Version 5.004 57

perlfaq5 Perl Programmers Reference Guide perlfaq5

How do | change one line in a file/delete a line in a file/insert a line in the middle of a file/append to
the beginning of a file?
Although humans have an easy time thinking of a text file as being a sequence of lines that operates much
like a stack of playing cards — or punch cards — computers usually see the text file as a sequence of bytes.
In general, there's no direct way for Perl to seek to a particular line of a file, insert text into a file, or remove
text from a file.

(There are exceptions in special circumstances. Replacing a sequence of bytes with another sequence of the
same length is one. Another is using 82B_RECNQCarray bindings as documented B_File. Yet
another is manipulating files with all lines the same length.)

The general solution is to create a temporary copy of the text file with the changes you want, then copy that
over the original.

$old = $file;

$new = "$file.tmp.$$";

$bak = "$file.bak";

open(OLD, "< $old") or die "can’t open $old: $!";
open(NEW, "> $new") or die "can’t open $new: $!";

Correct typos, preserving case
while (<OLD>) {

s/\b(p)earl\b/${1}erl/i;

(print NEW $) or die "can't write to $new: $!";
}
close(OLD) or die "can’t close $old: $!";
close(NEW) or die "can't close $new: $!";
rename($old, $bak) or die "can't rename $old to $bak: $!";
rename($new, $old) or die "can’t rename $new to $old: $!";

Perl can do this sort of thing for you automatically with thecommand-line switch or the closely-related
$7 variable (se@erlrun for more details). Note thai may require a suffix on some non-Unix systems;
see the platform—-specific documentation that came with your port.

Renumber a series of tests from the command line
perl —pi —e 's/(Ms+test\s+)\d+/ $1 . ++$count /e’ t/op/taint.t

form a script
local($"l, @ARGV) = (".bak’, glob("*.c"));

while (<>) {
if ($.==1){
print "This line should appear at the top of each file\n";
}
s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving case
print;
close ARGV if eof; # Reset $.

}

If you need to seek to an arbitrary line of a file that changes infrequently, you could build up an index of byte
positions of where the line ends are in the file. If the file is large, an index of every tenth or hundredth line
end would allow you to seek and read fairly efficiently. If the file is sorted, try the look.pl library (part of the
standard perl distribution).

In the unique case of deleting lines at the end of a file, you catell@e andtruncate() . The
following code snippet deletes the last line of a file without making a copy or reading the whole file into
memory:

58 Perl Version 5.004 21-Jun-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

open (FH, "+< $file");
while (<FH>) { $addr = tell(FH) unless eof(FH) }
truncate(FH, $addr);

Error checking is left as an exercise for the reader.

How do | count the number of lines in a file?

One fairly efficient way is to count newlines in the file. The following program uses a feature of tr///, as
documented imperlop. If your text file doesn‘'t end with a newline, then it's not really a proper text file, so
this may report one fewer line than you expect.

$lines = 0;
open(FILE, $filename) or die "Can’t open ‘Sfilename’: $!";
while (sysread FILE, $buffer, 4096) {

$lines += ($buffer =~ trAn//);

}
close FILE;

How do | make a temporary file name?

Use the process ID and/or the current time—value. If you need to have many temporary files in one process,
use a counter:

BEGIN {
use |O::File;
use Fentl;
my $temp_dir = —=d '/tmp’ ? '/tmp’ : SENV{TMP} || SENV{TEMP};
my $base_name = sprintf("%s/%d-%d—-0000", $temp_dir, $$, time());
sub temp_file {
my $fh = undef;
my $count = 0;
until (defined($fh) || $count > 100) {
$base_name =~ s/-(\d+)$/"-" . (1 + $1)/e;
$th = 10::File->new($base_name, O_WRONLY|O_EXCL|O_CREAT, 0644)

}
if (defined($fh)) {

return ($fh, $base_name);
}else {

return ();

}
}
}

Or you could simply use 10::Handle::new_tmpfile.

How can | manipulate fixed-record-length files?

The most efficient way is usingack() andunpack() . This is faster than usimgubstr() . Hereis a
sample chunk of code to break up and put back together again some fixed—format input lines, in this case
from the output of a normal, Berkeley-style ps:

sample input line:
15158 p5 T 0:00 perl /home/tchrist/scripts/now—what
$PS_T ="A6 A4 A7 A5 A
open(PS, "ps|");
$ = <PS>; print;
while (<PS>) {
($pid, $tt, $stat, $time, Scommand) = unpack($PS_T, $);
for $var (qw!pid tt stat time command!) {
print "$var: <$$var>\n";

21-Jun—-1997 Perl Version 5.004 59

perlfaq5 Perl Programmers Reference Guide perlfaq5

}
print line=", pack($PS_T, $pid, $tt, $stat, $time, Scommand),
"\n";
}
How can | make a filehandle local to a subroutine? How do | pass filehandles between
subroutines? How do | make an array of filehandles?

You may have some success with typeglobs, as we always had to use in days of old:
local(*FH);

But while still supported, that isn‘t the best to go about getting local filehandles. Typeglobs have their
drawbacks. You may well want to use fhieeHandle = module, which creates new filehandles for you
(seeFileHandlg:

use FileHandle;
sub findme {
my $fh = FileHandle->new();
open($fh, "</etc/hosts") or die "no /etc/hosts: $!";
while (<$fh>) {
print if Ab127\.(0\.0\.)?1\b/;
}

$fh automatically closes/disappears here

}

Internally, Perl believes filehandles to be of class 10::Handle. You may use that module directly if you'd
like (seelO::Handle), or one of its more specific derived classes.

Once you have 10::File or FileHandle objects, you can pass them between subroutines or store them in
hashes as you would any other scalar values:

use FileHandle;

Storing filehandles in a hash and array
foreach $filename (@names) {
my $fh = new FileHandle($filename) or die;
$file{$filename} = $th;
push(@files, $fh);
}
Using the filehandles in the array
foreach $file (@files) {
print $file "Testing\n";
}

You have to do the { } ugliness when you're specifying the
filehandle by anything other than a simple scalar variable.
print { $files[2] } "Testing\n";

Passing filehandles to subroutines
sub debug {
my $filehandle = shift;
printf $filehandle "DEBUG: ", @_;

}
debug($fh, "Testing\n");

How can | set up a footer format to be used with write() ?

There's no builtin way to do this, bperlformhas a couple of techniques to make it possible for the intrepid
hacker.

60 Perl Version 5.004 21-Jun-1997

IO::Handle

perlfaq5 Perl Programmers Reference Guide perlfaq5

How can | write() into a string?
Seeperlformfor answrite() function.

How can | output my numbers with commas added?
This one will do it for you:

sub commify {

local $_ = shift;
1 while s/A(-2\d+)(\d{3})/$1,$2/;
retun $_;

}
$n = 23659019423.2331;
print "GOT: ", commify($n), "\n";
GOT: 23,659,019,423.2331
You can't just:
siN=\d+)(\d{3})/$1,$2/g;
because you have to put the comma in and then recalculate your position.

Alternatively, this commifies all numbers in a line regardless of whether they have decimal portions, are
preceded by + or —, or whatever:

from Andrew Johnson <ajohnson@gpu.srv.ualberta.ca>
sub commify {

my $input = shift;

$input = reverse $input;

$input =~ s<(\d\d\d)(?=\d)(?\d*\.)><$1,>g;

return reverse $input;

}

How can | translate tildes (~) in a flename?

Use the <x(glob()) operator, documented perifunc This requires that you have a shell installed that
groks tildes, meaning csh or tcsh or (some versions of) ksh, and thus may have portability problems. The
Glob::KGlob module (available from CPAN) gives more portable glob functionality.

Within Perl, you may use this directly:

$filename =~ s{

N~ # find a leading tilde
(# save this in $1
™ # a non-slash character
* #repeated O or more times (0 means me)
)
H
$1

? (getpwnam($1))[7]
: ($ENV{HOME} || $ENV{LOGDIR})
lex;

How come when | open the file read-write it wipes it out?
Because you'‘re using something like this, which truncates the filthandives you read—write access:

open(FH, "+> /path/name"); # WRONG
Whoops. You should instead use this, which will fail if the file doesn‘t exist.

open(FH, "+< /path/name"); # open for update

21-Jun—-1997 Perl Version 5.004 61

perlfaq5 Perl Programmers Reference Guide perlfaq5

If this is an issue, try:
sysopen(FH, "/path/name", O_RDWR|O_CREAT, 0644);
Error checking is left as an exercise for the reader.

Why do | sometimes get an "Argument list too long" when | use <*?

The<> operator performs a globbing operation (see above). By dgfablj forks csh(1) to do the actual

glob expansion, but csh can‘t handle more than 127 items and so gives the error Arggsagat list

too long . People who installed tcsh as csh won'‘t have this problem, but their users may be surprised by
it.

To get around this, either do the glob yourself witimhandle s and patterns, or use a module like
Glob::KGlob, one that doesn't use the shell to do globbing.

Is there a leak/bug in glob() ?

Due to the current implementation on some operating systems, when you géebfhe function or its
angle-bracket alias in a scalar context, you may cause a leak and/or unpredictable behavior. It's best
therefore to usglob() only in list context.

How can | open a file with a leading ">" or trailing blanks?

Normally perl ignores trailing blanks in filenames, and interprets certain leading characters (or a trailing "|")
to mean something special. To avoid this, you might want to use a routine like this. It makes incomplete
pathnames into explicit relative ones, and tacks a trailing null byte on the name to make perl leave it alone:

sub safe_filename {

local $_ = shift;
return m#/\/#
?"$ \0"
DS \0Y

}

$fn = safe_filename("<<<something really wicked ");
open(FH, "> $fn") or "couldn’t open $fn: $!";

You could also use thgysopen() function (seeysopeh

How can | reliably rename a file?

Well, usually you just use Perltename() function. But that may not work everywhere, in particular,
renaming files across file systems. If your operating system supports a mv(1l) program or its moral
equivalent, this works:

rename($old, $new) or system("mv", $old, $new);

It may be more compelling to use the File::Copy module instead. You just copy to the new file to the new
name (checking return values), then delete the old one. This isn‘t really the same semantics as a real
rename() , though, which preserves metainformation like permissions, timestamps, inode info, etc.

How can | lock a file?

Perl's builtinflock() ~ function (se@erlfuncfor details) will call flock(2) if that exists, fcntl(2) if it doesn't
(on perl version 5.004 and later), and lockf(3) if neither of the two previous system calls exists. On some
systems, it may even use a different form of native locking. Here are some gotchas wititoPlefi's :

1 Produces a fatal error if none of the three system calls (or their close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the filehandle be open for writing (or
appending, or read/writing).

3 Some versions dfock() can't lock files over a network (e.g. on NFS file systems), so you'd need
to force the use of fcntl(2) when you build Perl. See the flock enpgrtfiing and thdNSTALL file
in the source distribution for information on building Perl to do this.

62 Perl Version 5.004 21-Jun-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

The CPAN module File::Lock offers similar functionality and (if you have dynamic loading) won't require
you to rebuild perl if youflock() ~ can't lock network files.

What can‘t | just open(FH, “file.lock™")?
A common bit of cod®&OT TO USE is this:

sleep(3) while —e "file.lock"; # PLEASE DO NOT USE
open(LCK, "> file.lock"); # THIS BROKEN CODE

This is a classic race condition: you take two steps to do something which must be done in one. That's why
computer hardware provides an atomic test—and—-set instruction. In theory, this "ought" to work:

sysopen(FH, "file.lock", O_WRONLY|O_EXCL|O_CREAT, 0644)
or die "can’t open file.lock: $!":

except that lamentably, file creation (and deletion) is not atomic over NFS, so this won't work (at least, not
every time) over the net. Various schemes involving invollimg) have been suggested, but these tend
to involve busy—-wait, which is also subdesirable.

| still don‘t get locking. | just want to increment the number in the file. How can | do this?
Didn‘t anyone ever tell you web—page hit counters were useless?

Anyway, this is what to do:

use Fentl;

sysopen(FH, "numfile”, O_RDWR|O_CREAT, 0644) or die "can’t open numfile: $!";
flock(FH, 2) or die "can’t flock numfile: $!";
$num = <FH> || 0;

seek(FH, 0, 0) or die "can't rewind numfile: $!";
truncate(FH, 0) or die "can't truncate numfile: $!";
(print FH $num+1, "\n") or die "can’t write numfile: $!";

DO NOT UNLOCK THIS UNTIL YOU CLOSE

close FH or die "can’t close numfile: $!";

Here's a much better web—page hit counter:
$hits = int((time() — 850_000_000) / rand(1_000));
If the count doesn't impress your friends, then the code might. :-)

How do | randomly update a binary file?
If you're just trying to patch a binary, in many cases something as simple as this works:

perl —i —pe 's{window manager{window mangler}g’ /usr/bin/emacs
However, if you have fixed sized records, then you might do something more like this:

$RECSIZE = 220; # size of record, in bytes

$recno = 37; # which record to update

open(FH, "+<somewhere") || die "can’t update somewhere: $!";

seek(FH, $recno * $RECSIZE, 0);

read(FH, $record, $SRECSIZE) == $RECSIZE || die "can't read record $recno: $!";
munge the record

seek(FH, $recno * $RECSIZE, 0);

print FH $record,;

close FH;

Locking and error checking are left as an exercise for the reader. Don‘t forget them, or you'll be quite sorry.

Don't forget to sebinmode() under DOS-like platforms when operating on files that have anything other
than straight text in them. See the doc®pen() and orbinmode() for more details.

21-Jun—-1997 Perl Version 5.004 63

perlfaq5 Perl Programmers Reference Guide perlfaq5

How do | get a file's timestamp in perl?

If you want to retrieve the time at which the file was last read, written, or had its meta—data (owner, etc)
changed, you use théM, —A, or—C filetest operations as documentega@rlfunc These retrieve the age of

the file (measured against the start—time of your program) in days as a floating point number. To retrieve the
“raw" time in seconds since the epoch, you would call the stat function, thetoaademe() ,
gmtime() , or POSIX::strftime() to convert this into human-readable form.

Here's an example:

$write_secs = (stat($file))[9];
print "file $file updated at ", scalar(localtime($file)), "\n";

If you prefer something more legible, use the File::stat module (part of the standard distribution in version
5.004 and later):

use File::stat;

use Time::localtime;

$date_string = ctime(stat($file)->mtime);
print "file $file updated at $date_string\n";

Error checking is left as an exercise for the reader.

How do | set a file's timestamp in perl?

You use thaitime() function documented intime By way of example, here's a little program that copies
the read and write times from its first argument to all the rest of them.

if (@ARGV < 2) {
die "usage: cptimes timestamp_file other_files ...\n";
}

$timestamp = shift;
($atime, $mtime) = (stat($timestamp))[8,9];
utime $atime, $mtime, @ARGV;

Error checking is left as an exercise for the reader.

Note thatutime() currently doesn‘'t work correctly with Win95/NT ports. A bug has been reported.
Check it carefully before using it on those platforms.

How do | print to more than one file at once?
If you only have to do this once, you can do this:

for $th (FH1, FH2, FH3) { print $fh "whatever\n" }

To connect up to one filehandle to several output filehandles, it's easiest to use the tee(1) program if you
have it, and let it take care of the multiplexing:

open (FH, "| tee filel file2 file3");

Otherwise you'll have to write your own multiplexing print function — or your own tee program — or use
Tom Christiansen's, at http://www.perl.com/CPAN/authors/id/TOMC/scripts/tct.gz, which is written in Perl.

In theory a 10::Tee class could be written, but to date we haven‘t seen such.

How can | read in a file by paragraphs?

Use the$\ variable (seeerlvar for details). You can either set it o to eliminate empty paragraphs
("abc\n\n\n\ndef" , for instance, gets treated as two paragraphs and not thrée)\ndr to accept
empty paragraphs.

How can | read a single character from a file? From the keyboard?

You can use the builtigetc() function for most filehandles, but it won't (easily) work on a terminal
device. For STDIN, either use the Term::ReadKey module from CPAN, or use the samplegside in

64 Perl Version 5.004 21-Jun-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

If your system supports POSIX, you can use the following code, which you'll note turns off echo processing
as well.

#l/usr/bin/perl -w
use strict;
$| =1,
for (1..4) {
my $got;
print "gimme: ";
$got = getone();
print "—-—> $got\n";
} .
exit;
BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN);

$term = POSIX:: Termios—>new();
$term—>getattr($fd_stdin);
$oterm = $term—>getlflag();

$echo =ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term->setlflag($noecho);
$term->setcc(VTIME, 1);
$term—>setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term—>setlflag($oterm);
$term->setcc(VTIME, 0);
$term—>setattr($fd_stdin, TCSANOW);

}

sub getone {
my $key = ";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}
END { cooked() }

The Term::ReadKey module from CPAN may be easier to use:

use Term::ReadKey;

open(TTY, "</dev/tty");

print "Gimme a char: ";

ReadMode "raw";

$key = ReadKey 0, *TTY;

ReadMode "normal*;

printf "\nYou said %s, char number %03d\n",

21-Jun—-1997 Perl Version 5.004 65

perlfaq5 Perl Programmers Reference Guide perlfaq5

$key, ord $key;
For DOS systems, Dan Carson <dbc@tc.fluke.COM reports the following:

To put the PC in "raw" mode, use ioctl with some magic numbers gleaned from msdos.c (Perl source file)
and Ralf Brown's interrupt list (comes across the net every so often):

$old_ioctl = ioctl(STDIN,0,0); # Gets device info
$old_ioctl &= Oxff;
ioctl(STDIN,1,$old_ioctl | 32); # Writes it back, setting bit 5

Then to read a single character:
sysread(STDIN,$c,1); # Read a single character
And to put the PC back to "cooked" mode:
ioctl(STDIN,1,%old_ioctl); # Sets it back to cooked mode.

So now you havéc. If ord($c) == , you have a two byte code, which means you hit a special key.
Read another byte withysread(STDIN,$c,1), and that value tells you what combination it was
according to this table:

PC 2-byte keycodes = *@ + the following:

#HEX KEYS
[—_——

#0F SHF TAB

#10-19 ALT QWERTYUIOP

#1E-26 ALT ASDFGHJKL

#2C-32 ALT ZXCVBNM

#3B-44 F1-F10

47-49 HOME,UP,PgUp

#4B LEFT

#4D RIGHT

4F-53 END,DOWN,PgDn,Ins,Del

#54-5D SHF F1-F10

#5E-67 CTR F1-F10

#68-71 ALT F1-F10

#73-77 CTR LEFT,RIGHT,END,PgDn,HOME
#78-83 ALT 1234567890-=

#84 CTR PgUp

This is all trial and error | did a long time ago, | hope I'm reading the file that worked.

How can | tell if there's a character waiting on a filehandle?

You should check out the Frequently Asked Questions list in comp.unix.* for things like this: the answer is
essentially the same. It's very system dependent. Here's one solution that works on BSD systems:

sub key_ready {
my($rin, $nfd);
vec($rin, fileno(STDIN), 1) = 1;
return $nfd = select($rin,undef,undef,0);

}

You should look into getting the Term::ReadKey extension from CPAN.

How do | open a file without blocking?
You need to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with
sysopen()

use Fentl;

66 Perl Version 5.004 21-Jun-1997

perlfaq5 Perl Programmers Reference Guide perlfaq5

sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT, 0644)
or die "can’t open /tmp/somefile: $!":

How do | create a file only if it doesn‘t exist?

You need to use the O_CREAT and O_EXCL flags from the Fcntl module in conjunction with
sysopen()

use Fentl;
sysopen(FH, "/tmp/somefile”, O_ WRONLY|O_EXCL|O_CREAT, 0644)
or die "can't open /tmp/somefile: $!":

Be warned that neither creation nor deletion of files is guaranteed to be an atomic operation over NFS. That
is, two processes might both successful create or unlink the same file!

How do I do a tail —f in perl?
First try

seek(GWFILE, 0, 1);

The statemenseek(GWFILE, 0, 1) doesn't change the current position, but it does clear the
end-of-file condition on the handle, so that the next <GWFILE makes Perl try again to read something.

If that doesn't work (it relies on features of your stdio implementation), then you need something more like

this:
for (;;) {
for ($curpos = tell[GWFILE); <GWFILE>; $curpos = tel(GWFILE)) {
search for some stuff and put it into files
}
sleep for a while
seek(GWFILE, $curpos, 0); # seek to where we had been
}
If this still doesn‘t work, look into the POSIX module. POSIX definesdlearerr() method, which
can remove the end of file condition on a filehandle. The method: read until end dééikeyr() , read

some more. Lather, rinse, repeat.

How do | dup() a filehandle in Perl?
If you checkopen you'll see that several of the ways to @glen() should do the trick. For example:
open(LOG, ">>/tmp/logfile");
open(STDERR, ">&LOG");
Or even with a literal numeric descriptor:

$fd = SENV{MHCONTEXTFD};
open(MHCONTEXT, "<&=%$fd"); # like fdopen(3S)

Error checking has been left as an exercise for the reader.

How do | close a file descriptor by number?

This should rarely be necessary, as the Blede() function is to be used for things that Perl opened
itself, even if it was a dup of a numeric descriptor, as with MHCONTEXT above. But if you really have to,
you may be able to do this:

require 'sys/syscall.ph’;
$rc = syscall(&SYS_close, $fd + 0); # must force numeric
die "can’t sysclose $fd: $!" unless $rc == -1;

Why can‘t | use "C:\temp\foo" in DOS paths? What doesn‘t ‘C:\temp\foo.exe' work?

Whoops! You just put a tab and a formfeed into that flename! Remember that within double quoted strings
("likethis"), the backslash is an escape character. The full list of these is in

21-Jun—-1997 Perl Version 5.004 67

perlfaq5 Perl Programmers Reference Guide perlfaq5

Quote and Quote-like Operatardnsurprisingly, you don‘t have a file called "c:(tab)emp(formfeed)oo" or
"c:(tab)emp(formfeed)oo.exe" on your DOS filesystem.

Either single—quote your strings, or (preferably) use forward slashes. Since all DOS and Windows versions
since something like MS-DOS 2.0 or so have treatatd\ the same in a path, you might as well use the

one that doesn‘t clash with Perl — or the POSIX shell, ANSI C and C++, awk, Tcl, Java, or Python, just to
mention a few.

Why doesn‘t glob("*.*") get all the files?
Because even on non-Unix ports, Perl‘'s glob function follows standard Unix globbing semantics. You'll
needglob("*") to get all (non—hidden) files.

Why does Perl let me delete read-only files? Why does —-i clobber protected files? Isn‘t this a
bug in Perl?
This is elaborately and painstakingly described in the "Far More Than You Every Wanted To Know" in
http://www.perl.com/CPAN/doc/FMTEYEWTK/file-dir-perms .

The executive summary: learn how your filesystem works. The permissions on a file say what can happen to
the data in that file. The permissions on a directory say what can happen to the list of files in that directory.
If you delete a file, you're removing its name from the directory (so the operation depends on the
permissions of the directory, not of the file). If you try to write to the file, the permissions of the file govern
whether you‘re allowed to.

How do | select a random line from a file?
Here's an algorithm from the Camel Book:

srand;
rand($.) < 1 && ($line = $_) while <>;

This has a significant advantage in space over reading the whole file in.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

68 Perl Version 5.004 21-Jun-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

NAME
perlfag6 — RegexpsbRevision: 1.17$, $Date: 1997/04/24 22:44:19)
DESCRIPTION

This section is surprisingly small because the rest of the FAQ is littered with answers involving regular
expressions. For example, decoding a URL and checking whether something is a number are handled with
regular expressions, but those answers are found elsewhere in this document (in the section on Data and the
Networking one on networking, to be precise).

How can | hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regexp
Describe what you‘re doing and how you‘re doing it, using normal Perl comments.

turn the line into the first word, a colon, and the

number of characters on the rest of the line

s/M\w+) () Ie($1) . " . length($2) /ge;
Comments Inside the Regexp

The/x modifier causes whitespace to be ignored in a regexp pattern (except in a character class), and
also allows you to use normal comments there, too. As you can imagine, whitespace and comments
help a lot.

/x lets you turn this:

s{<(Z:[*>"T" 2" *?)+>H}gs;

into this:
s{< # opening angle bracket
(2 # Non-backreffing grouping paren
[>"* # 0 or more things that are neither > nor ' nor "
| # orelse
" # a section between double quotes (stingy match)
| # orelse
LY # a section between single quotes (stingy match)
)+ # all occurring one or more times
> # closing angle bracket
H}osx; # replace with nothing, i.e. delete

It's still not quite so clear as prose, but it is very useful for describing the meaning of each part of the
pattern.
Different Delimiters

While we normally think of patterns as being delimited witlcharacters, they can be delimited by
almost any charactemerlre describes this. For example, th¢ above uses braces as delimiters.
Selecting another delimiter can avoid quoting the delimiter within the pattern:

s/\lusrVlocalNusr\/share/g; # bad delimiter choice
s#t/usr/local#/usr/share#g; # better

I'm having trouble matching over more than one line. What's wrong?
Either you don‘t have newlines in your string, or you aren‘t using the correct modifier(s) on your pattern.

There are many ways to get multiline data into a string. If you want it to happen automatically while reading
input, you'll want to se$/ (probably to “ for paragraphs andef for the whole file) to allow you to read
more than one line at a time.

Readperlre to help you decide which d6 and/m (or both) you might want to usés allows dot to

21-Jun—-1997 Perl Version 5.004 69

perlfaq6 Perl Programmers Reference Guide perlfaq6

include newline, andm allows caret and dollar to match next to a newline, not just at the end of the string.
You do need to make sure that you‘ve actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not paragraph
ones). For this example, we don‘t néedbecause we aren‘t using dot in a regular expression that we want

to cross line boundaries. Neither do we nkedecause we aren‘t wanting caret or dollar to match at any
point inside the record next to newlines. But it's imperative #iabe set to something other than the
default, or else we won't actually ever have a multiline record read in.

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (Ab(WAS+)(\s+\1)+\b/gi) {
print "Duplicate $1 at paragraph $.\n";
}
}

Here's code that finds sentences that begin with "From " (which would be mangled by many mailers):

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (/AFrom /gm) { # /m makes * match next to \n
print "leading from in paragraph $.\n";
}
}

Here's code that finds everything between START and END in a paragraph:

undef $/; # read in whole file, not just one line or paragraph
while (<>) {
while (/START(.*?)END/sm) { # /s makes . cross line boundaries
print "$1\n";
}
}

How can | pull out lines between two patterns that are themselves on different lines?
You can use Perl's somewhat exatic operator (documented erlop):
perl —ne 'print if /[START/ .. /JEND/ filel file2 ...
If you wanted text and not lines, you would use
perl —0777 —pe ’print "$1\n" while /START(.*?)END/gs’ filel file2 ...

But if you want nested occurrencesFARTthroughEND you'll run up against the problem described in
the question in this section on matching balanced text.

| put a regular expression into $/ but it didn‘t work. What's wrong?
$/ must be a string, not a regular expression. Awk has to be better for something. :-)

Actually, you could do this if you don‘t mind reading the whole file into memory:

undef $/;
@records = split /your_pattern/, <FH>;

The Net::Telnet module (available from CPAN) has the capability to wait for a pattern in the input stream, or
timeout if it doesn‘t appear within a certain time.

Create a file with three lines.

open FH, ">file";

print FH "The first line\nThe second line\nThe third line\n";
close FH;

70 Perl Version 5.004 21-Jun-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

Get a read/write filehandle to it.
$fh = new FileHandle "+<file";

Attach it to a "stream" object.
use Net::Telnet;
$file = new Net::Telnet (-fhopen => $fh);

Search for the second line and print out the third.
$file—>waitfor('/second line\n/’);
print $file—>getline;

How do | substitute case insensitively on the LHS, but preserving case on the RHS?

It depends on what you mean by "preserving case". The following script makes the substitution have the
same case, letter by letter, as the original. If the substitution has more characters than the string being
substituted, the case of the last character is used for the rest of the substitution.

Original by Nathan Torkington, massaged by Jeffrey Fried|

#
sub preserve_case($$)
{
my ($old, $new) = @_;
my ($state) = 0; # 0 = no change; 1 =Ic; 2 = uc
my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
my ($len) = $oldlen < $newlen ? $oldlen : $newlen;
for ($i = 0; $i < $len; $i++) {
if ($¢ = substr($old, $i, 1), $¢ =~ /MAd_]/) {
$state = 0;
} elsif (Ic $c eq $c) {
substr($new, $i, 1) = Ic(substr($new, $i, 1));
$state = 1;
}else {
substr($new, $i, 1) = uc(substr($new, $i, 1));
$state = 2;
}
}
finish up with any remaining new (for when new is longer than old)
if ($newlen > $oldlen) {
if ($state == 1) {
substr($new, $oldlen) = Ic(substr($new, $oldlen));
} elsif ($state == 2) {
substr($new, $oldlen) = uc(substr($new, $oldlen));
}
}
return $new;
}

$a = "this is a TEST case";
$a =~ s/(test)/preserve_case($1, "success")/gie;
print "$a\n";

This prints:
this is a SUCCESS case

How can | make \w match accented characters?
Seeperllocale

21-Jun—-1997 Perl Version 5.004 71

perlfaq6 Perl Programmers Reference Guide perlfaq6

How can | match a locale-smart version of /[a-zA-Z])/ ?

One alphabetic character would f8W\d_]/ , ho matter what locale you're in. Non-alphabetics would
be/\W\d_]/ (assuming you don‘t consider an underscore a letter).

How can | quote a variable to use in a regexp?
The Perl parser will expanéivariable and @variable references in regular expressions unless the
delimiter is a single quote. Remember, too, that the right-hand sidg//éf asubstitution is considered a
double—quoted string (sgeerlop for more details). Remember also that any regexp special characters will
be acted on unless you precede the substitution with \Q. Here's an example:

$string = "to die?";
$lhs = "die?";
$rhs = "sleep no more";

$string =~ sA\Q$lhs/$rhs/;
$string is now "to sleep no more"

Without the \Q, the regexp would also spuriously match "di".

What is /o really for?

Using a variable in a regular expression match forces a re—evaluation (and perhaps recompilation) each time
through. Thelo modifier locks in the regexp the first time it's used. This always happens in a constant
regular expression, and in fact, the pattern was compiled into the internal format at the same time your entire
program was.

Use of/o is irrelevant unless variable interpolation is used in the pattern, and if so, the regexp engine will
neither know nor care whether the variables change after the pattern is evaluagey fingttime.

/o is often used to gain an extra measure of efficiency by not performing subsequent evaluations when you
know it won'‘t matter (because you know the variables won't change), or more rarely, when you don‘t want
the regexp to notice if they do.

For example, here's a "paragrep" program:

$/ ="; # paragraph mode
$pat = shift;
while (<>) {
print if /$pat/o;
}

How do | use a regular expression to strip C style comments from a file?
While this actually can be done, it's much harder than you'd think. For example, this one-liner

perl —0777 —pe 's{*.*?*/}{}gs’ foo.c

will work in many but not all cases. You see, it's too simple-minded for certain kinds of C programs, in
particular, those with what appear to be comments in quoted strings. For that, you'd need something like
this, created by Jeffrey Fried!:

$/ = undef;
$_ =<

SHNT TN+ (T COM WD QLI N[\)#$
print;

This could, of course, be more legibly written with themodifier, adding whitespace and comments.

Can | use Perl regular expressions to match balanced text?

Although Perl regular expressions are more powerful than "mathematical" regular expressions, because they
feature conveniences like backreferendgsgnd its ilk), they still aren‘t powerful enough. You still need to

use non-regexp techniques to parse balanced text, such as the text enclosed between matching parentheses or
braces, for example.

72 Perl Version 5.004 21-Jun-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

An elaborate subroutine (for 7-bit ASCII only) to pull out balanced and possibly nested single chars, like
and’ ,{ and}, or(and) can be found in
http://www.perl.com/CPAN/authors/id/TOMC/scripts/pull_quotes.gz .

The C::Scan module from CPAN contains such subs for internal usage, but they are undocumented.

What does it mean that regexps are greedy? How can | get around it?
Most people mean that greedy regexps match as much as they can. Technically speaking, it's actually the
quantifiers ?, *, +, {}) that are greedy rather than the whole pattern; Perl prefers local greed and immediate
gratification to overall greed. To get non—greedy versions of the same quantifief®? use,+?, {}?).

An example:

$s1 = $s2 ="l am very very cold";
$s1 =~s/ve*y//; #lam cold
$s2 =~ s/ve.*?y /l; #|am very cold

Notice how the second substitution stopped matching as soon as it encountered "y*? quamntifier
effectively tells the regular expression engine to find a match as quickly as possible and pass control on to
whatever is next in line, like you would if you were playing hot potato.

How do | process each word on each line?
Use the split function:

while (<>) {
foreach $word (split) {
do something with $word here
}
}

Note that this isn't really a word in the English sense; it's just chunks of consecutive non-whitespace
characters.

To work with only alphanumeric sequences, you might consider

while (<>) {
foreach $word (m/(\w+)/g) {
do something with $word here
}
}

How can | print out a word—frequency or line-frequency summary?

To do this, you have to parse out each word in the input stream. We'll pretend that by word you mean chunk
of alphabetics, hyphens, or apostrophes, rather than the non-whitespace chunk idea of a word given in the
previous question:

while (<>) {
while (/(\b["W_\d][\w'-]+\b)/g) { # misses "'sheep™
$seen{$1}++;
}
}

while (($word, $count) = each %seen) {
print "$count $word\n";

}

If you wanted to do the same thing for lines, you wouldn't need a regular expression:

while (<>) {
$seen{$ }++;
}

while (($line, $count) = each %seen) {

21-Jun—-1997 Perl Version 5.004 73

perlfaq6 Perl Programmers Reference Guide perlfaq6

print "$count $line";

}

If you want these output in a sorted order, see the section on Hashes.

How can | do approximate matching?
See the module String::Approx available from CPAN.

How do | efficiently match many regular expressions at once?
The following is super—inefficient:

while (<FH>) {
foreach $pat (@patterns) {
if (/$pat/) {
do something
}
}
}

Instead, you either need to use one of the experimental Regexp extension modules from CPAN (which might
well be overkill for your purposes), or else put together something like this, inspired from a routine in Jeffrey
Friedl's book:

sub _bm_build {
my $condition = shift;
my @regexp = @_; # this MUST not be local(); need my()
my $expr = join $condition => map { "mN\Sregexp[$_]/0" } (0..$#regexp);
my $match_func = eval "sub { $expr }";
die if $@; # propagate $@; this shouldn’t happen!
return $match_func;

}

sub bm_and { _bm_build(&&', @) }
sub bm_or {_bm_buildC|’, @_)}

$f1 = bm_and gw{

xterm
(?i)window
¥
$f2 = bm_or qw{
\b[Ff]ree\b
\bBSD\B
(?i)sys(tem)?\s*[V5]\b
¥

feed me /etc/termcap, prolly
while (<>) {

print"1: $_" if &$f1;

print "2: $_" if &$f2;
}

Why don‘t word-boundary searches with \b work for me?

Two common misconceptions are that is a synonym foks+ , and that it's the edge between whitespace
characters and non-whitespace characters. Neither is cdlre@.the place between\a character and a
\W character (that isb is the edge of a "word"). It's a zero—width assertion, justtik8, and all the
other anchors, so it doesn‘t consume any charactpesire describes the behaviour of all the regexp
metacharacters.

74 Perl Version 5.004 21-Jun-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

Here are examples of the incorrect applicatiobafwith fixes:

"two words" =~ /(\w+)\b(\w+)/; # WRONG

"two words" =~ /(\w+)\s+(\w+)/; # right

" =matchless= text" =~ \b=(\w+)=\b/; # WRONG

" =matchless= text" =~ /=(\w+)=/; # right
Although they may not do what you thought they thd,and\B can still be quite useful. For an example of
the correct use db , see the example of matching duplicate words over multiple lines.

An example of usindB is the patteriBis\B . This will find occurrences of "is" on the insides of words
only, as in "thistle”, but not "this" or "island".

Why does using $&, $, or $ slow my program down?

Because once Perl sees that you need one of these variables anywhere in the program, it has to provide them
on each and every pattern match. The same mechanism that handles these provides for fie &2 of

etc., so you pay the same price for each regexp that contains capturing parentheses. But if you$&ver use

etc., in your script, then regexpsthout capturing parentheses won'‘t be penalized. So #&jd$’, and

$' if you can, but if you can‘t (and some algorithms really appreciate them), once you‘ve used them once,
use them at will, because you‘ve already paid the price.

What good is \G in a regular expression?

The notationhG is used in a match or substitution in conjunction/themodifier (and ignored if there‘s no
/g) to anchor the regular expression to the point just past where the last match occurredpog() the
point.

For example, suppose you had a line of text quoted in standard mail and Usenet notation, (that is, with
leading> characters), and you want change each leasliimjo a corresponding. You could do so in this
way:

s/N(>+)I"" x length($1)/gem;
Or, using\G, the much simpler (and faster):
sNG>/:/g;

A more sophisticated use might involve a tokenizer. The following lex-like example is courtesy of Jeffrey
Friedl. It did not work in 5.003 due to bugs in that release, but does work in 5.004 or better. (Note the use of
/c , which prevents a failed match with from resetting the search position back to the beginning of the
string.)

while (<>) {
chomp;
PARSER: {
m/\G(\d+\b)/gcx && do { print "number: $1\n"; redo; };
m/\G(\w+)/gcx && do { print "word: $1\n"; redo; };
m/\G(\s+)/gcx && do { print "space: $1\n"; redo; };
m/\G(["W\d]+)/gcx && do { print "other: $1\n"; redo; };
}
}

Of course, that could have been written as

while (<>) {
chomp;
PARSER: {
if (NG(\d+\b)/gcx {
print "number: $1\n";
redo PARSER,;

21-Jun—-1997 Perl Version 5.004 75

perlfaq6 Perl Programmers Reference Guide perlfaq6

if (NG(\Ww+)/gex {
print "word: $1\n";
redo PARSER,;

}

if (NG(\s+)lgex {
print "space: $1\n";
redo PARSER,;

}

if (AG([MWW\d]+ Ygex {
print "other: $1\n";
redo PARSER,;

}
}

But then you lose the vertical alignment of the regular expressions.

Are Perl regexps DFAs or NFAs? Are they POSIX compliant?

While it's true that Perl's regular expressions resemble the DFAs (deterministic finite automata) of the
egrep(1l) program, they are in fact implemented as NFAs (non—-deterministic finite automata) to allow
backtracking and backreferencing. And they aren‘t POSIX-style either, because those guarantee worst-case
behavior for all cases. (It seems that some people prefer guarantees of consistency, even when what's
guaranteed is slowness.) See the book "Mastering Regular Expressions” (from O‘Reilly) by Jeffrey Fried|
for all the details you could ever hope to know on these matters (a full citation appeaitagD).

What's wrong with using grep or map in a void context?

Strictly speaking, nothing. Stylistically speaking, it's not a good way to write maintainable code. That's
because you‘re using these constructs not for their return values but rather for their side—effects, and
side—effects can be mystifying. There's no vgep() that's not better written as #@r (well,

foreach , technically) loop.

How can | match strings with multibyte characters?

This is hard, and there's no good way. Perl does not directly support wide characters. It pretends that a byte
and a character are synonymous. The following set of approaches was offered by Jeffrey Friedl, whose
article in issue #5 of The Perl Journal talks about this very matter.

Let's suppose you have some weird Martian encoding where pairs of ASCII uppercase letters encode single
Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG", "VS", "XX",
etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters ‘I, ’ *, ‘a‘, ‘m’, '/,
tCVi’ KSGt’ KXX‘, 1!1.
Now, say you want to search for the single chard€@®f . Perl doesn't know about Martian, so it'll find the

two bytes "GX" in the "l am CVSGXX!" string, even though that character isn‘t there: it just looks like it is
because "SG" is next to "XX", but there's no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

$martian =~ s/([A-Z][A-Z])/ $1 /g; # Make sure adjacent “martian” bytes
are no longer adjacent.
print "found GX\n" if $martian =~ /GX/;

Or like this:

@chars = $martian =~ m/([A-Z][A-Z]|[*A-Z])/g;

above is conceptually similar to: ~ @chars = $text =~ m/(.)/g;
#

foreach $char (@chars) {

76

Perl Version 5.004 21-Jun-1997

perlfaq6 Perl Programmers Reference Guide perlfaq6

print "found GX\n", last if $char eq 'GX’;
}
Or like this:

while ($martian =~ mAG([A-Z][A-Z]|.)/gs) { # \G probably unneeded
print "found GX\n", last if $1 eq 'GX’;
}
Or like this:
die "sorry, Perl doesn't (yet) have Martian support)—:\n";

In addition, a sample program which converts half-width to full-width katakana (in Shift-JIS or EUC
encoding) is available from CPAN as

=for Tom make it so

There are many double- (and multi-) byte encodings commonly used these days. Some versions of these
have 1-, 2-, 3-, and 4-byte characters, all mixed.

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

21-Jun—-1997 Perl Version 5.004 77

perlfaq7 Perl Programmers Reference Guide perlfaq7

NAME
perlfaq7 — Perl Language Issu&Rgvision: 1.183%, $Date: 1997/04/24 22:44:18)

DESCRIPTION
This section deals with general Perl language issues that don‘t clearly fit into any of the other sections.

Can | get a BNF/yacc/RE for the Perl language?

No, in the words of Chaim Frenkel: "Perl's grammar can not be reduced to BNF. The work of parsing perl is
distributed between yacc, the lexer, smoke and mirrors."

What are all these $@%*punctuation signs, and how do | know when to use them?
They are type specifiers, as detaileghé@nldata

$ for scalar values (number, string or reference)

@ for arrays

% for hashes (associative arrays)

* for all types of that symbol name. In version 4 you used them like
pointers, but in modern perls you can just use references.

While there are a few places where you don‘t actually need these type specifiers, you should always use
them.

A couple of others that you're likely to encounter that aren‘t really type specifiers are:

<> are used for inputting a record from a filehandle.
\ takes a reference to something.

Note that <FILE> isneitherthe type specifier for files nor the name of the handle. It istheperator
applied to the handle FILE. It reads one line (well, record -$4¢é&om the handle FILE in scalar context,
or all lines in list context. When performing open, close, or any other operation besidediles, or even
talking about the handle, dwt use the brackets. These are correof(FH) , seek(FH, 0, 2) and
"copying from STDIN to FILE".

Do | always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn‘t need to be quoted, but in most cases probably should be (and must be under
use strict). But a hash key consisting of a simple word (that isn‘t the name of a defined subroutine)
and the left—hand operand to the operator both count as though they were quoted:

This is like this
$foofline} $foof"line"}
bar => stuff "par" => stuff

The final semicolon in a block is optional, as is the final comma in a list. Good styleeftsgle says to
put them in except for one-liners:

if ($whoops) { exit 1}
@nums = (1, 2, 3);

if ($whoops) {
exit 1;
}
@lines = (
"There Beren came from mountains cold",
"And lost he wandered under leaves",

78 Perl Version 5.004 21-Jun-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

How do | skip some return values?
One way is to treat the return values as a list and index into it:
$dir = (getpwnam($user))[7];
Another way is to use undef as an element on the left—-hand-side:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
How do | temporarily block warnings?
The$"Wvariable (documented jmerlvar) controls runtime warnings for a block:

{

local $"W = 0; # temporarily turn off warnings
$a = $b + $c; # | know these might be undef

}

Note that like all the punctuation variables, you cannot currentlynyée on$*"W, only local()

A newuse warnings pragma is in the works to provide finer control over all this. The curious should
check the perl5—porters mailing list archives for details.

What's an extension?
A way of calling compiled C code from Perl. Readipgrlxstutis a good place to learn more about
extensions.

Why do Perl operators have different precedence than C operators?

Actually, they don‘t. All C operators that Perl copies have the same precedence in Perl as they do in C. The
problem is with operators that C doesn‘t have, especially functions that give a list context to everything on
their right, eg print, chmod, exec, and so on. Such functions are called "list operators" and appear as such in
the precedence table prerlop.

A common mistake is to write:
unlink $file || die "snafu";
This gets interpreted as:
unlink ($file || die "snafu");
To avoid this problem, either put in extra parentheses or use the super low preocedepertor:

(unlink $file) || die "snafu";
unlink $file or die "snafu";

The "English" operatorsafd, or, xor , andnot) deliberately have precedence lower than that of list
operators for just such situations as the one above.

Another operator with surprising precedence is exponentiation. It binds more tightly even than unary minus,
making—2**2 product a negative not a positive four. It is also right—associating, meaniy*®t4p is
two raised to the ninth power, not eight squared.

How do | declare/create a structure?

In general, you don'‘t "declare" a structure. Just use a (probably anonymous) hash referepedretared
perldscfor details. Here's an example:

$person = {}; # new anonymous hash
$person->{AGE} = 24; # set field AGE to 24
$person->{NAME} = "Nat"; # set field NAME to "Nat"

If you'‘re looking for something a bit more rigorous, prgritoot

21-Jun—-1997 Perl Version 5.004 79

perlfaq7 Perl Programmers Reference Guide perlfaq7

How do | create a module?

A module is a package that lives in a file of the same name. For example, the Hello::There module would
live in Hello/There.pm. For details, repdrimod You'll also find Exporterhelpful. If you‘re writing a C
or mixed-language module with both C and Perl, then you should stubkgtut

Here's a convenient template you might wish you use when starting your own module. Make sure to change
the names appropriately.

package Some::Module; # assumes Some/Module.pm
use strict;

BEGIN {
use Exporter ();
use vars gw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

set the version for version checking; uncomment to use
$VERSION =1.00;

if using RCS/CVS, this next line may be preferred,
but beware two—digit versions.
$VERSION = do{my@r=g$Revision: 1.18 $=~N\d+/g;sprintf '%d."."%02d'x$#r,@r};

@ISA = gw(Exporter);
@EXPORT = qgw(&funcl &func2 &func3);
%EXPORT_TAGS =(); # eg: TAG =>[gw!namel name?2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = qgw($Varl %Hashit);

}
use vars @EXPORT_OK;

non—exported package globals go here
usevars qw(@more $stuff);

initialize package globals, first exported ones
$Varl ="
%Hashit = ();

then the others (which are still accessible as $Some::Module::stuff)
$stuff =",
@more =();

all file—scoped lexicals must be created before
the functions below that use them.

file—private lexicals go here
my $priv_var =";
my %secret_hash = ();

here’s a file—private function as a closure,
callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {
stuff goes here.
¥
make all your functions, whether exported or not;
remember to put something interesting in the {} stubs
sub funcl {} # no prototype
sub func2() {} # proto’d void

80 Perl Version 5.004 21-Jun-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

sub func3($$) {} # proto’d to 2 scalars

this one isn't exported, but could be called!
sub func4(\%) {} # proto’d to 1 hash ref

END {} # module clean—up code here (global destructor)
1; # modules must return true

How do | create a class?
Seeperltootfor an introduction to classes and objects, as wglkdsbjandperlbot

How can | tell if a variable is tainted?

Seelaundering and Detecting Tainted Data in perlsadere's an example (which doesn‘t use any system
calls, because thell() is given no processes to signal):

sub is_tainted {
return ! eval { join(",@_), kill 0; 1; };
}

This is not-w clean, however. There is rov clean way to detect taintedness — take this as a hint that you
should untaint all possibly-tainted data.

What's a closure?
Closures are documentedparlref.

Closureis a computer science term with a precise but hard-to—explain meaning. Closures are implemented
in Perl as anonymous subroutines with lasting references to lexical variables outside their own scopes. These
lexicals magically refer to the variables that were around when the subroutine was defined (deep binding).

Closures make sense in any programming language where you can have the return value of a function be
itself a function, as you can in Perl. Note that some languages provide anonymous functions but are not
capable of providing proper closures; the Python language, for example. For more information on closures,

check out any textbook on functional programming. Scheme is a language that not only supports but

encourages closures.

Here's a classic function—generating function:

sub add_function_generator {
return sub { shift + shift };

}
$add_sub = add_function_generator();
$sum = &$add_sub(4,5); # $sum is 9 now.

The closure works as fanction templatewith some customization slots left out to be filled later. The
anonymous subroutine returned dgyd_function_generator() isn‘t technically a closure because it
refers to no lexicals outside its own scope.

Contrast this with the followingnake_adder() function, in which the returned anonymous function
contains a reference to a lexical variable outside the scope of that function itself. Such a reference requires
that Perl return a proper closure, thus locking in for all time the value that the lexical had when the function
was created.

sub make_adder {
my $addpiece = shift;
return sub { shift + $addpiece };

}

$f1 = make_adder(20);
$f2 = make_adder(555);

21-Jun—-1997 Perl Version 5.004 81

perlfaq7 Perl Programmers Reference Guide perlfaq7

Now &$f1($n) is always 20 plus whatevén you pass in, wherea&$f2($n) is always 555 plus
whatever$n you pass in. Th8addpiece in the closure sticks around.

Closures are often used for less esoteric purposes. For example, when you want to pass in a bit of code into
a function:

my $line;
timeout(30, sub { $line = <STDIN>});

If the code to execute had been passed in as a sgiimg, = <STDIN>’ , there would have been no
way for the hypotheticatimeout() function to access the lexical varialitne back in its caller's
scope.

What is variable suicide and how can | prevent it?

Variable suicide is when you (temporarily or permanently) lose the value of a variable. It is caused by
scoping throughmy() and local() interacting with either closures or aliasgmeach() interator
variables and subroutine arguments. It used to be easy to inadvertently lose a variable's value this way, but
now it's much harder. Take this code:

my $f = "foo";
sub T {
while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
}
T.

print "Finally $f\in";

The$f that has "bar" added to it three times should be a$fieqmy $f should create a new local variable
each time through the loop). Itisn‘t, however. This is a bug, and will be fixed.

How can | pass/return a {Function, FileHandle, Array, Hash, Method, Regexp}?

With the exception of regexps, you need to pass references to these objects. See
Pass by Reference in perlsidy this particular question, ameriref for information on references.

Passing Variables and Functions

Regular variables and functions are quite easy: just pass in a reference to an existing or anonymous
variable or function:

func(\$some_scalar);

func(\$some_array);
func([1..10]);

func(\%some_hash);
func({ this => 10, that=>20});

func(\&some_func);
func(sub {$_[0]1**$ _[1]});

Passing Filehandles

To create filehandles you can pass to subroutines, you cairidser *FH notation ("typeglobs" —
seeperldatafor more information), or create filehandles dynamically using the old FileHandle or the
new lO::File modules, both part of the standard Perl distribution.

use Fentl;

use |O::File;

my $fh = new 10::File $filename, O_WRONLY|O_APPEND;
or die "Can't append to $filename: $!";

func($fh);

82

Perl Version 5.004 21-Jun-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

Passing Regexps

To pass regexps around, you'll need to either use one of the highly experimental regular expression
modules from CPAN (Nick Ing—Simmons's Regexp or llya Zakharevich's Devel::Regexp), pass
around strings and use an exception—trapping eval, or else be be very, very clever. Here's an example
of how to pass in a string to be regexp compared:

sub compare($$) {
my ($vall, $regexp) = @_;
my $retval = eval { $val =~ /$regexp/ };
die if $@;
return $retval;

}
$match = compare("old McDonald", g/d.*D/);

Make sure you never say something like this:
return eval "\$val =~ /$regexp/"; # WRONG

or someone can sneak shell escapes into the regexp due to the double interpolation of the eval and the
double—quoted string. For example:

$pattern_of_evil = 'danger ${ system("rm —rf * &") } danger’;
eval "\$string =~ /$pattern_of_evil/";
Those preferring to be very, very clever might see the O'Reilly Hdaktering Regular Expressions
by Jeffrey Friedl. Page 273Build_MatchMany_Function() is particularly interesting. A
complete citation of this book is givenperlfaq2
Passing Methods
To pass an object method into a subroutine, you can do this:
call_a_lot(10, $some_obj, "methname")
sub call_a_lot {
my ($count, $widget, $trick) = @_;
for (my $i = 0; $i < $count; $i++) {
$widget—>$trick();
}

}
or you can use a closure to bundle up the object and its method call and arguments:

my $whatnot = sub { $some_obj—>obfuscate(@args) };
func($whatnot);
sub func {
my $code = shift;
&S$code();
}

You could also investigate thman() method in the UNIVERSAL class (part of the standard perl
distribution).

How do | create a static variable?

As with most things in Perl, TMTOWTDI. What is a "static variable" in other languages could be either a
function—private variable (visible only within a single function, retaining its value between calls to that
function), or a file—private variable (visible only to functions within the file it was declared in) in Perl.

Here's code to implement a function—private variable:
BEGIN {

21-Jun—-1997 Perl Version 5.004 83

perlfaq7 Perl Programmers Reference Guide perlfaq7

my $counter = 42;
sub prev_counter { return ——$counter }
sub next_counter { return $counter++ }

}

Now prev_counter() andnext_counter() share a private variabfounter that was initialized
at compile time.

To declare a file—private variable, you'll still userg() , putting it at the outer scope level at the top of the
file. Assume this is in file Pax.pm:

package Pax;
my $started = scalar(localtime(time()));

sub begun { return $started }

When use Pax or require Pax loads this module, the variable will be initialized. It won't get
garbage—collected the way most variables going out of scope do, becalosguh@ function cares about

it, but no one else can get it. It is not cakhx::started because its scope is unrelated to the package.

It's scoped to the file. You could conceivably have several packages in that same file all accessing the same
private variable, but another file with the same package couldn‘t get to it.

What's the difference between dynamic and lexical (static) scoping? Between local() and

my() ?

local($x) saves away the old value of the global varidble and assigns a new value for the duration
of the subroutinewhich is visible in other functions called from that subroutifiénis is done at run—time,

so is called dynamic scopindocal() always affects global variables, also called package variables or
dynamic variables.

my($x) creates a new variable that is only visible in the current subroutine. This is done at compile—time,
so is called lexical or static scopingay() always affects private variables, also called lexical variables or
(improperly) static(ly scoped) variables.

For instance:

sub visible {
print "var has value $var\n";
}
sub dynamic {
local $var ="local’; # new temporary value for the still-global
visible(); # variable called $var
}
sub lexical {
my $var = 'private’; # new private variable, $var
visible(); # (invisible outside of sub scope)
}
$var = 'global’;
visible(); # prints global
dynamic(); # prints local
lexical(); # prints global

Notice how at no point does the value "private" get printed. That's be$aaseonly has that value within
the block of thdexical() function, and it is hidden from called subroutine.

In summarylocal() doesn't make what you think of as private, local variables. It gives a global variable
a temporary valuemy() is what you‘re looking for if you want private variables.

See als@erlsuh which explains this all in more detail.

84

Perl Version 5.004 21-Jun-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

How can | access a dynamic variable while a similarly named lexical is in scope?

You can do this via symbolic references, provided you haventissestrict "refs" . So instead of
var, use{'var}.

local $var = "global;
my $var = "lexical";

print "lexical is $var\n”;

no strict 'refs’;
print "global is ${'var’}\n";

If you know your package, you can just mention it explicitly, a$3ome_Pack::var. Note that the
notation$::var is notthe dynamicbvar in the current package, but rather the one imiben package,
as though you had writteéBmain::var. Specifying the package directly makes you hard—code its name,

but it executes faster and avoids running afowlsef strict "refs"

What's the difference between deep and shallow binding?

In deep binding, lexical variables mentioned in anonymous subroutines are the same ones that were in scope
when the subroutine was created. In shallow binding, they are whichever variables with the same names
happen to be in scope when the subroutine is called. Perl always uses deep binding of lexical variables (i.e.,
those created withmy()). However, dynamic variables (aka global, local, or package variables) are
effectively shallowly bound. Consider this just one more reason not to use them. See the answer to
"What's a closure?"

Why doesn‘t "local($foo) = <FILE;" work right?

local() gives list context to the right hand side=of The <FH> read operation, like so many of Perl's
functions and operators, can tell which context it was called in and behaves appropriately. In general, the
scalar() function can help. This function does nothing to the data itself (contrary to popular myth) but
rather tells its argument to behave in whatever its scalar fashion is. If that function doesn‘t have a defined
scalar behavior, this of course doesn‘t help you (such aswaitf)).

To enforce scalar context in this particular case, however, you need merely omit the parentheses:

local($foo) = <FILE>; # WRONG
local($foo) = scalar(<FILE>); # ok
local $foo = <FILE>; # right

You should probably be using lexical variables anyway, although the issue is the same here:

my($foo) = <FILE>; # WRONG
my $foo = <FILE>; #right
How do | redefine a builtin function, operator, or method?
Why do you want to do that? :-)
If you want to override a predefined function, suclopan() , then you'll have to import the new definition

from a different module. Se®verriding Builtin Functions in perlsub There's also an example in
Class::Template in perltoot

If you want to overload a Perl operator, such+asr ** | then you'll want to use thase overload
pragma, documented averload

If you're talking about obscuring method calls in parent classe§)waeidden Methods in perltoot

What's the difference between calling a function as &foo and foo() 7

When you call a function a&foo, you allow that function access to your current @_ values, and you
by—pass prototypes. That means that the function doesn‘t get an empty @_, it gets yours! While not strictly
speaking a bug (it's documented that waypérlsul), it would be hard to consider this a feature in most
cases.

21-Jun—-1997 Perl Version 5.004 85

perlfaq7 Perl Programmers Reference Guide perlfaq7

When you call your function a&sfoo() , then you do get a new @_, but prototyping is still circumvented.

Normally, you want to call a function usirigo() . You may only omit the parentheses if the function is
already known to the compiler because it already saw the definiig® put notrequire), or via a
forward reference anse subs declaration. Even in this case, you get a clean @_ without any of the old
values leaking through where they don‘t belong.

How do | create a switch or case statement?
This is explained in more depth in therlsyn Briefly, there's no official case statement, because of the
variety of tests possible in Perl (humeric comparison, string comparison, glob comparison, regexp matching,
overloaded comparisons, ...). Larry couldn‘t decide how best to do this, so he left it out, even though it's
been on the wish list since perl1.

Here's a simple example of a switch based on pattern matching. We'll do a multi-way conditional based on
the type of reference stored$whatchamacallit:

SWITCH:
for (ref $whatchamacallit) {

~$/ && die "not a reference”;
/SCALAR/ && do {
print_scalar($$ref);
last SWITCH;
h
IARRAY/ && do {
print_array(@$%$ref);
last SWITCH;
h
IHASH/ && do {
print_hash(%$ref);
last SWITCH;
h
/{CODE/ && do {
warn "can't print function ref";
last SWITCH;
h

DEFAULT
warn "User defined type skipped";

}

How can | catch accesses to undefined variables/functions/methods?

The AUTOLOAD method, discussed Awutoloading in perlsutand
AUTOLOAD: Proxy Methods in perltadets you capture calls to undefined functions and methods.

When it comes to undefined variables that would trigger a warning wgjgrou can use a handler to trap
the pseudo-signal WARN__like this:

$SIG{ _ WARN__}=sub{
for ($_[0]){

/Use of uninitialized value/ && do {
promote warning to a fatal
die $_;

86 Perl Version 5.004 21-Jun-1997

perlfaq7 Perl Programmers Reference Guide perlfaq7

other warning cases to catch could go here;

warn $_;
}
¥
Why can‘t a method included in this same file be found?

Some possible reasons: your inheritance is getting confused, you've misspelled the method name, or the
object is of the wrong type. Check operltoot for details on these. You may also ysent
ref($object) to find out the clas$object was blessed into.

Another possible reason for problems is because you‘ve used the indirect object syrftad (@gru

"Samy") on a class name before Perl has seen that such a package exists. It's wisest to make sure your
packages are all defined before you start using them, which will be taken care of if you use the
statement instead oéquire . If not, make sure to use arrow notation @gru- find("Samy")) instead.

Object notation is explained perlobj.

How can | find out my current package?
If you're just a random program, you can do this to find out what the currently compiled package is:

my $packname = ref bless [];

But if you‘'re a method and you want to print an error message that includes the kind of object you were
called on (which is not necessarily the same as the one in which you were compiled):

sub amethod {
my $self = shift;
my $class = ref($self) || $self;
warn "called me from a $class object";

}

How can | comment out a large block of perl code?
Use embedded POD to discard it:

program is here

=for nobody
This paragraph is commented out

program continues
=begin comment text
all of this stuff

here will be ignored
by everyone

=end comment text
=cut

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

21-Jun—-1997 Perl Version 5.004 87

perlfaq8 Perl Programmers Reference Guide perlfaq8

NAME
perlfag8 — System InteractioBRevision: 1.21$, $Date: 1997/04/24 22:44:19)

DESCRIPTION

This section of the Perl FAQ covers questions involving operating system interaction. This involves
interprocess communication (IPC), control over the user—interface (keyboard, screen and pointing devices),
and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your operating systgmrliegs
perlplang ...). These should contain more detailed information on the vagaries of your perl.

How do I find out which operating system I'm running under?
The $"0O variable $§OSTYPEIf you use English) contains the operating system that your perl binary was
built for.

How come exec() doesn'treturn?
Because that's what it does: it replaces your currently running program with a different one. If you want to
keep going (as is probably the case if you're asking this questiosysisen() instead.

How do | do fancy stuff with the keyboard/screen/mouse?

How you access/control keyboards, screens, and pointing devices ("mice") is system—-dependent. Try the
following modules:

Keyboard
Term::Cap Standard perl distribution
Term::ReadKey CPAN
Term::ReadLine::Gnu CPAN
Term::ReadLine::Perl CPAN
Term::Screen CPAN

Screen
Term::Cap Standard perl distribution
Curses CPAN
Term::ANSIColor CPAN

Mouse
Tk CPAN

How do | ask the user for a password?
(This question has nothing to do with the web. See a different FAQ for that.)
There's an example of this igrypt). First, you put the terminal into "no echo" mode, then just read the

password normally. You may do this with an old—sigietl() function, POSIX terminal control (see
POSIX and Chapter 7 of the Camel), or a call tosttg program, with varying degrees of portability.

You can also do this for most systems using the Term::ReadKey module from CPAN, which is easier to use
and in theory more portable.
How do | read and write the serial port?

This depends on which operating system your program is running on. In the case of Unix, the serial ports
will be accessible through files in /dev; on other systems, the devices names will doubtless differ. Several
problem areas common to all device interaction are the following

lockfiles

Your system may use lockfiles to control multiple access. Make sure you follow the correct protocol.
Unpredictable behaviour can result from multiple processes reading from one device.

88 Perl Version 5.004 21-Jun-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

open mode

If you expect to use both read and write operations on the device, you'll have to open it for update (see
open in perlfundor details). You may wish to open it without running the risk of blocking by using
sysopen() andO_RDWR|O_NDELAY|O_NOCTTMm the Fcntl module (part of the standard perl
distribution). Sesysopen in perlfunfor more on this approach.

end of line

Some devices will be expecting a "\r" at the end of each line rather than a "\n". In some ports of perl,
“\r'" and "\n" are different from their usual (Unix) ASCII values of "\012" and "\015". You may have

to give the numeric values you want directly, using octal ("\015"), hex ("OxOD"), or as a
control-character specification ("\cM").

print DEV "atv1\012"; # wrong, for some devices
print DEV "atv1\015"; # right, for some devices

Even though with normal text files, a "\n" will do the trick, there is still no unified scheme for
terminating a line that is portable between Unix, DOS/Win, and Macintosh, except to terAlihate

line ends with "\015\012", and strip what you don‘t need from the output. This applies especially to
socket 1/0 and autoflushing, discussed next.

flushing output

If you expect characters to get to your device whenpyoni() them, you'll want to autoflush that
filehandle, as in the older

use FileHandle;
DEV->autoflush(1);

and the newer

use 10::Handle;
DEV->autoflush(1);

You can useelect() and the$| variable to control autoflushing (sé¢ andselec):

$oldh = select(DEV);
$=1;
select($oldh);
You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);

As mentioned in the previous item, this still doesn‘'t work when using socket 1/0 between Unix and
Macintosh. You'll need to hardcode your line terminators, in that case.

non-blocking input
If you are doing a blockingead() orsysread() , you'll have to arrange for an alarm handler to
provide a timeout (sealarm). If you have a non-blocking open, you'll likely have a non-blocking
read, which means you may have to use a 4s@lert() to determine whether 1/O is ready on that
device (seeselect in perlfunc

How do | decode encrypted password files?
You spend lots and lots of money on dedicated hardware, but this is bound to get you talked about.
Seriously, you can'‘t if they are Unix password files — the Unix password system employs one-way

encryption. Programs like Crack can forcibly (and intelligently) try to guess passwords, but don't (can‘t)
guarantee quick success.

If you‘re worried about users selecting bad passwords, you should proactively check when they try to change
their password (by modifying passwd(1), for example).

21-Jun—-1997 Perl Version 5.004 89

perlfaq8 Perl Programmers Reference Guide perlfaq8

How do | start a process in the background?

You could use
system("cmd &")

or you could use fork as documenteddrk in perlfung with further examples iperlipc. Some things to be
aware of, if you're on a Unix-like system:

STDIN, STDOUT and STDERR are shared

Both the main process and the backgrounded one (the "child" process) share the same STDIN,
STDOUT and STDERR filehandles. If both try to access them at once, strange things can happen.
You may want to close or reopen these for the child. You can get around thigpesiting a pipe
(seeopen in perlfungbut on some systems this means that the child process cannot outlive the parent.

Signals
You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too. SIGCHLD is sent when the
backgrounded process finishes. SIGPIPE is sent when you write to a filehandle whose child process
has closed (an untrapped SIGPIPE can cause your program to silently die). This is not an issue with
system("cmd&”).

Zombies
You have to be prepared to "reap" the child process when it finishes

$SIG{CHLD} = sub { wait };

See Signals in perlipcfor other examples of code to do this. Zombies are not an issue with
system("prog &").

How do | trap control characters/signals?

You don't actually "trap" a control character. Instead, that character generates a signal, which you then trap.
Signals are documented $ignals in perlipand chapter 6 of the Camel.

Be warned that very few C libraries are re—entrant. Therefore, if you attemnt(@ in a handler that
got invoked during another stdio operation your internal structures will likely be in an inconsistent state, and
your program will dump core. You can sometimes avoid this by sgs\grite() instead oprint()

Unless you're exceedingly careful, the only safe things to do inside a signal handler are: set a variable and
exit. And in the first case, you should only set a variable in such a waydhliat() is not called (eg, by
setting a variable that already has a value).

For example:

$lInterrupted = 0; # to ensure it has a value
$SIG{INT} = sub {
$interrupted++;
syswrite(STDERR, "ouch\n", 5);

}

However, because syscalls restart by default, you'll find that if you're in a "slow" call, such as <FH>,
read() ,connect() ,orwait() ,thatthe only way to terminate them is by "longjumping" out; that is, by
raising an exception. See the time—out handler for a blo¢kioky) in Signals in perlipar chapter 6 of

the Camel.

How do I modify the shadow password file on a Unix system?

If perl was installed correctly, trgetpw*() functions described iperlfuncprovide (read—only) access to

the shadow password file. To change the file, make a new shadow password file (the format varies from
system to system — sgmasswd(5)for specifics) and use pwd_mkdb(8) to install it (peel_mkdb(5)or

more details).

90

Perl Version 5.004 21-Jun-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

How do | set the time and date?

Assuming you're running under sufficient permissions, you should be able to set the system-wide date and
time by running the date(1) program. (There is no way to set the time and date on a per—process basis.) This
mechanism will work for Unix, MS—-DOS, Windows, and NT; the VMS equivalesgtisime

However, if all you want to do is change your timezone, you can probably get away with setting an
environment variable:

$ENV{TZ} = "MST7MDT"; # unixish
$ENV{'SYSSTIMEZONE_DIFFERENTIAL"}="-5" # vms
system "trn comp.lang.perl”;
How can | sleep() or alarm() for under a second?
If you want finer granularity than the 1 second thatsleep() function provides, the easiest way is to use
the select() function as documented gelect in perlfunc If your system has itimers asgscall()
support, you can check out the old example in
http://www.perl.com/CPAN/doc/misc/ancient/tutorial/eg/itimers.pl .
How can | measure time under a second?
In general, you may not be able to. The Time::HiRes module (available from CPAN) provides this
functionality for some systems.

In general, you may not be able to. But if you system supports botlysball() function in Perl as
well as a system call like gettimeofday(2), then you may be able to do something like this:

require 'sys/syscall.ph’;
$TIMEVAL_T ="LL";
$done = $start = pack($TIMEVAL_T, ());

syscall(&SYS_gettimeofday, $start, 0)) |= -1
or die "gettimeofday: $!";

BHHHHHHHH
DO YOUR OPERATION HERE
BHHHHHHHH

syscall(&SYS_gettimeofday, $done, 0) 1= -1
or die "gettimeofday: $!";

@start = unpack($TIMEVAL_T, $start);

@done = unpack($TIMEVAL_T, $done);

fix microseconds
for ($done[1], $start[1]) { $_ /= 1_000_000 }

$delta_time = sprintf "%.4f", ($done[0] + $done[1])

($start[0] + $start[1]);

How can | do an atexit() or setjmp()/longjmp() ? (Exception handling)
Release 5 of Perl added the END block, which can be used to siraidzitf) . Each package's END
block is called when the program or thread ends &ekenod manpage for more details). It isn't called
when untrapped signals kill the program, though, so if you use END blocks you should also use

use sigtrap qw(die normal-signals);

Perl's exception—handling mechanism isat@l() operator. You can usal() as setjmp andie()
as longjmp. For details of this, see the section on signals, especially the time—out handler for a blocking
flock() in Signals in perlipand chapter 6 of the Camel.

21-Jun—-1997 Perl Version 5.004 91

perlfaq8 Perl Programmers Reference Guide perlfaq8

If exception handling is all you‘re interested in, try the exceptions.pl library (part of the standard perl
distribution).

If you want theatexit() syntax (and ammexit() as well), try the AtExit module available from
CPAN.

Why doesn‘t my sockets program work under System V (Solaris)? What does the error message
"Protocol not supported” mean?

Some Sys-V based systems, notably Solaris 2.X, redefined some of the standard socket constants. Since
these were constant across all architectures, they were often hardwired into perl code. The proper way to
deal with this is to "use Socket" to get the correct values.

Note that even though SunOS and Solaris are binary compatible, these values are different. Go figure.

How can | call my system's unique C functions from Perl?

In most cases, you write an external module to do it — see the answer to "Where can | learn about linking C
with Perl? [h2xs, xsubpp]'. However, if the function is a system call, and your system supports
syscall() , you can use the syscall function (documentgukeitfung.

Remember to check the modules that came with your distribution, and CPAN as well - someone may
already have written a module to do it.

Where do | get the include files to do ioctl() or syscall() ?

Historically, these would be generated by the h2ph tool, part of the standard perl distribution. This program
converts cpp(1l) directives in C header files to files containing subroutine definitions, like

&SYS_getitimer, which you can use as arguments to your functions. It doesn‘t work perfectly, but it
usually gets most of the job done. Simple files Ekmo.h, syscall.h andsocket.hwere fine, but the hard

ones likeioctl.h nearly always need to hand—edited. Here's how to install the *.ph files:

1. become super-user
2. cd /usr/include
3. h2ph *.h */*.h

If your system supports dynamic loading, for reasons of portability and sanity you probably ought to use
h2xs (also part of the standard perl distribution). This tool converts C header files to Perl extensions. See
perlxstutfor how to get started with h2xs.

If your system doesn‘t support dynamic loading, you still probably ought to use h2xperBestutand
ExtUtils::MakeMakerfor more information (in brief, just usaake perl instead of a plaimake to rebuild
perl with a new static extension).

Why do setuid perl scripts complain about kernel problems?
Some operating systems have bugs in the kernel that make setuid scripts inherently insecure. Perl gives you
a number of options (describedgdarlseg to work around such systems.

How can | open a pipe both to and from a command?

The IPC::Open2 module (part of the standard perl distribution) is an easy—-to—use approach that internally
usespipe() , fork() , andexec() to do the job. Make sure you read the deadlock warnings in its
documentation, though (séeC::Open2).

Why can‘t | get the output of a command with system() ?

You'‘re confusing the purpose efstem() and backticks (*). system() runs a command and returns
exit status information (as a 16 bit value: the low 8 bits are the signal the process died from, if any, and the
high 8 bits are the actual exit value). Backticks (*) run a command and return what it sent to STDOUT.

$exit_status = system("mail-users");
$output_string = ‘Is’;

92 Perl Version 5.004 21-Jun-1997

ExtUtils::MakeMaker
IPC::Open2

perlfaq8 Perl Programmers Reference Guide perlfaq8

How can | capture STDERR from an external command?
There are three basic ways of running external commands:

system $cmd,; # using system()
$output = ‘$cmd’; # using backticks (*)
open (PIPE, "cmd |"); # using open()

With system() , both STDOUT and STDERR will go the same place as the script's versions of these,
unless the command redirects them. Backticksogea() readonly the STDOUT of your command.

With any of these, you can change file descriptors before the call:

open(STDOUT, ">logfile");
system("Is");

or you can use Bourne shell file—descriptor redirection:

$output = ‘$cmd 2>some_file';
open (PIPE, "cmd 2>some_file |");

You can also use file—descriptor redirection to make STDERR a duplicate of STDOUT:

$output = ‘$cmd 2>&1";
open (PIPE, "cmd 2>&1 |");

Note that yowcannotsimply open STDERR to be a dup of STDOUT in your Perl program and avoid calling
the shell to do the redirection. This doesn‘t work:

open(STDERR, ">&STDOUT");
$alloutput = ‘cmd args'; # stderr still escapes

This fails because thepen() makes STDERR go to where STDOUT was going at the time of the
open() . The backticks then make STDOUT go to a string, but don‘t change STDERR (which still goes to
the old STDOUT).

Note that youmustuse Bourne shell (sh(1)) redirection syntax in backticks, not csh(1)! Details on why
Perl'ssystem() and backtick and pipe opens all use the Bourne shell are in
http://www.perl.com/CPAN/doc/FMTEYEWTK/versus/csh.whynot .

You may also use the IPC::Open3 module (part of the standard perl distribution), but be warned that it has a
different order of arguments from IPC::Open2 (§&@::Open3.

Why doesn‘t open() return an error when a pipe open fails?

It does, but probably not how you expect it to. On systems that follow the stdaddjtexec()

paradigm (eg, Unix), it works like thispen() causes &ork() . Inthe parentppen() returns with the
process ID of the child. The chikekec() s the command to be piped to/from. The parent can‘t know
whether theexec() was successful or not — all it can return is whethefdHd) succeeded or not. To
find out if the command succeeded, you have to catch SIGCHLDOvaing to get the exit status. You
should also catch SIGPIPE if you‘re writing to the child — you may not have found oete¢b@ failed

by the time you write. This is documentedgrlipc.

On systems that follow thepawn() paradigm,open() mightdo what you expect — unless perl uses a
shell to start your command. In this caseftir&()/exec() description still applies.

What's wrong with using backticks in a void context?

Strictly speaking, nothing. Stylistically speaking, it's not a good way to write maintainable code because
backticks have a (potentially humungous) return value, and you‘re ignoring it. It's may also not be very
efficient, because you have to read in all the lines of output, allocate memory for them, and then throw it
away. Too often people are lulled to writing:

‘cp file file.bak’;

21-Jun—-1997 Perl Version 5.004 93

IPC::Open3

perlfaq8 Perl Programmers Reference Guide perlfaq8

And now they think "Hey, Il just always use backticks to run programs." Bad idea: backticks are for
capturing a program's output; tegstem() function is for running programs.

Consider this line:
‘cat /etc/termcap’;

You haven'‘t assigned the output anywhere, so it just wastes memory (for a little while). Plus you forgot to
check$? to see whether the program even ran correctly. Even if you wrote

print ‘cat /etc/termcap’;
In most cases, this could and probably should be written as

system("cat /etc/termcap”) ==
or die "cat program failed!";

Which will get the output quickly (as its generated, instead of only at the end) and also check the return
value.

system() also provides direct control over whether shell wildcard processing may take place, whereas
backticks do not.

How can | call backticks without shell processing?
This is a bit tricky. Instead of writing

@ok = ‘grep @opts '$search_string’ @filenames';
You have to do this:

my @ok = ();
if (open(GREP, "-|") {
while (<GREP>) {
chomp;
push(@ok, $);

}
close GREP;

}else {
exec 'grep’, @opts, $search_string, @filenames;

}

Just as witlsystem() , no shell escapes happen when grec() a list.

Why can‘t my script read from STDIN after | gave it EOF ("D on Unix, ~Z on MS-DOS)?
Because some stdio‘s set error and eof flags that need clearing. The POSIX modulelgefies$)
that you can use. That is the technically correct way to do it. Here are some less reliable workarounds:
1 Try keeping around the seekpointer and go there, like this:

$where = tell(LOG);
seek(LOG, $where, 0);

2 If that doesn't work, try seeking to a different part of the file and then back.

3 If that doesn‘t work, try seeking to a different part of the file, reading something, and then seeking
back.

4 If that doesn't work, give up on your stdio package and use sysread.

How can | convert my shell script to perl?

Learn Perl and rewrite it. Seriously, there's no simple converter. Things that are awkward to do in the shell
are easy to do in Perl, and this very awkwardness is what would make a shell-perl converter nigh—on
impossible to write. By rewriting it, you'll think about what you‘re really trying to do, and hopefully will
escape the shell's pipeline datastream paradigm, which while convenient for some matters, causes many

94 Perl Version 5.004 21-Jun-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

inefficiencies.

Can | use perl to run a telnet or ftp session?

Try the Net::FTP, TCP::Client, and Net::Telnet modules (available from CPAN).
http://www.perl.com/CPAN/scripts/netstuff/telnet.emul.shar will also help for emulating the telnet protocol,
but Net::Telnet is quite probably easier to use..

If all you want to do is pretend to be telnet but don't need the initial telnet handshaking, then the standard
dual-process approach will suffice:

use 10::Socket; # new in 5.004
$handle = |0::Socket::INET->new('www.perl.com:80’)
| die "can’t connect to port 80 on www.perl.com: $!";

$handle—>autoflush(1);
if (fork()) { # XXX: undef means failure

select($handle);

print while <STDIN>; # everything from stdin to socket
}else {

print while <$handle>; # everything from socket to stdout

close $handle;
exit;
How can | write expect in Perl?
Once upon a time, there was a library called chat2.pl (part of the standard perl distribution), which never
really got finished. These days, your best bet is to look at the Comm.pl library available from CPAN.
Is there a way to hide perl's command line from programs such as "ps"?

First of all note that if you‘re doing this for security reasons (to avoid people seeing passwords, for example)
then you should rewrite your program so that critical information is never given as an argument. Hiding the
arguments won'‘t make your program completely secure.

To actually alter the visible command line, you can assign to the va®i@lde documented iperlvar. This
won't work on all operating systems, though. Daemon programs like sendmail place their state there, as in:

$0 = "orcus [accepting connections]";

I {changed directory, modified my environment} in a perl script. How come the change

disappeared when | exited the script? How do | get my changes to be visible?

Unix
In the strictest sense, it can‘t be done — the script executes as a different process from the shell it was
started from. Changes to a process are not reflected in its parent, only in its own children created after
the change. There is shell magic that may allow you to fakeevalf) ing the script's output in
your shell; check out the comp.unix.questions FAQ for details.

VMS
Change to %ENV persist after Perl exits, but directory changes do not.

How do | close a process's filehandle without waiting for it to complete?

Assuming your system supports such things, just send an appropriate signal to the process (see
kill in perlfunc It's common to first send a TERM signal, wait a little bit, and then send a KILL signal to
finish it off.

How do | fork a daemon process?

If by daemon process you mean one that's detached (disassociated from its tty), then the following process is
reported to work on most Unixish systems. Non-Unix users should check their Your_OS::Process module
for other solutions.

21-Jun—-1997 Perl Version 5.004 95

perlfaq8 Perl Programmers Reference Guide perlfaq8

° Open /dev/tty and use the the TIOCNOTTY ioctl on it. ®gd) for details.
° Change directory to /
° Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.
° Background yourself like this:
fork && exit;

How do | make my program run with sh and csh?
See theeg/nih script (part of the perl source distribution).

How do I find out if I'm running interactively or not?
Good question. SometimesSTDIN and-t STDOUT can give clues, sometimes not.

if (-t STDIN && -t STDOUT) {
print "Now what? ";

}

On POSIX systems, you can test whether your own process group matches the current process group of your
controlling terminal as follows:
use POSIX qw/getpgrp tcgetpgrp/;
open(TTY, "/dev/tty") or die $!;
$tpgrp = tcgetpgrp(TTY);
$pgrp = getpgrp();
if ($tpgrp == $pgrp) {
print "foreground\n®;
}else {
print "background\n®;

}

How do | timeout a slow event?

Use thealarm() function, probably in conjunction with a signal handler, as docum&iggtils in perlipc
and chapter 6 of the Camel. You may instead use the more flexible Sys::AlarmCall module available from
CPAN.

How do | set CPU limits?
Use the BSD::Resource module from CPAN.

How do | avoid zombies on a Unix system?

Use the reaper code fro8ignals in perlipdo callwait() when a SIGCHLD is received, or else use the
double—fork technique describedfork.

How do | use an SQL database?

There are a number of excellent interfaces to SQL databases. See the DBD::* modules available from
http://www.perl.com/CPAN/modules/dbperl/DBD .

How do | make a system() exit on control-C?

You can‘t. You need to imitate tteystem() call (seeperlipc for sample code) and then have a signal
handler for the INT signal that passes the signal on to the subprocess.

How do | open a file without blocking?
If you're lucky enough to be using a system that supports non—blocking reads (most Unixish systems do),
you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with
sysopen()
use Fentl;
sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT, 0644)

96 Perl Version 5.004 21-Jun-1997

perlfaq8 Perl Programmers Reference Guide perlfaq8

or die "can’t open /tmp/somefile: $!":

How do | install a CPAN module?

The easiest way is to have the CPAN module do it for you. This module comes with perl version 5.004 and
later. To manually install the CPAN module, or any well-behaved CPAN module for that matter, follow
these steps:

1 Unpack the source into a temporary area.

2
perl Makefile.PL
3
make
4
make test
5
make install

If your version of perl is compiled without dynamic loading, then you just need to replace steked (
with make perl and you will get a neywerl binary with your extension linked in.

SeeExtUtils::MakeMakerfor more details on building extensions, the question "How do | keep my own
module/library directory?"

How do | keep my own module/library directory?
When you build modules, use the PREFIX option when generating Makefiles:

perl Makefile.PL PREFIX=/u/mydir/perl

then either set the PERL5LIB environment variable before you run scripts that use the modules/libraries (see
perlrun) or say

use lib Ju/mydir/perl’;
See Perl'dib for more information.

How do | add the directory my program lives in to the module/library search path?
use FindBin;
use lib "$FindBin:Bin";
use your_own_modules;

How do | add a directory to my include path at runtime?
Here are the suggested ways of modifying your include path:

the PERLLIB environment variable
the PERL5LIB environment variable
the perl —Idir commpand line flag
the use lib pragma, as in
use lib "$SENV{HOME}/myown_perllib";

The latter is particularly useful because it knows about machine dependent architectures. The lib.pm
pragmatic module was first included with the 5.002 release of Perl.

How do | get one key from the terminal at a time, under POSIX?
#1/usr/bin/perl —w
use strict;
$=1;
for (1..4) {
my $got;

21-Jun—-1997 Perl Version 5.004 97

ExtUtils::MakeMaker

perlfaq8 Perl Programmers Reference Guide perlfaq8

print "gimme: ";
$got = getone();
print "-—> $got\n";
} .
exit;
BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN);

$term = POSIX:: Termios—>new();
$term—>getattr($fd_stdin);
$oterm = $term—>getlflag();

$echo =ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term—>setlflag($noecho);
$term->setcc(VTIME, 1);
$term—>setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term—>setlflag($oterm);
$term->setcc(VTIME, 0);
$term—>setattr($fd_stdin, TCSANOW);

}

sub getone {
my $key = ";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}
END { cooked() }

AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

98 Perl Version 5.004 21-Jun-1997

perlfaq9 Perl Programmers Reference Guide perlfaq9

NAME
perlfag9 — Networking§Revision: 1.17$, $Date: 1997/04/24 22:44:29)

DESCRIPTION
This section deals with questions related to networking, the internet, and a few on the web.

My CGI script runs from the command line but not the browser. Can you help me fix it?
Sure, but you probably can't afford our contracting rates :-)

Seriously, if you can demonstrate that you've read the following FAQs and that your problem isn‘t
something simple that can be easily answered, you'll probably receive a courteous and useful reply to your
guestion if you post it on comp.infosystems.www.authoring.cgi (if it's something to do with HTTP, HTML,

or the CGI protocols). Questions that appear to be Perl questions but are really CGI ones that are posted to
comp.lang.perl.misc may not be so well received.

The useful FAQs are:

http://www.perl.com/perl/fag/idiots—guide.html
http://www3.pair.com/webthing/docs/cgi/faqs/cgifag.shtml
http://www.perl.com/perl/fag/perl-cgi—faqg.html
http://www-genome.wi.mit.edu/WWW/fags/www-security—faqg.html
http://www.boutell.com/faq/

How do | remove HTML from a string?

The most correct way (albeit not the fastest) is to use HTML::Parse from CPAN (part of the libwww-perl
distribution, which is a must—-have module for all web hackers).

Many folks attempt a simple—minded regular expression approacls/dik€>//g , but that fails in many
cases because the tags may continue over line breaks, they may contain quoted angle-brackets, or HTML
comment may be present. Plus folks forget to convert entitie®llike for example.

Here's one "simple—minded" approach, that works for most files:

#1/usr/bin/perl —p0777
sI<(?2:[M>"TF (") -*?\1)*>//gs

If you want a more complete solution, see the 3—stage striphtml program in
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/striphtml.gz .

How do | extract URLS?
A quick but imperfect approach is

#1/usr/bin/perl -n00
qxurl — tchrist@perl.com
print "$2\n" while m{
<\s*
A\s+ HREF \s* =\s* ([""]) (.*?) \1
\s* >
}gsix;

This version does not adjust relative URLS, understand alternate bases, deal with HTML comments, deal
with HREF and NAME attributes in the same tag, or accept URLs themselves as arguments. It also runs
about 100x faster than a more "complete" solution using the LWP suite of modules, such as the
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/xurl.gz program.

How do | download a file from the user's machine? How do | open a file on another machine?

In the context of an HTML form, you can use what's knownmastipart/form—data encoding. The
CGl.pm module (available from CPAN) supports this ingtagt_multipart_form() method, which
isn‘t the same as thetartform() method.

21-Jun—-1997 Perl Version 5.004 99

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | make a pop—up menu in HTML?

Use the<SELECT> and <OPTION> tags. The CGl.pm module (available from CPAN) supports this
widget, as well as many others, including some that it cleverly synthesizes on its own.

How do | fetch an HTML file?
One approach, if you have the lynx text-based HTML browser installed on your system, is this:

$html_code = ‘lynx —source $url’;
$text_data = ‘lynx —dump $url;

The libwww-perl (LWP) modules from CPAN provide a more powerful way to do this. They work through
proxies, and don‘t require lynx:

print HTML from a URL
use LWP::Simple;
getprint "http://www.sn.no/libwww-perl/";

print ASCII from HTML from a URL
use LWP::Simple;
use HTML::Parse;
use HTML::FormatText;
my ($html, $ascii);
$html = get("http://www.perl.com/");
defined $html
or die "Can’t fetch HTML from http://www.perl.com/";
$ascii = HTML::FormatText—>new—->format(parse_html($html));
print $ascii;

how do | decode or create those %—-encodings on the web?
Here's an example of decoding:

$string = "http://altavista.digital.com/cgi—bin/query?pg=q&what=news&fmt=.&q=%2Bc
$string =~ s/%([a—fA-F0-9]{2})/chr(hex($1))/ge;

Encoding is a bit harder, because you can't just blindly change all the non—-alphanumunder chidfacter (
into their hex escapes. It's important that characters with special meaning dikd? not be translated.
Probably the easiest way to get this right is to avoid reinventing the wheel and just use the URI::Escape
module, which is part of the libwww—-perl package (LWP) available from CPAN.

How do | redirect to another page?

Instead of sending backGontent-Type as the headers of your reply, send batleation: header.
Officially this should be &RI: header, so the CGl.pm module (available from CPAN) sends back both:

Location: http://www.domain.com/newpage
URI: http://www.domain.com/newpage

Note that relative URLSs in these headers can cause strange effects because of "optimizations" that servers do.

How do | put a password on my web pages?

That depends. You'll need to read the documentation for your web server, or perhaps check some of the
other FAQs referenced above.

How do | edit my .htpasswd and .htgroup files with Perl?
The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a consistent OO interface to these
files, regardless of how they‘re stored. Databases may be text, dom, Berkley DB or any database with a DBI
compatible driver. HTTPD::UserAdmin supports files used by the ‘Basic’ and ‘Digest’ authentication
schemes. Here's an example:

100 Perl Version 5.004 21-Jun-1997

perlfaq9 Perl Programmers Reference Guide perlfaq9

use HTTPD::UserAdmin ();
HTTPD::UserAdmin
—>new(DB => "/foo/.htpasswd")
—>add($username => $password);

How do | make sure users can't enter values into a form that cause my CGI script to do bad
things?
Read the CGI security FAQ, at http://www-genome.wi.mit.edu/WWW/fagqs/www-security—faq.html, and
the Perl/CGI FAQ at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi—-faq.html.

In brief: use tainting (segerlsed, which makes sure that data from outside your script (eg, CGl parameters)
are never used iaval or system calls. In addition to tainting, never use the single—argument form of
system() or exec() . Instead, supply the command and arguments as a list, which prevents shell
globbing.

How do | parse an email header?
For a quick—and—dirty solution, try this solution derived from page 222 of the 2nd edition of "Programming

Perl":
$/=",
$header = <MSG>;
$header =~ s\n\s+/ /g; # merge continuation lines

%head = (UNIX_FROM_LINE, split /*([-\w]+):\s*/m, $header);

That solution doesn‘'t do well if, for example, you‘re trying to maintain all the Received lines. A more
complete approach is to use the Mail::Header module from CPAN (part of the MailTools package).

How do | decode a CGI form?

A lot of people are tempted to code this up themselves, so you've probably all seen a lot of code involving
$ENV{CONTENT_LENGTH&and$ENV{QUERY_STRING]}. It's true that this can work, but there are also
a lot of versions of this floating around that are quite simply broken!

Please do not be tempted to reinvent the wheel. Instead, use the CGl.pm or CGI_Lite.pm (available from
CPAN), or if you're trapped in the module—free land of perll .. perl4, you might look into cgi-lib.pl
(available from http://www.bio.cam.ac.uk/web/form.html).

How do | check a valid email address?
You can't.

Without sending mail to the address and seeing whether it bounces (and even then you face the halting
problem), you cannot determine whether an email address is valid. Even if you apply the email header
standard, you can have problems, because there are deliverable addresses that aren‘t RFC-822 (the mail
header standard) compliant, and addresses that aren‘t deliverable which are compliant.

Many are tempted to try to eliminate many frequently—invalid email addresses with a simple regexp, such as
MNw.=1H@ (w.—\)+Hw+$/. However, this also throws out many valid ones, and says nothing
about potential deliverability, so is not suggested. Instead, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/ckaddr.gz , which actually checks against the
full RFC spec (except for nested comments), looks for addresses you may not wish to accept email to (say,
Bill Clinton or your postmaster), and then makes sure that the hostname given can be looked up in DNS. It's
not fast, but it works.

Here's an alternative strategy used by many CGI script authors: Check the email address with a simple
regexp (such as the one above). If the regexp matched the address, accept the address. If the regexp didn'‘t
match the address, request confirmation from the user that the email address they entered was correct.

How do | decode a MIME/BASEG64 string?

The MIME-tools package (available from CPAN) handles this and a lot more. Decoding BASE64 becomes
as simple as:

21-Jun—-1997 Perl Version 5.004 101

perlfaq9 Perl Programmers Reference Guide perlfaq9

use MIME::base64;
$decoded = decode_base64($encoded);

A more direct approach is to use thgpack() function's "u" format after minor transliterations:

tr#A-Za—z0-9+/##cd; # remove non-base64 chars
tr#tA-Za—-z0-9+/# — #; # convert to uuencoded format
$len = pack('c", 32 + 0.75*length); # compute length byte

print unpack("u", $len . $_); # uudecode and print

How do | return the user‘'s email address?

On systems that support getpwuid, e variable and the Sys::Hostname module (which is part of the
standard perl distribution), you can probably try using something like this:

use Sys::Hostname;
$address = sprintf('%s@%s’, getpwuid($<), hostname);

Company policies on email address can mean that this generates addresses that the company‘s email system
will not accept, so you should ask for users’ email addresses when this matters. Furthermore, not all systems
on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) providesadaddress() function

that tries to guess the mail address of the user. It makes a more intelligent guess than the code above, using
information given when the module was installed, but it could still be incorrect. Again, the best way is often
just to ask the user.

How do | send/read mail?

Sending mail: the Mail::Mailer module from CPAN (part of the MailTools package) is UNIX—-centric, while
Mail::Internet uses Net::SMTP which is hot UNIX-centric. Reading mail: use the Mail::Folder module from
CPAN (part of the MailFolder package) or the Mail::Internet module from CPAN (also part of the MailTools
package).

sending mail

use Mail::Internet;

use Mail::Header;

say which mail host to use
$ENV{SMTPHOSTS} = 'mail.frii.com’;
create headers

$header = new Mail::Header;
$header—>add('From’, 'gnat@frii.com’);
$header—>add('Subject’, 'Testing’);
$header—>add('To’, 'gnat@frii.com’);

create body

$body = 'This is a test, ignore’;

create mail object

$mail = new Mail::Internet(undef, Header => $header, Body => \[$body]);
send it

$mail->smtpsend or die;

How do | find out my hosthname/domainname/IP address?

A lot of code has historically cavalierly called thestname® program. While sometimes expedient, this
isn‘t very portable. It's one of those tradeoffs of convenience versus portability.

The Sys::Hostname module (part of the standard perl distribution) will give you the hostname after which
you can find out the IP address (assuming you have working DNS) gétnastbyname() call.

use Socket;
use Sys::Hostname;
my $host = hostname();

102

Perl Version 5.004 21-Jun-1997

perlfaq9 Perl Programmers Reference Guide perlfaq9

my $addr = inet_ntoa(scalar(gethostbyname($name)) || 'localhost’);

Probably the simplest way to learn your DNS domain name is to grok it out of /etc/resolv.conf, at least under
Unix. Of course, this assumes several things about your resolv.conf configuration, including that it exists.

(We still need a good DNS domain name—learning method for non—-Unix systems.)

How do | fetch a news article or the active newsgroups?
Use the Net::NNTP or News::NNTPClient modules, both available from CPAN. This can make tasks like
fetching the newsgroup list as simple as:

perl -MNews::NNTPClient
—e 'print News::NNTPClient—>new—>list("newsgroups")’
How do | fetch/put an FTP file?
LWP::Simple (available from CPAN) can fetch but not put. Net::FTP (also available from CPAN) is more
complex but can put as well as fetch.
How can | do RPC in Perl?
A DCE:RPC module is being developed (but is not yet available), and will be released as part of the
DCE-Perl package (available from CPAN). No ONC::RPC module is known.
AUTHOR AND COPYRIGHT

Copyright (c) 1997 Tom Christiansen and Nathan Torkington. All rights reserved. pesiéaq for
distribution information.

21-Jun—-1997 Perl Version 5.004 103

perl Perl Programmers Reference Guide perl

NAME
perl — Perl Kit, Version 5.0

Copyright 1989-1997, Larry Wall
All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of either:

a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or

b) the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
the GNU General Public License or the Artistic License for more details.

You should have received a copy of the Artistic License with this
Kit, in the file named "Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

For those of you that choose to use the GNU General Public License,
my interpretation of the GNU General Public License is that no Perl
script falls under the terms of the GPL unless you explicitly put

said script under the terms of the GPL yourself. Furthermore, any
object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions

of subroutines and variables, and does not otherwise impair the
resulting interpreter from executing any standard Perl script. |
consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You
may sell such an object file as proprietary provided that you provide
or offer to provide the Perl source, as specified by the GNU General
Public License. (This is merely an alternate way of specifying input
to the program.) You may also sell a binary produced by the dumping of
a running Perl script that belongs to you, provided that you provide or
offer to provide the Perl source as specified by the GPL. (The

fact that a Perl interpreter and your code are in the same binary file
is, in this case, a form of mere aggregation.) This is my interpretation
of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License
spells all this out for your protection, so you may prefer to use that.

Perl is a language that combines some of the features of C, sed, awk and shell. See the manual page for more
hype. There are also two Nutshell Handbooks published by O‘Reillgsoc. See pod/perlbook.pod for
more information.

Please read all the directions below before you proceed any further, and then follow them carefully.
After you have unpacked your kit, you should have all the files listed in MANIFEST.

Installation

104 Perl Version 5.004 21-Jun-1997

perl Perl Programmers Reference Guide perl

1) Detailed instructions are in the file INSTALL which you should read. In brief, the following should work
on most systems:
rm —f config.sh
sh Configure
make
make test
make install
For most systems, it should be safe to accept all the Configure defaults. (It is recommended that you accept
the defaults the first time you build or if you have any problems building.)

2) Read the manual entries before running perl.

3) IMPORTANT! Help save the world! Communicate any problems and suggested patches to me,
larry@wall.org (Larry Wall), so we can keep the world in sync. If you have a problem, there's someone else
out there who either has had or will have the same problem. It's usually helpful if you send the output of the
"myconfig" script in the main perl directory.

If you‘ve succeeded in compiling perl, the perlbug script in the utils/ subdirectory can be used to help mail in
a bug report.

If possible, send in patches such that the patch program will apply them. Context diffs are the best, then
normal diffs. Don't send ed scripts— I‘'ve probably changed my copy since the version you have.

Watch for perl patches in comp.lang.perl.announce. Patches will generally be in a form usable by the patch
program. If you are just now bringing up perl and aren‘t sure how many patches there are, write to me and
Ill send any you don‘t have. Your current patch level is shown in patchlevel.h.

Just a personal note: | want you to know that | create nice things like this because it pleases the Author of
my story. If this bothers you, then your notion of Authorship needs some revision. But you can use perl

anyway. :-)
The author.

21-Jun—-1997 Perl Version 5.004 105

amiga Perl Programmers Reference Guide amiga

NAME
perlamiga — Perl under Amiga OS

SYNOPSIS
One can read this document in the following formats:

man perlamiga
multiview perlamiga.guide

to list some (not all may be available simultaneously), or it may beaeedeither aREADME.amiga, or
pod/perlamiga.pod

DESCRIPTION
Prerequisites

Unix emulation for AmigaOS: ixemul.library

You need the Unix emulation for AmigaOS, whose most important pagensul.library . For a
minimum setup, get the following archives from ftp://ftp.ninemoons.com/pub/ade/current or a
mirror:

ixemul-46.0-bin.lha ixemul-46.0—env-bin.lha pdksh-4.9-bin.lha ADE-misc-bin.lha
Note that there might be newer versions available by the time you read this.

Note also that this is a minimum setup; you might want to add other packaf§§yp& qthe Amiga
Developers Environment

Version of Amiga OS
You need at the very least AmigaOS version 2.0. Recommended is version 3.1.

Starting Perl programs under AmigaOS
Start your Perl prograrfioo with argumentsirgl arg2 arg3 the same way as on any other platform, by

perl foo argl arg2 arg3
If you want to specify perl optionamy_opts to the perl itself (as opposed to to your program), use
perl —-my_opts foo argl arg2 arg3

Alternately, you can try to get a replacement for the systdixscute command that honors the
#l/usr/bin/perl syntax in scripts and set the s—Bit of your scripts. Then you can invoke your scripts like under
UNIX with

foo argl arg2 arg3

(Note that having *nixish full path to pefdisr/bin/perl is not necessarperl would be enough, but having
full path would make it easier to use your script under *nix.)

Shortcomings of Perl under AmigaOS
Perl under AmigaOS lacks some features of perl under UNIX because of deficiencies in the
UNIX-emulation, most notably:

fork()

some features of the UNIX filesystem regarding link count and file dates
inplace operation (the —i switch) without backup file

umask() works, but the correct permissions are only set when the file is

finally close()d

INSTALLATION
Change to the installation directory (most probably ADE:), and extract the binary distribution:

106 Perl Version 5.004 21-Jun-1997

amiga Perl Programmers Reference Guide amiga

Iha —-mraxe x perl-5.003-bin.lha
or
tar xvzpf perl-5.003-bin.tgz
(Of course you need lha or tar and gunzip for this.)
For installation of the Unix emulation, read the appropriate docs.
Accessing documentation
Manpages
If you havemaninstalled on your system, and you installed perl manpages, use something like this:

man perlfunc
man less
man ExtUtils.MakeMaker

to access documentation for different components of Perl. Start with
man perl

Note: You have to modify your man.conf file to search for manpages in the /ade/lib/perl5/man/man3
directory, or the man pages for the perl library will not be found.

Note that dot.] is used as a package separator for documentation for packages, and as usual, sometimes you
need to give the section3-above — to avoid shadowing by tless(1) manpage

HTML

If you have some WWW browser available, you can bdildML docs. Cd to directory wittpodfiles, and
do like this

cd /ade/lib/perl5/pod
pod2html

After this you can direct your browser the filerl.html in this directory, and go ahead with reading docs.
Alternatively you may be able to get these docs prebuilt £BAN

GNU info files

Users ofEmacs would appreciate it very much, especially witRerl mode loaded. You need to get latest
pod2info from CPAN or, alternately, prebuilt info pages.

LaTeX docs
can be constructed usipgd?2latex

BUILD
Here we discuss how to build Perl under AmigaOS.

Prerequisites

You need to have the lateSDE (Amiga Developers Environment) from
ftp://ftp.ninemoons.com/pub/ade/current. Also, you need a lot of free memory, probably at least 8MB.

Getting the perl source
You can either get the latest perl-for-amiga source from Ninemoons and extract it with:

tar xvzpf perl-5.004-src.tgz
or get the official source from CPAN:
http://www.perl.com/CPAN/src/5.0
Extract it like this

21-Jun—-1997 Perl Version 5.004 107

amiga Perl Programmers Reference Guide amiga

tar xvzpf perl5.004.tar.gz

You will see a message about errors while extrad@ingfigure. This is normal and expected. (There is a
conflict with a similarly—named fileonfigure, but it causes no harm.)

Making
sh configure.gnu ——prefix=/ade

Now
make

Testing
Now run

make test
Some tests will be skipped because they neefbtk@ function:
io/pipe.t op/fork.t, lib/filehand.t, lib/open2.t lib/open3.t lib/io_pipe.t lib/io_sock.t
Installing the built perl
Run
make install
AUTHOR
Norbert Pueschel, pueschel@imsdd.meb.uni-bonn.de
SEE ALSO
perl(1).

108 Perl Version 5.004 21-Jun-1997

cygwin32 Perl Programmers Reference Guide cygwin32

NAME
perl — Perl GNU-Win32

The following assumes you have the GNU-Win32 package, version b17.1 or later, installed and configured
on your system. See http://www.cygnus.com/misc/gnu-win32/ for details on the GNU-Win32 project and
the Cygwin32 API.

1) Copy the contents of the cygwin32 directory to the Perl source
root directory.

2) Modify the 1d2 script by making the PERLPATH variable contain the
Perl source root directory. For example, if you extracted perl to
"/perl5.004", change the script so it contains the line:

PERLPATH=/perl5.004

3) Copy the two scripts Id2 and gcc2 from the cygwin32 subdirectory to a
directory in your PATH environment variable. For example, copy to
/bin, assuming /bin is in your PATH. (These two scripts are ‘wrapper’
scripts that encapsulate the multiple—pass dll building steps used by
GNU-Win32 Id/gcc.)

4) Run the perl Configuration script as stated in the perl README file:
sh Configure
When confronted with this prompt:

First time through, eh? | have some defaults handy for the
following systems:

Which of these apply, if any?
Select "cygwin32".

The defaults should be OK for everything, except for the specific
pathnames for the cygwin32 libs, include files, installation dirs,
etc. on your system; answer those questions appropriately.

NOTE: On windows 95, the configuration script only stops every other
time for responses from the command line. In this case you can manually
copy hints/cygwin32.sh to config.sh, edit config.sh for your paths, and

run Configure non—-interactively using sh Configure —d.

5) Run "make" as stated in the perl README file.

6) Run "make test". Some tests will fail, but you should get around a
83% success rate. (Most failures seem to be due to Unixisms that don‘t
apply to win32.)

7) Install. If you just run "perl installperl”, it appears that perl
can't find itself when it forks because it changes to another directory
during the install process. You can get around this by invoking the
install script using a full pathname for perl, such as:

/perl5.004/perl installper!

This should complete the installation process.

21-Jun—-1997 Perl Version 5.004 109

0s2 Perl Programmers Reference Guide 0s2

NAME
perlos2 — Perl under OS/2, DOS, Win0.3*, Win0.95 and WinNT.

SYNOPSIS
One can read this document in the following formats:
man perlos2
view perl perlos2

explorer perlos2.html
info perlos2

to list some (not all may be available simultaneously), or it may beazasl either asREADME.os2, or
pod/perlos2.pod

To read thelINF version of documentatiorvéry recommended) outside of OS/2, one needs an IBM's
reader (may be available on IBM ftp sites (?) (URL anyone?)) or shipped with PC DOS 7.0 and IBM's
Visual Age C++ 3.5.

A copy of a Win* viewer is contained in the "Just add OS/2 Warp" package
ftp://ftp.software.ibm.com/ps/products/os2/tools/jaow/jaow.zip

in 2\JUST_ADD\view.exeThis gives one an access to EMXINF docs as well (text form is available in
/emx/docin EMX's distribution).

Note that if you havéynx.exeinstalled, you can follow WWW links from this documentliNF format. If
you have EMX docs installed correctly, you can follow library links (you need to\hemeemxbook
working by settingEMXBOOKnvironment variable as it is described in EMX docs).

DESCRIPTION

Target

The target is to make OS/2 the best supported platform for using/building/developing Pd?kerand
applications as well as make Perl the best language to use under OS/2. The secondary target is to try to
make this work under DOS and Win* as well (but toat hard).

The current state is quite close to this target. Known limitations:

° Some *nix programs uséork() a lot, but currentlyfork() is not supported afteuseng
dynamically loaded extensions.

° You need a separate perl executgidd__.exe(seeperl__.ex¢ to use PM code in your application
(like the forthcoming Perl/Tk).

° There is no simple way to access WPS objects. The only way | know@SZaREXX extension
(see OS2::REXX, and we do not have access to convenience methods of Object-REXX. (Is it
possible at all? | know of no Object—-REXX APL.)

Please keep this list up—to—date by informing me about other items.

Other OSes

Since OS/2 port of perl uses a remarkable EMX environment, it can run (and build extensions, and -
possibly — be build itself) under any environment which can run EMX. The current list is DOS,
DOS-inside-0S/2, Win0.3*, Win0.95 and WinNT. Out of many perl flavors, only one works, see
"perl_.exe"

Note that not all features of Perl are available under these environments. This depends on the features the
extender- most probably RSX — decided to implement.

Cf. Prerequisites

110 Perl Version 5.004 21-Jun-1997

OS2::REXX

0s2

Perl Programmers Reference Guide 0s2

Prerequisites
EMX

RSX

HPFS

pdksh

EMX runtime is required (may be substituted by RSX). Note that it is possible topadkeexeto

run under DOS without any external support by bindingk.exérsx.exeto it, seeemxbind Note

that under DOS for best results one should use RSX runtime, which has much more functions
working (likefork , popen and so on). In fact RSX is required if there is no VCPI present. Note
the RSX requires DPMI.

Only the latest runtime is supported, curre®9c . Perl may run under earlier versions of EMX,
but this is not tested.

One can get different parts of EMX from, say

ftp://ftp.cdrom.com/pub/os2/emx09c/
ftp://hobbes.nmsu.edu/os2/unix/emx09c/

The runtime component should have the namart.zip

NOTE. It is enough to havemx.exésx.exeon your path. One does not need to specify them
explicitly (though this

emx perl_.exe —-de 0
will work as well.)

To run Perl on DPMI platforms one needs RSX runtime. This is needed under DOS-inside-0S/2,
Win0.3*, Win0.95 and WInNT (seéOther OSes): RSX would not work with VCPI only, as EMX
would, it requires DMPI.

Having RSX and the latesh.exeone gets a fully functionahix —ish environment under DOS, say,
fork ,* and pipeepen work. In fact, MakeMaker works (for static build), so one can have Perl
development environment under DOS.

One can get RSX from, say

ftp://ftp.cdrom.com/pub/os2/emx09c/contrib
ftp://ftp.uni—bielefeld.de/pub/systems/msdos/misc
ftp://ftp.leo.org/pub/comp/os/os2/leo/devtools/emx+gcc/contrib

Contact the author aminer@mathematik.uni—bielefeld.de
The latessh.exewith DOS hooks is available at
ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/sh_dos.zip

Perl does not care about file systems, but to install the whole perl library intact one needs a file
system which supports long file names.

Note that if you do not plan to build the perl itself, it may be possible to fool EMX to truncate file
names. This is not supported, read EMX docs to see how to do it.

To start external programs with complicated command lines (like with pipes in between, and/or
qguoting of arguments), Perl uses an external shell. With EMX port such shell should be named
<sh.exe, and located either in the wired-in—during—compile locations (udedtiin), or in
configurable location (sé®ERL_SH_DIRY).

For best results use EMX pdksh. The soon-to—be-available standard binary (5.2.12?) runs under
DOS (withRSX as well, meanwhile use the binary from

ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/sh_dos.zip

Starting Perl programs under OS/2 (and DOS and...)
Start your Perl prograrfoo.pl with argumentsargl arg2 arg3 the same way as on any other platform,

by

21-Jun-1997

Perl Version 5.004 111

0s2

Perl Programmers Reference Guide 0s2

perl foo.pl argl arg2 arg3

If you want to specify perl optionamy_opts to the perl itself (as opposed to to your program), use
perl —-my_opts foo.pl argl arg2 arg3

Alternately, if you use OS/2-ish shell, like CMD or 40s2, put the following at the start of your perl script:
extproc perl =S -my_opts

rename your program foo.cmd and start it by typing

foo argl arg2 arg3

Note that because of stupid OS/2 limitations the full path of the perl script is not available when you use

extproc , thus you are forced to usé& perl switch, and your script should be on path. As a plus side, if
you know a full path to your script, you may still start it with

perl ../../blah/foo.cmd argl arg2 arg3

(note that the argumerimy_opts is taken care of by thextproc line in your script, seextproc on
the first ling.

To understand what the abowegicdoes, read perl docs aboet® switch — segerlrun, and cmdref about
extproc

view perl perlrun
man perlrun

view cmdref extproc
help extproc

or whatever method you prefer.

There are also endless possibilities to esecutable extensiord 40s2,associationsof WPS and so on...
However, if you use *nixish shell (likeh.exesupplied in the binary distribution), you need to follow the
syntax specified iBwitches in perlrun

Starting OS/2 (and DOS) programs under Perl

This is whatsystem() (seesystenp “ (seel/O Operators in perlop andopen pipe(seeopen) are for.
(Avoid exec() (seeexeg unless you know what you do).

Note however that to use some of these operators you need to have a sh—syntax shell insté&i#idsfgee
"Frequently asked questionsand perl should be able to find it (S&&RL_SH_DIR).

The only cases when the shell is not used is the multi-argsystem() (seesystem)lexec() (see
exeg, and one—-argument version thereof without redirection and shell meta—characters.

Frequently asked questions

| cannot run external programs

Did you run your programs withw switch? See? (and DOS) programs under Perl

Do you try to runinternal shell commands, lik© a b (internal forcmd.ex¢, or ‘glob
a*b' (internal for ksh)? You need to specify your shell explicitly, ligk@ad /c copy a b’ ,
since Perl cannot deduce which commands are internal to your shell.

| cannot embed perl into my program, or use perl.dll from my

program.

Is your program EMX-compiled with —Zmt —Zcrtdll ?

If not, you need to build a stand—alone DLL for perl. Contact me, | did it once. Sockets would not

work, as a lot of other stuff.

112

Perl Version 5.004 21-Jun-1997

0s2 Perl Programmers Reference Guide 0s2

Did you use ExtUtils::Embed?
| had reports it does not work. Somebody would need to fix it.

and pipe- open do not work under DOS.

This may a variant of just cannot run external programstr a deeper problem. Basically: ypaedRSX
(see"Prerequisites) for these commands to work, and you may need a paft.ekewhich understands
command arguments. One of such ports is listé®iarequisites"under RSX. Do not forget to set variable
"PERL_SH_DIR" as well.

DPMI is required for RSX.

Cannot start find.exe "pattern” file
Use one of
system 'cmd’, '/c’, 'find "pattern” file’;
‘cmd /c 'find "pattern” file™

This would starfind.exe via cmd.exevia sh.exe viaperl.exe , but this is a price to pay if you want to
use non—conforming program. In fdatd.exe cannot be started at all using C library API only. Otherwise
the following command-lines were equivalent:

find "pattern” file
find pattern file

INSTALLATION

Automatic binary installation

The most convenient way of installing perl is via perl instafistall.exe Just follow the instructions, and
99% of the installation blues would go away.

Note however, that you need to hawezip.exeon your path, and EMX environmeninning The latter
means that if you just installed EMX, and made all the needed chan@mmntig.sys you may need to
reboot in between. Check EMX runtime by running

emxrev
A folder is created on your desktop which contains some useful objects.
Things not taken care of by automatic binary installation:

PERL_BADLANG may be needed if you change your codepsftgr perl installation, and the new value
is not supported by EMX. SEEERL_BADLANG!'

PERL_BADFREE see"PERL_BADFREE"

Config.pm This file resides somewhere deep in the location you installed your perl library, find it
out by
perl -MConfig —le "print $INC{'Config.pm'}"

While most important values in this filre updated by the binary installer, some of
them may need to be hand-edited. | know no such data, please keep me informed if
you find one.

NOTE. Because of a typo the binary installer of 5.00305 would install a vafdiRl._SHPATHnNto
Config.sys Please remove this variable and PERL_SH_DIRinstead.
Manual binary installation

As of version 5.00305, OS/2 perl binary distribution comes split into 11 components. Unfortunately, to
enable configurable binary installation, the file paths in the zip files are not absolute, but relative to some
directory.

Note that the extraction with the stored paths is still necessary (default with unzip, spketifpkunzip).

21-Jun—-1997 Perl Version 5.004 113

ExtUtils::Embed

0s2

Perl Programmers Reference Guide 0s2

However, you need to know where to extract the files. You need also to manually change entries in
Config.systo reflect where did you put the files. Note that if you have some primitive unzipper (like
pkunzip), you may get a lot of warnings/errors during unzipping. Upgra@@uozip

Below is the sample of what to do to reproduce the configuration on my machine:

Perl VIO and PM executables (dynamically linked)

unzip perl_exc.zip *.exe *.ico —d f:/lemx.add/bin
unzip perl_exc.zip *.dll —d f:/emx.add/dll

(have the directories withexe on PATH, and.dll on LIBPATH);

Perl_ VIO executable (statically linked)
unzip perl_aou.zip —d f:/emx.add/bin

(have the directory on PATH);

Executables for Perl utilities
unzip perl_utl.zip —d f:/emx.add/bin

(have the directory on PATH);

Main Perl library
unzip perl_mlb.zip —d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if it is
changed, you need set PERLLIB_PREFIX in Config.sys se€'PERLLIB_PREFIX"

Additional Perl modules
unzip perl_ste.zip —d f:/perllib/lib/site_perl

If you do not change this directory, do nothing. Otherwise put this directory and subdiréud@in
PERLLIB or PERL5LIB variable. Do not usd’ERL5LIB unless you have it set already. See
ENVIRONMENT in perl

Tools to compile Perl modules
unzip perl_blb.zip —d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if it is
changed, you need set PERLLIB_PREFIX in Config.sys se€'PERLLIB_PREFIX"

Manpages for Perl and utilities
unzip perl_man.zip —d f:/perllib/man

This directory should better be 8MANPATHYou need to have a working man to access these files.

Manpages for Perl modules
unzip perl_mam.zip —d f:/perllib/man

This directory should better be 8MANPATHYou need to have a working man to access these files.

Source for Perl documentation
unzip perl_pod.zip —d f:/perllib/lib

This is used by bperldoc program (seeerldog, and may be used to generate HTML documentation
usable by WWW browsers, and documentation in zillions of other forméats:, LaTeX, Acrobat
FrameMaker and so on.
Perl manual in .INF format
unzip perl_inf.zip —d d:/os2/book

This directory should better be @OOKSHELF

114

Perl Version 5.004 21-Jun-1997

0s2 Perl Programmers Reference Guide 0s2

Pdksh
unzip perl_sh.zip —d f:/bin

This is used by perl to run external commands which explicitly require shell, like the commands using
redirectionandshell metacharacterdt is also used instead of expliftin/sh.

SetPERL_SH_DIR(see'PERL_SH_DIRY if you movesh.exefrom the above location.
Note. It may be possible to use some other sh—compatible slo¢liestedl

After you installed the components you needed and update@athiég.syscorrespondingly, you need to
hand-editConfig.pm This file resides somewhere deep in the location you installed your perl library, find it
out by

perl -MConfig —le "print $INC{'Config.pm'}"
You need to correct all the entries which look like file paths (they currently startAvith

Warning

The automatic and manual perl installation leave precompiled paths inside perl executables. While these
paths are overwriteable (s&RERLLIB_PREFIX; "PERL_SH_DIR), one may get better results by binary
editing of paths inside the executables/DLLs.

Accessing documentation

Depending on how you built/installed perl you may have (otherwise identical) Perl documentation in the
following formats:

0OS/2 .INF file
Most probably the most convenient form. Under OS/2 view it as

view perl

view perl perlfunc

view perl less

view perl ExtUtils::MakeMaker

(currently the last two may hit a wrong location, but this may improve soon). Under WitB¥ROPSIS"
If you want to build the docs yourself, and h&®/2 toolkit run
pod2ipf > perl.ipf
in /perllib/lib/pod directory, then
ipfc /inf perl.ipf
(Expect a lot of errors during the both steps.) Now move it on your BOOKSHELF path.

Plain text

If you have perl documentation in the source form, perl utilities installed, and GNU groff installed, you may
use

perldoc perlfunc
perldoc less
perldoc ExtUtils::MakeMaker

to access the perl documentation in the text form (note that you may get better results using perl manpages).
Alternately, try running pod2text apodfiles.

Manpages
If you have man installed on your system, and you installed perl manpages, use something like this:

man perlfunc
man 3 less

21-Jun—-1997 Perl Version 5.004 115

0s2 Perl Programmers Reference Guide 0s2

man ExtUtils.MakeMaker
to access documentation for different components of Perl. Start with
man perl

Note that dot.] is used as a package separator for documentation for packages, and as usual, sometimes you
need to give the section3-above — to avoid shadowing by tless(1) manpage

Make sure that the directoapovethe directory with manpages is on 6MANPATHIke this
set MANPATH=c:/man;f:/perllib/man

HTML

If you have some WWW browser available, installed the Perl documentation in the source form, and Perl
utilities, you can build HTML docs. Cd to directory wittodfiles, and do like this

cd f:/perllib/lib/pod
pod2html

After this you can direct your browser the fierl.html in this directory, and go ahead with reading docs,
like this:

explore file:///f:/perllib/lib/pod/perl.html
Alternatively you may be able to get these docs prebuilt from CPAN.

GNU info files

Users of Emacs would appreciate it very much, especially@®rl mode loaded. You need to get latest
pod2info from CPAN or, alternately, prebuilt info pages.

.PDF files

for Acrobat are available on CPAN (for slightly old version of perl).
LaTeX docs

can be constructed usipgd?2latex
BUILD

Here we discuss how to build Perl under OS/2. There is an alternative (but maybe older) view on
http://www.shadow.net/~troc/os2perl.html

Prerequisites

You need to have the latest EMX development environment, the full GNU tool suite (gawk renamed to awk,
and GNUfind.exeearlier on path than the OSifd.exe same withsort.exe to check use

find ——version
sort ——version

). You need the latest versionmdkshinstalled ash.exe
Possible locations to get this from are

ftp://hobbes.nmsu.edu/os2/unix/
ftp://ftp.cdrom.com/pub/os2/unix/
ftp://ftp.cdrom.com/pub/os2/dev32/
ftp://ftp.cdrom.com/pub/os2/emx09c/

It is reported that the following archives contain enough utils to build perl: gnufutil.zip, gnusutil.zip,
gnututil.zip, gnused.zip, gnupatch.zip, gnuawk.zip, gnumake.zip and ksh527rt.zip. Note that all these
utilities are known to be available from LEO:

ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu

Make sure that no copies or perl are currently running. Later steps of the build may fail since an older

116 Perl Version 5.004 21-Jun-1997

http://www.shadow.net/~troc/os2perl.html

0s2 Perl Programmers Reference Guide 0s2

version of perl.dll loaded into memory may be found.

Also make sure that you havinp directory on the current drive, andlirectory in yourLIBPATH. One
may try to correct the latter condition by

set BEGINLIBPATH .
if you use something likEMD.EXE or latest versions afos2.exe
Make sure your gcc is good feZzomf linking: runomflibs script in/femx/lib directory.

Check that you have link386 installed. It comes standard with OS/2, but may be not installed due to
customization. If typing

link386

shows you do not have it, ®elective installand choosé&ink object modules in Optional system
utilities/More If you get into link386, presstrl-C .

Getting perl source
You need to fetch the latest perl source (including developers releases). With some probability it is located in

http://www.perl.com/CPAN/src/5.0
http://www.perl.com/CPAN/src/5.0/unsupported

If not, you may need to dig in the indices to find it in the directory of the current maintainer.
Quick cycle of developers release may break the OS/2 build time to time, looking into
http://www.perl.com/CPAN/ports/os2/ilyaz/

may indicate the latest release which was publicly released by the maintainer. Note that the release may
include some additional patches to apply to the current source of perl.

Extract it like this
tar vzxf perl5.00409.tar.gz

You may see a message about errors while extraCmmgigure. This is because there is a conflict with a
similarly—-named fileconfigure.

Change to the directory of extraction.

Application of the patches
You need to apply the patchesfns2/diff.* and./os2/POSIX.mkfifolike this:

gnupatch —p0 < 0s2\POSIX.mkfifo
gnupatch —p0 < os2\diff.configure

You may also need to apply the patches supplied with the binary distribution of perl.

Note also that thelb.lib anddb.afrom the EMX distribution are not suitable for multi-threaded compile
(note that currently perl is not multithread—safe, but is compiled as multithreaded for compatibility with
XFree86-0S/2). Get a corrected one from

ftp://ftp.math.ohio—state.edu/pub/users/ilya/os2/db_mt.zip

Hand-editing
You may look into the file/hints/os2.shand correct anything wrong you find there. | do not expect it is
needed anywhere.

Making
sh Configure —des —D prefix=f:/perllib

prefix means: where to install the resulting perl library. Giving correct prefix you may avoid the need to

21-Jun—-1997 Perl Version 5.004 117

0s2

Perl Programmers Reference Guide 0s2

specifyPERLLIB_PREFIX, se€’'PERLLIB_PREFIX!

Ignore the message about missing, and about-c option to tr In fact if you can trace where the latter
spurious warning comes from, please inform me.

Now
make

At some moment the built may die, reportingeasion mismatclor unable to rurperl. This means that most

of the build has been finished, and it is the time to move the constperatll to someabsolutelocation in
LIBPATH. After this is done the build should finish without a lot of fu3se can avoid the interruption if
one has the correct prebuilt versionpsrl.dll on LIBPATH, but probably this is not needed anymore, since
miniperl.exeis linked statically now.

Warnings which are safe to ignorekfifo() redefined insidePOSIX.c

Testing

Now run
make test

Some tests (4..6) should fail. Some perl invocations should end in a segfault (syste®Y88ar5). To
get finer error reports,

cdt
perl harness

The report you get may look like
Failed Test Status Wstat Total Fail Failed List of failed

ioffs.t 26 11 42.31% 2-5,7-11, 18, 25

lib/io_pipet 3 768 6 ?7? % ?7?

lib/lio_sockt 3 768 5 ?7? % ??

op/stat.t 56 5 8.93% 3-4, 20, 35, 39

Failed 4/140 test scripts, 97.14% okay. 27/2937 subtests failed, 99.08% okay.

Note that using ‘make test’ target two more tests may daflexec:1 because of (mis)feature of pdksh,
and lib/posix:15 , which checks that the buffers are not flushed exrit (this is a bug in the test
which assumes that tty output is buffered).

| submitted a patch to EMX which makes it possibléot() with EMX dynamic libraries loaded, which
makedib/io* tests pass. This means that soon the number of failing tests may decrease yet more.

However, the teslib/io_udp.t is disabled, since it never terminates, | do not know why. Comments/fixes
welcome.

The reasons for failed tests are:
io/fs.t Checkdfile systenmoperations. Tests:
2-5,7-11 Checklink() andinode count - nonesuch under OS/2.
18 Checksatime andmtime ofstat() - I could not understand this test.

25 Checkstruncate() on a filehandle just opened for write — | do not know why
this should or should not work.
lib/io_pipe.t
CheckslO::Pipe module. Some feature of EMX - tefstrk() s with dynamic extension
loaded — unsupported now.

118

Perl Version 5.004 21-Jun-1997

0s2

Perl Programmers Reference Guide 0s2

lib/io_sock.t

CheckslO::Socket module. Some feature of EMX — tdetk() s with dynamic extension
loaded — unsupported now.

op/statt Checksstat() . Tests:
3 Checksnode count - nonesuch under OS/2.
4 Checksmtime andctime ofstat() -1 could not understand this test.
20 Checks-x — determined by the file extension only under OS/2.
35 Needdusr/bin.
39 Checks-t of /dev/null. Should not fail!
In addition to errors, you should get a lot of warnings.

A lot of ‘bad free’
in databases related to Berkeley DB. This is a confirmed bug of DB. You may disable this warnings,
see"PERL_BADFREE"

Process terminated by SIGTERM/SIGINT
This is a standard message issued by OS/2 applications. *nix applications die in silence. It is
considered a feature. One can easily disable this by appropriate sighandlers.

However the test engine bleeds these message to screen in unexpected moments. Two messages of this
kind shouldbe present during testing.

*/sh.exe: In: not found

Is : /dev: No such file or directory
The last two should be self-explanatory. The test suite discovers that the system it runs tmats not
much*nixish.

A lot of ‘bad free'... in databases, bug in DB confirmed on other platforms. You may disable it by setting
PERL_BADFREE environment variable to 1.

Installing the built perl

a.out

Run
make install

It would put the generated files into needed locations. Manuallggsuexe perl__.exeandperl____.exdo a
location on your PATHperl.dll to a location on your LIBPATH.

Run
make cmdscripts INSTALLCMDDIR=d:/ir/on/path

to convert perl utilities tacmd files and put them on PATH. You need to pEXE-utilities on path
manually. They are installed ifiprefix/bin, here $prefix is what you gave t&Configure, see
Making

—style build
Proceed as above, but maler|_.exe(see'perl_.exe) by

make perl_
test and install by

make aout_test
make aout_install

Manually putperl_.exeto a location on your PATH.

21-Jun—-1997 Perl Version 5.004 119

0s2 Perl Programmers Reference Guide 0s2

Since perl_ has the extensions prebuilt, it does not suffer from dynr@amic extensions +ork()
syndrome, thus the failing tests look like

Failed Test Status Wstat Total Fail Failed List of failed

io/fs.t 26 11 42.31% 2-5,7-11, 18, 25
op/stat.t 56 5 8.93% 3-4, 20, 35, 39
Failed 2/118 test scripts, 98.31% okay. 16/2445 subtests failed, 99.35% okay.

Note. The build process fguerl_ does not knovabout all the dependencies, so you should make sure that
anything is up—to—date, say, by doing
make perl.dll
first.
Build FAQ

Some / became \ in pdksh.
You have a very old pdksh. SBeerequisites

‘errno’ - unresolved external
You do not have MT-safeéb.lib. SeePrerequisites

Problems with tr
reported with very old version of tr.

Some problem (forget which ;-)
You have an older version pérl.dll on your LIBPATH, which broke the build of extensions.

Library ... not found
You did not ruromflibs . SeePrerequisites

Segfault in make
You use an old version of GNU make. $®erequisites

Specific (mis)features of OS/2 port

setpriority , getpriority
Note that these functions are compatible with *nix, not with the older ports of ‘94 — 95. The priorities are
absolute, go from 32 to —95, lower is quicker. 0 is the default priority.

system()

Multi-argument form okystem() allows an additional humeric argument. The meaning of this argument
is described IDS2::Process

extproc on the first line
If the first chars of a script afextproc ", this line is treated & -line, thus all the switches on this line
are processed (twice if script was started via cmd.exe).

Additional modules:

0S2::ProcessOS2::REXX 0S2::PrfDB OS2::ExtAttr This modules provide access to additional numeric
argument forsystem , to DLLs having functions with REXX signature and to REXX runtime, to OS/2
databases in thé&NI format, and to Extended Attributes.

Two additional extensions by Andreas Kais®$2::UPM, and OS2::FTP , are included into my ftp
directory, mirrored on CPAN.

Prebuilt methods:

File::Copy::syscopy
used byFile::Copy::copy , seeFile::Copy.

120 Perl Version 5.004 21-Jun-1997

OS2::Process
OS2::Process
OS2::REXX
OS2::PrfDB
OS2::ExtAttr
File::Copy

0s2 Perl Programmers Reference Guide 0s2

Dynaloader::mod2fname
used byDynalLoader for DLL name mangling.

Cwd::current_drive()
Self explanatory.

Cwd::sys_chdir(name)
leaves drive as it is.

Cwd::change_drive(nhame)
Cwd::sys_is_absolute(name)
means has drive letter and is_rooted.

Cwd::sys_is_rooted(name)

means has leadiri§\] (maybe after a drive—letter:).
Cwad::sys_is_relative(name)

means changes with current dir.
Cwad::sys_cwd(name)

Interface to cwd from EMX. Used lywd::cwd .
Cwd::sys_abspath(name, dir)

Really really odious function to implement. Returns absolute name of file which woulchaneeif
CWD weredir . Dir defaults to the current dir.

Cwd::extLibpath([type])

Get current value of extended library search pathtyffe is present andrue, works with
END_LIBPATH, otherwise witBBEGIN_LIBPATH.

Cwd::extLibpath_set(path [, type])

Set current value of extended library search pathtypie is present andrue, works with
END_LIBPATH, otherwise witBBEGIN_LIBPATH.

(Note that some of these may be moved to different libraries — eventually).
Misfeatures

Sinceflock(3) is present in EMX, but is not functional, the same is true for perl. Here is the list of
things which may be "broken" on EMX (from EMX docs):

° The functiongecvmsg(3)sendmsg(3)andsocketpair(3)are not implemented.
° sock_init(3)is not required and not implemented.

° flock(3)is not yet implemented (dummy function).

° kill(3): Special treatment of PID=0, PID=1 and PID=-1 is not implemented.
° waitpid(3)

WUNTRACED
Not implemented.
waitpid() is not implemented for negative values of PID.

Note thatkill -9 does not work with the current version of EMX.
Sincesh.exeis used for globing (segob), the bugs ofh.exeplague perl as well.

In particular, uppercase letters do not work ifi —patterns with the current pdksh.

21-Jun—-1997 Perl Version 5.004 121

0s2

Perl Programmers Reference Guide 0s2

Modifications

Perl modifies some standard C library calls in the following ways:
popen my_popen usessh.exeif shell is required, cf:PERL_SH_DIR

tmpnam is created usingMPor TEMPenvironment variable, viegmpnam.

tmpfile If the current directory is not writable, file is created using modifiggham, so there may be
a race condition.
ctermid a dummy implementation.
stat 0s2_stat special-caseslev/ttyand/dev/con
Perl flavors

Because of idiosyncrasies of OS/2 one cannot have all the eggs in the same basket (though EMX
environment tries hard to overcome this limitations, so the situation may somehow improve). There are 4
executables for Perl provided by the distribution:

perl.exe

The main workhorse. This is a chimera executable: it is compiled asoah -style executable, but is
linked with omf-style dynamic libraryperl.dll, and with dynamic CRT DLL. This executable is a VIO
application.

It can load perl dynamic extensions, and it frak() . Unfortunately, with the current version of EMX it
cannotfork() with dynamic extensions loaded (may be fixed by patches to EMX).

Note. Keep in mind thatork() is needed to open a pipe to yourself.

perl_.exe

This is a statically linked.out -—style executable. It caork() , but cannot load dynamic Perl extensions.

The supplied executable has a lot of extensions prebuilt, thus there are situations when it can perform tasks
not possible usingerl.exe like fork() ing when having some standard extension loaded. This executable

is a VIO application.

Note. A better behaviour could be obtained frperl.exe if it were statically linked with standater!
extensionsbut dynamically linked with thBerl DLL and CRT DLL. Then it would be ablefork() with
standard extensionandwould be able to dynamically load arbitrary extensions. Some changes to Makefiles
and hint files should be necessary to achieve this.

This is also the only executable with does not require OBi&. friends locked intoM$ world would
appreciate the fact that this executable runs under DOS, Win0.3*, Win0.95 and WinNT with an appropriate
extender. Se&ther OSes"

perl__.exe

This is the same executablepes]__.exebut it is a PM application.

Note. Usually STDIN, STDERR, and STDOUT of a PM application are redirectedlto However, it is
possible to see them if you stperl__.exe from a PM program which emulates a console window, like
Shell modeof Emacs or EPM. Thus i$ possibleto use Perl debugger (sperldebug to debug your PM
application.

This flavor is required if you load extensions which use PM, like the forthcorargrk

perl___.exe

This is anomf-style executable which is dynamically linked perl.dll and CRT DLL. | know no
advantages of this executable operl.exe , but it cannofork() at all. Well, one advantage is that the
build process is not so convoluted as vgighl.exe

Itis a VIO application.

122

Perl Version 5.004 21-Jun-1997

0s2 Perl Programmers Reference Guide 0s2

Why strange names?

Since Perl processes the-line (cf. DESCRIPTIONSwitchesNot a perl script in perldiag
No Perl script found in input in perldidgit should know when a prograis a Perl There is some naming
convention which allows Perl to distinguish correct lines from wrong ones. The above names are almost the
only names allowed by this convention which do not contain digits (which have absolutely different
semantics).

Why dynamic linking?
Well, having several executables dynamically linked to the same huge library has its advantages, but this

would not substantiate the additional work to make it compile. The reason is stupid—but-quick "hard"
dynamic linking used by OS/2.

The address tables of DLLs are patched only once, when they are loaded. The addresses of entry points into
DLLs are guaranteed to be the same for all programs which use the same DLL, which reduces the amount of
runtime patching — once DLL is loaded, its code is read-only.

While this allows some performance advantages, this makes life terrible for developers, since the above
scheme makes it impossible for a DLL to be resolved to a symbol in the .EXE file, since this would need a
DLL to have different relocations tables for the executables which use it.

However, a Perl extension is forced to use some symbols from the perl executable, say to know how to find
the arguments provided on the perl internal evaluation stack. The solution is that the main code of interpreter
should be contained in a DLL, and thEXE file just loads this DLL into memory and supplies
command-arguments.

This greatly increases the load time for the application (as well as the number of problems during
compilation). Since interpreter is in a DLL, the CRT is basically forced to reside in a DLL as well (otherwise
extensions would not be able to use CRT).

Why chimera build?

Current EMX environment does not allow DLLs compiled using Unigislut format to export symbols
for data. This forceemf-style compile operl.dIl.

Current EMX environment does not allo&®XE files compiled inomf format tofork() . fork() is
needed for exactly three Perl operations:

explicit fork()
in the script, and

open FH, "[-"
open FH, "-|"
opening pipes to itself.

While these operations are not questions of life and death, a lot of useful scripts use them. This forces
a.out -style compile operl.exe

ENVIRONMENT

Here we list environment variables with are either OS/2- and DOS- and Win*-specific, or are more
important under OS/2 than under other OSes.

PERLLIB_PREFIX
Specific for EMX port. Should have the form

pathl;path2
or
pathl path2
If the beginning of some prebuilt path matcpaghl, it is substituted witlpath2

21-Jun—-1997 Perl Version 5.004 123

0s2 Perl Programmers Reference Guide 0s2

Should be used if the perl library is moved from the default location in prefereRERio(5)LIB , since
this would not leave wrong entries in @INC. Say, if the compiled version of perl looks for @INC in
f:/perllib/lib , and you want to install the library im/opt/gnu, do

set PERLLIB_PREFIX=f:/perllib/lib;h:/opt/gnu

PERL_BADLANG
If 1, perl ignoressetlocale() failing. May be useful with some stranigeales.

PERL_BADFREE

If 1, perl would not warn of in case of unwarranfexe() . May be useful in conjunction with the module
DB_File, since Berkeley DB memory handling code is buggy.

PERL_SH_DIR
Specific for EMX port. Gives the directory part of the locationstoiexe

TMPor TEMP
Specific for EMX port. Used as storage place for temporary files, most netalggripts.

Evolution
Here we list major changes which could make you by surprise.

Priorities
setpriority and getpriority are not compatible with earlier ports by Andreas Kaiser. See
"setpriority, getpriority”

DLL name mangling

With the release 5.003_01 the dynamically loadable libraries should be rebuilt. In particular, DLLs are now
created with the names which contain a checksum, thus allowing workaround for OS/2 scheme of caching
DLLs.

Threading

As of release 5.003_01 perl is linked to multithreaded CRT DLL. Perl itself is not multithread—safe, as is not
perlmalloc() . However, extensions may use multiple thread on their own risk.

Needed to compil®erl/Tk for XFree86—0S/2 out-of-the-box.

Calls to external programs

Due to a popular demand the perl external program calling has been changed wrt Andreas Kaiséfr's port.
perl needs to call an external prograia shel| thef:/bin/sh.exewill be called, or whatever is the override,
see"PERL_SH_DIR!

Thus means that you need to get some copysbfexeas well (I use one from pdksh). The drive F: above is
set up automatically during the build to a correct value on the builder machine, but is overridable at runtime,

Reasons:a consensus operl5-porters was that perl should use one non-overridable shell per
platform. The obvious choices for OS/2 amd.exe and sh.exe Having perl build itself would be
impossible withcmd.exeas a shell, thus | picked gp.exe . Thus assures almost 100% compatibility with

the scripts coming from *nix. As an added benefit this works as well under DOS if you use DOS-enabled
port of pdksh (se#rerequisites).

Disadvantages:currently sh.exeof pdksh calls external programs vak()/exec() , and there is0
functioningexec() on OS/2exec() is emulated by EMX by asyncroneous call while the caller waits for
child completion (to pretend that tipgd did not change). This means thagxtra copy ofsh.exeis made
active viafork()/exec() , which may lead to some resources taken from the system (even if we do not
count extra work needed ftork() ing).

Note that this a lesser issue now when we do not sphwereunless needed (metachars found).

One can always stactnd.exeexplicitly via

124 Perl Version 5.004 21-Jun-1997

0s2

Perl Programmers Reference Guide 0s2

system 'cmd’, '/c’, 'mycmd’, 'argl’, 'arg?’, ...

If you need to usemd.exe and do not want to hand-edit thousands of your scripts, the long—term solution
proposed on p5-p is to have a directive

use 0S2::Cmd,;
which will overridesystem() , exec() ," , andopen(,’...]") . With current perl you may override
only system() ,readpipe() - the explicit version of , and maybexec() . The code will substitute

the one—argument call Bystem() by CORE::system(‘cmd.exe’, ‘/c', shift)

If you have some working code f@S2::Cmd, please send it to me, | will include it into distribution. | have
no need for such a module, so cannot test it.

Memory allocation

Perl uses its owmalloc() under OS/2 - interpreters are usually malloc-bound for speed, but perl is not,
since its malloc is lightning—fast. Unfortunately, it is also quite frivolous with memory usage as well.

Since kitchen—-top machines are usually low on memory, perl is compiled with all the possible
memory-saving options. This probably makes pertialloc() as greedy with memory as the neighbor's
malloc() , but still much quickier. Note that this is true only for a "typical" usage, it is possible that the
perl malloc will be worse for some very special usage.

Combination of perl'smalloc() and rigid DLL name resolution creates a special problem with library
functions which expect their return value tofoee() d by system'dree() . To facilitate extensions
which need to call such functions, system memory-allocation functions are still available with the prefix
emx_ added. (Currently only DLL perl has this, it should propagapetb .exeshortly.)

AUTHOR

llya Zakharevich, ilya@math.ohio—state.edu

SEE ALSO

perl(1).

21-Jun—-1997 Perl Version 5.004 125

plan9 Perl Programmers Reference Guide plan9

NAME
perl — Plan 9 Perl

Copyright 1989-1997, Larry Wall
WELCOME to Plan 9 Perl, brave soul!
This is a preliminary alpha version of Plan 9 Perl. Still to be implemented are MakeMaker and Dynal.oader. Manyr

1. Create the source directories and libraries for perl by running the plan9/setup
After
2. Making sure that you have adequate privileges to build system software, from /sys/src/cmd/perl/5.00301 run:
mk install
If you wish to install perl versions for all architectures (68020, mips, sparc and 386) run:
mk installall

3. Wait. The build process will take a *long* time because perl bootstraps itself.

INSTALLING DOCUMENTATION This perl distribution comes with a tremendous amount of

documentation. To add these to the built-in manuals that come with Plan 9, from /sys/src/cmd/perl/5.00301
run: mk man To begin your reading, start with: man perl This is a good introduction and will direct you
towards other man pages that may interest you. For information specific to Plan 9 Perl, try: man perlplan9

(Note: "mk man" may produce some extraneous noise. Fear not.)

Direct questions, comments, and the unlikely bug report (ahem) direct comments toward:
lutherh@stratcom.com

Luther Huffman Strategic Computer Solutions, Inc.

126 Perl Version 5.004 21-Jun-1997

vms Perl Programmers Reference Guide vms

NAME
VMS perl

Copyright 1989-1997, Larry Wall
Last revised: 19-Jan-1996 by Charles Bailey bailey@genetics.upenn.edu

The VMS port of Perl is still under development. At this time, the Perl binaries built under VMS handle
internal operations properly, for the most part, as well as most of the system calls which have close
equivalents under VMS. There are still some incompatibilities in process handling (e.g the fork/exec model
for creating subprocesses doesn‘t do what you might expect under Unix), and there remain some file
handling differences from Unix. Over the longer term, we'll try to get many of the useful VMS system
services integrated as well, depending on time and people available. Of course, if you'd like to add
something yourself, or join the porting team, we'‘d love to have you!

The current sources and build procedures have been tested on a VAX using VAXC and DECC, and on an
AXP using DECC. If you run into problems with other compilers, please let us know.

Note to DECC users: Some early versions of the DECCRTL contained a few bugs which affect Perl
performance:

— Newlines are lost on 1/O through pipes, causing lines to run together.
This shows up as RMS RTB errors when reading from a pipe. You can
work around this by having one process write data to a file, and
then having the other read the file, instead of the pipe. This is
fixed in version 4 of DECC.

— Themodf() routine returns a non-integral value for some values above
INT_MAX; the Perl "int" operator will return a non—integral value in
these cases. This is fixed in version 4 of DECC.

— On the AXP, if SYSNAM privilege is enabled, the CRAfdir() routine
changes the process default device and directory permanently, even
though the call specified that the change should not persist after
Perl exited. This is fixed by DEC CSC patch AXPACRT04_061.

* Other software required

At the moment, in addition to basic VMS, you'll need two things:
— a C compiler: VAXC, DECC, or gcc for the VAX; DECC for the AXP
— a make tool: DEC's MMS (version 2.6 or later) or the free analog MMK
(available from ftp.spc.edu), or a standard make utility (e.g. GNU make,
also available from ftp.spc.edu).
In addition, you may include socket support if you have an IP stack running on your system. See the topic
"Socket support" for more information.

* Socket support

Perl includes a number of IP socket routines among its builtin functions, which are available if you choose to
compile Perl with socket support. Since IP networking is an optional addition to VMS, there are several
different IP stacks available, so it's difficult to automate the process of building Perl with socket support in a
way which will work on all systems.

By default, Perl is built without IP socket support. If you define the macro SOCKET when invoking MMK,
however, socket support will be included. As distributed, Perl for VMS includes support for the
SOCKETSHR socket library, which is layered on MadGoat software's vendor-independent NETLIB
interface. This provides support for all socket calls used by Perl excejg|dhetnet*() routines,

which are replaced for the moment by stubs which generate a fatal error if a Perl script attempts to call one of
these routines. Both SOCKETSHR and NETLIB are available from MadGoat ftp sites, such as ftp.spc.edu
or ftp.wku.edu.

You can link Perl directly to your TCP/IP stack's library, *as long as* it supplies shims for stdio routines
which will properly handle both sockets and normal file descriptors. This is necessary because Perl does not

21-Jun—-1997 Perl Version 5.004 127

vms Perl Programmers Reference Guide vms

distinguish between the two, and will try to make normal stdio calls suglad§ andgetc() on socket
file descriptors. If you'd like to link Perl directly to your IP stack, then make the following changes:
- In Descrip.MMS, locate the section beginning with .ifdef SOCKET, and
change the SOCKLIB macro so that it translates to the filespec of your
IP stack's socket library. This will be added to the RTL options file.
— Edit the file SockAdapt.H in the [.VMS] subdirectory so that it
includes the Socket.H, In.H, Inet.H, NetDb.H, and, if necessary,
Errno.H header files for your IP stack, or so that it declares the
standard TCP/IP constants and data structures appropriately. (See
the distributed copy of SockAdapt.H for a collection of the structures
needed by Perl itself, and [.ext.Socket]Socket.xs for a list of the
constants used by the Socket extension, if you elect to built it.)
You should also define any logical names necessary for your C compiler
to find these files before invoking MM[KS] to build Perl.
— Edit the file SockAdapt.C in the [.VMS] subdirectory so that it
contains routines which substitute for any IP library routines
required by Perl which your IP stack does not provide. This may
require a little trial and error; we'll try to compile a complete
list soon of socket routines required by Perl.

* Building Perl under VMS

Since you're reading this, presumably you‘ve unpacked the Perl distribution into its directory tree, in which
you will find a [.vms] subdirectory below the directory in which this file is found. If this isn‘'t the case, then
you'll need to unpack the distribution properly, or manually edit Descrip.MMS or the VMS Makefile to alter
directory paths as necessary. (I‘'d advise using the ‘normal’ directory tree, at least for the first time through.)
This subdirectory contains several files, among which are the following:
Config.VMS - A template Config.H set up for VMS.
Descrip.MMS - The MMS/MMK dependency file for building Perl
GenConfig.Pl - A Perl script to generate Config.SH retrospectively
from Config.VMS, since the Configure shell script which
normally generates Config.SH doesn‘t run under VMS.
GenOpt.Com - A little DCL procedure used to write some linker options
files, since not all make utilities can do this easily.
Gen_ShrFIs.Pl — A Perl script which generates linker options files and
MACRO declarations for PerlShr.Exe.
Makefile — The make dependency file for building Perl
MMS2Make.Pl — A Perl script used to generate Makefile from Descrip.MMS
PerlVMS.pod - Documentation for VMS—-specific behavior of Perl
Perly [CH].VMS - Versions of the byacc output from Perl‘'s grammar,
modified to include VMS-specific C compiler options
SockAdapt.[CH] — C source code used to integrate VMS TCP/IP support

Test.Com — DCL driver for Perl regression tests
VMSish.H — C header file containing VMS-specific definitions
VMS.C — C source code for VMS-specific routines

VMS_Yfix.Pl - Perl script to convert Perly.[CH] to Perly [CH].VMS

WriteMain.Pl - Perl script to generate Perlmain.C
The [.Ext...] directories contain VMS-specific extensions distributed with Perl. There may also be other
files in [.VMS...] pertaining to features under development; for the most part, you can ignore them. Note
that packages in [.ext.*] are not built with Perl by default; you build the ones you want once the basic Perl
build is complete (see the perlvms docs for instructions on building extensions.)

Config.VMS and Decrip.MMS/Makefile are set up to build a version of Perl which includes all features
known to work when this release was assembled. If you have code at your site which would support
additional features (e.g. emulation of Unix system calls), feel free to make the appropriate changes to these
files. (Note: Do not use or edit config.h in the main Perl source directory; it is superseded by the current

128 Perl Version 5.004 21-Jun-1997

vms

Perl Programmers Reference Guide vms

Config.VMS during the build.) You may also wish to make site—specific changes to Descrip.MMS or
Makefile to reflect local conventions for naming of files, etc.

There are several pieces of system—specific information which become part of the Perl Config extension.
Under VMS, the data for Config are generated by the script GenConfig.PI in the [.VMS] subdirectory. It
tries to ascertain the necessary information from various files, or from the system itself, and generally does
the right thing. There is a list of hard—coded values at the end of this script which specifies items that are
correct for most VMS systems, but may be incorrect for you, if your site is set up in an unusual fashion. If
you'‘re familiar with Perl's Config extension, feel free to edit these values as necessary. If this doesn‘t mean
much to you, don‘t worry — the information is probably correct, and even if it's not, none of these
parameters affect your ability to build or run Perl. You'll only get the wrong answer if you ask for it
specifically from Config.

Examine the information at the beginning of Descrip.MMS for information about specifying alternate C
compilers or building a version of Perl with debugging support. For instance, if you want to use DECC,
you'll need to include the /macro="decc=1" qualifier to MMK (If you're using make, these options are not
supported.) If you're on an AXP system, define the macro __ AXP__ (MMK does this for you), and DECC
will automatically be selected.

To start the build, set default to the main source directory. Since Descrip.MMS assumes that VMS
commands have their usual meaning, and makes use of command-line macros, you may want to be certain
that you haven't defined DCL symbols which would interfere with the build. Then, if you are using MMS or
MMK, say $ MMS/Descrip=[.VMS] ! or MMK (N.B. If you are using MMS, you must use version 2.6 or

later; a bug in earlier versions produces malformed cc command lines.) If you are using a version of make,
say$ Make —f [.VMS]Makefile Note that the Makefile doesn't support conditional compilation, is set up to

use VAXC on a VAX, and does not include socket support. You can either edit the Makefile by hand, using
Descrip.MMS as a guide, or use the Makefile to build Miniperl.Exe, and then run the Perl script
MMS2Make.pl, found in the [.VMS] subdirectory, to generate a new Makefile with the options appropriate

to your site.

If you are using MM[SK], and you decide to rebuild Perl with a different set of parameters (e.g. changing the
C compiler, or adding socket support), be sure to$sd§MK/Descrip=[.VMS] realclean first, in order to
remove files generated during the previous build. If you omit this step, you risk ending up with a copy of
Perl which composed partially of old files and partially of new ones, which may lead to strange effects when
you try to run Perl.

A bug in some early versions of the DECC RTL on the AXP causes newlines to be lost when writing to a
pipe. A different bug in some patched versions of DECC 4.0 for VAX can also scramble preprocessor
output. Finally, gcc 2.7.2 has yet another preprocessor bug, which causes line breaks to be inserted into the
output at inopportune times. Each of these bugs causes Gen_ShrFls.pl to fail, since it can't parse the
preprocessor output to identify global variables and routines. This problem is generally manifested as
missing global symbols when linking PerlShr.Exe or Perl.Exe. You can work around it by defining the
macro PIPES_BROKEN when you invoke MMS or MMK.

This will build the following files:

Miniperl.Exe — a stand-alone version of without any extensions.
Miniperl has all the intrinsic capabilities of Perl,
but cannot make use of the DynalLoader or any
extensions which use XS code.

PerlShr.Exe — a shareable image containing most of Perl‘s internal
routines and global variables. Perl.Exe is linked to
this image, as are all dynamic extensions, so everyone's
using the same set of global variables and routines.

Perl.Exe - the main Perl executable image. It's contains the
main() routine, plus code for any statically linked
extensions.

PerIShr_Attr.Opt - A linker options file which specifies psect attributes

21-Jun—-1997 Perl Version 5.004 129

vms Perl Programmers Reference Guide vms

matching those in PerlShr.Exe. It should be used when
linking images against PerIShr.Exe

PerlShr_BId.Opt - A linker options file which specifies various things
used to build PerlShr.Exe. It should be used when
rebuilding PerlShr.Exe via MakeMaker—produced
Descrip.MMS files for static extensions.

c2ph - Perl program which generates template code to access
C struct members from Perl.
h2ph — Perl program which generates template code to access

#defined constants in a C header file from Perl,
using the "old-style" interface. (Largely supplanted
by h2xs.)
h2xs — Perl program which generates template files for creating
XSUB extensions, optionally beginning with the #defined
constants in a C header file.
[.lib.pod]perldoc - A Perl program which locates and displays documentation
for Perl and its extensions.
[.Lib]Config.pm - the Perl extension which saves configuration information
about Perl and your system.
[.Lib]DynalLoader.pm — The Perl extension which performs dynamic linking of
shareable images for extensions.
Several subdirectories under [.Lib] containing preprocessed files or
site—specific files.
There are, of course, a number of other files created for use during the build. Once you‘ve got the binaries
built, you may wish to ‘build’ the ‘tidy’ or ‘clean’ targets to remove extra files.

If you run into problems during the build, you can get help from the VMSPerl or perl5—porters mailing lists
(see below). When you report the problem, please include the following information:
— The version of Perl you're trying to build. Please include any
"letter" patchlevel, in addition to the version number. If the
build successfully created Miniperl.Exe, you can check this by
saying $ MCR Sys$Disk:[[Miniperl -Vv'. Also, please mention
where you obtained the distribution kit; in particular, note
whether you were using a basic Perl kit or the VMS test kit
(see below).
The exact command you issued to build Perl.
A copy of all error messages which were generated during the build.
Please include enough of the build log to establish the context of
the error messages.
A summary of your configuration. If the build progressed far enough
to generate Miniperl.Exe and [.Lib]Config.pm, you can obtain this
by saying$ MCR Sy$Disk:[[Miniperl "—=V" (note the " around -V).
If not, then you can sa$ MMK/Descrip=[.VMS] printconfig’ to
produce the summary.
This may sound like a lot of information to send, but it'll often make it easier for someone to spot the
problem, instead of having to give a spectrum of possibilities.

* Installing Perl once it's built

Once the build is complete, you'll need to do the following:
— Put PerIShr.Exe in a common directory, and make it world-readable.
If you place it in a location other than $$hare, you'll need to
define the logical name PerlShr to point to the image. (If you‘re
installing on a VMScluster, be sure that each node is using the
copy of PerlShr you expect [e.qg. if you put PerIShr.Exe i8Syare,
do they all share S$Share?]).

130 Perl Version 5.004 21-Jun-1997

vms Perl Programmers Reference Guide vms

— Put Perl.Exe in a common directory, and make it world—executable.

— Define a foreign command to invoke Perl, using a statement like
$ Perl == " $dev:[dir]Perl.Exe"

— Create a world-readable directory tree for Perl library modules,
scripts, and what-have-you, and define PERL_ROOT as a rooted logical
name pointing to the top of this tree (i.e. if your Perl files were
going to live in DKAZL:[Util.Perl5...], then you should

$ Define/Translation=Concealed Perl_Root DKAL:[Util.Perl5.]

(Be careful to follow the rules for rooted logical names; in particular,
remember that a rooted logical name cannot have as its device portion
another rooted logical name - you‘ve got to supply the actual device name
and directory path to the root directory.)

- Place the files from the [.lib...] directory tree in the distribution
package into a [.lib...] directory tree off the root directory described
above.

— Most of the Perl documentation lives in the [.pod] subdirectory, and
is written in a simple markup format which can be easily read. In this
directory as well are pod2man and pod2html translators to reformat the
docs for common display engines; a pod2hlp translator is under development.
These files are copied to [.lib.pod] during the installation.

- Define a foreign command to execute perldoc, such as
$ Perldoc == ""Perl’ Perl_Root:[lib.pod]Perldoc -t"
This will allow users to retrieve documentation using Perldoc. For
more details, say "perldoc perldoc".

That's it.

If you run into a bug in Perl, please submit a bug report. The PerlBug program, found in the [.lib] directory,
will walk you through the process of assembling the necessary information into a bug report, and sending of
to the Perl bug reporting address, perlbug@perl.com.

* For more information

If you're interested in more information on Perl in general, you may wish to consult the Usenet newsgroups
comp.lang.perl.announce and comp.lang.perl.misc. The FAQ for these groups provides pointers to other
online sources of information, as well as books describing Perl in depth.

If you're interested in up—-to—date information on Perl development and internals, you might want to
subscribe to the perl5—porters mailing list. You can do this by sending a message to
perl5—porters—-request@nicoh.com, containing the single line subscribe perl5—porters This is a high-volume
list at the moment (50 messages/day).

If you're interested in ongoing information about the VMS port, you can subscribe to the VMSPerl mailing
list by sending a request to vmsperl-request@genetics.upenn.edu, containing the single line subscribe
VMSPerl as the body of the message. And, as always, we welcome any help or code you'‘d like to offer —
you can send mail to bailey@genetics.upenn.edu or directly to the VMSPerl list at
vmsperl@genetics.upenn.edu.

Finally, if you'd like to try out the latest changes to VMS Perl, you can retrieve a test distribution kit by
anonymous ftp from genetics.upenn.edu, in the file [.perl5]perl5_ppp_yymmddx.zip, where "ppp" is the
current Perl patchlevel, and "yymmddx" is a sequence number indicating the date that particular kit was
assembled. In order to make retrieval convenient, this kit is also available by the name Perl5_VMSTest.Zip.
These test kits contain "unofficial* patches from the perl5—porters group, test patches for important bugs, and
VMS-specific fixes and improvements which have occurred since the last Perl release. Most of these
changes will be incorporated in the next release of Perl, but until Larry Wall's looked at them and said
they‘re OK, none of them should be considered official.

Good luck using Perl. Please let us know how it works for you — we can't guarantee that we'll be able to fix
bugs quickly, but we'll try, and we'd certainly like to know they‘re out there.

21-Jun—-1997 Perl Version 5.004 131

vms

Perl Programmers Reference Guide vms

* Acknowledgements

There are, of course, far too many people involved in the porting and testing of Perl to mention everyone
who deserves it, so please forgive us if we've missed someone. That said, special thanks are due to the
following:
Tim Adye <T.J.Adye@rl.ac.uk
for the VMS emulations afetpw*()
David Denholm <denholm@conmat.phys.soton.ac.uk
for extensive testing and provision of pipe and SocketShr code,
Mark Pizzolato <mark@infocomm.com
for thegetredirection() code
Rich Salz <rsalz@bbn.com
forreaddir() and related routines
Peter Prymmer <pvhp@Ins62.Ins.cornell.edu)
for extensive testing, as well as development work on
configuration and documentation for VMS Perl,
the Stanford Synchrotron Radiation Laboratory and the
Laboratory of Nuclear Studies at Cornell University for
the the opportunity to test and develop for the AXP,
and to the entire VMSperl group for useful advice and suggestions. In addition the perl5—porters, especially
Andy Dougherty <doughera@lafcol.lafayette.edu and Tim Bunce <Tim.Bunce@ig.co.uk, deserve credit for
their creativity and willingness to work with the VMS newcomers. Finally, the greatest debt of gratitude is
due to Larry Wall <larry@wall.org, for having the ideas which have made our sleepless nights possible.

Thanks, The VMSperl group

132

Perl Version 5.004 21-Jun-1997

win32 Perl Programmers Reference Guide win32

NAME
perlwin32 — Perl under Win32

SYNOPSIS
These are instructions for building Perl under Windows NT (versions 3.51 or 4.0), using Visual C++
(versions 2.0 through 5.0) or Borland C++ (version 5.x). Currently, this port may also build under
Windows95, but you can expect problems stemming from the unmentionable command shell that infests that
platform. Note this caveat is only abduiilding perl. Once built, you should be ableuseit on either
Win32 platform (modulo the problems arising from the inferior command shell).

DESCRIPTION
Before you start, you should glance through the README file found in the top—level directory where the
Perl distribution was extracted. Make sure you read and understand the terms under which this software is
being distributed.

Also make sure you read tB&JGS AND CAVEATSection below for the known limitations of this port.

The INSTALL file in the perl top-level has much information that is only relevant to people building Perl on
Unix-like systems. In particular, you can safely ignore any information that talks about "Configure".

You may also want to look at two other options for building a perl that will work on Windows NT: the
README.cygwin32 and README.os? files, which each give a different set of rules to build a Perl that will
work on Win32 platforms. Those two methods will probably enable you to build a more Unix—compatible
perl, but you will also need to download and use various other build-time and run-time support software
described in those files.

This set of instructions is meant to describe a so—called "native" port of Perl to Win32 platforms. The
resulting Perl requires no additional software to run (other than what came with your operating system).
Currently, this port is capable of using either the Microsoft Visual C++ compiler, or the Borland C++
compiler. The ultimate goal is to support the other major compilers that can generally be used to build
Win32 applications.

This port currently supports MakeMaker (the set of modules that is used to build extensions to perl).
Therefore, you should be able to build and install most extensions found in the CPAN sité¢sa@eklints
below for general hints about this.

Setting Up

Command Shell
Use the default "cmd" shell that comes with NT. In particular, do *not* use the 4DOS/NT shell. The
Makefile has commands that are not compatible with that shell. The Makefile also has known
incompatibilites with the default shell that comes with Windows95, so building under Windows95
should be considered "unsupported".

Borland C++
If you are using the Borland compiler, you will need dmake, a freely available make that has very nice
macro features and parallelability. (The make that Borland supplies is seriously crippled, and will not
work for MakeMaker builds—if you *have* to bug someone about this, | suggest you bug Borland to
fix their make :)

A port of dmake for win32 platforms is available from
"http://www-personal.umich.edu/~gsar/dmake-4.0-win32.tar.gz". Fetch and install dmake

somewhere on your path. Also make sure you copy the Borland dmake.ini file to some location where
you keep *.ini files. If you use the binary that comes with the above port, you will need to set INIT in
your environment to the directory where you put the dmake.ini file.

Microsoft Visual C++

The NMAKE that comes with Visual C++ will suffice for building. If you did not choose to always
initialize the Visual C++ compilation environment variables when you installed Visual C++ on your

21-Jun—-1997 Perl Version 5.004 133

win32

Perl Programmers Reference Guide win32

system, you will need to run the VCVARS32.BAT file usually found somewhere like
C:\MSDEV4.2\BIN. This will set your build environment.

You can also use dmake to build using Visual C++, provided: you copied the dmake.ini for Visual
C++; set INIT to point to the directory where you put it, as above; and edit win32/config.vc and change
"make=nmake" to "make=dmake". The last step is only essential if you want to use dmake to be your
default make for building extensions using MakeMaker.

Permissions

Building

Testing

Depending on how you extracted the distribution, you have to make sure some of the files are writable
by you. The easiest way to make sure of this is to execute:

attrib -R *.* /S

from the perl toplevel directory. You dortiaveto do this if you used the right tools to extract the
files in the standard distribution, but it doesn‘t hurt to do so.

Make sure you are in the "win32" subdirectory under the perl toplevel. This directory contains a
"Makefile" that will work with versions of NMAKE that come with Visual C++ ver. 2.0 and above,
and a dmake "makefile.mk" that will work for both Borland and Visual C++ builds. The defaults in
the dmake makefile are setup to build using the Borland compiler.

Edit the Makefile (or makefile.mk, if using dmake) and change the values of INST_DRV and
INST_TOP if you want perl to be installed in a location other than "C:\PERL". If you are using Visual
C++ ver. 2.0, uncomment the line that sets "CCTYPE=MSVC20".

You will also have to make sure CCHOME points to wherever you installed your compiler.
Type "nmake" (or "dmake" if you are using that make).

This should build everything. Specifically, it will create perl.exe, perl.dll, and perlglob.exe at the perl
toplevel, and various other extension dllI's under the lib\auto directory. If the build fails for any reason,
make sure you have done the previous steps correctly.

When building using Visual C++, a perl95.exe will also get built. This executable is only needed on
Windows95, and should be used instead of perl.exe, and then only if you want sockets to work
properly on Windows95. This is necessitated by a bug in the Microsoft C Runtime that cannot be
worked around in the "normal” perl.exe. Again, if this bugs you, please bug Microsoft :). perl95.exe
gets built with its own private copy of the C Runtime that is not accessible to extensions (which see the
DLL version of the CRT). Be aware, therefore, that this perl95.exe will have esoteric problems with
extensions like perl/Tk that themselves use the C Runtime heavily, or wémge{p pointers
malloc() -—ed by perl.

You can avoid the perl95.exe problems completely if you use Borland C++ for building perl
(perl95.exe is not needed and will not be built in that case).

Type "nmake test" (or "dmake test"). This will run most of the tests from the testsuite (many tests will be
skipped, and but no test should fail).

If some tests do fail, it may be because you are using a different command shell than the native "cmd.exe".

If you used the Borland compiler, you may see a failure in op/taint.t arising from the inability to find the
Borland Runtime DLLs on the system default path. You will need to copy the DLLs reported by the
messages from where Borland chose to install it, into the Windows system directory (usually somewhere like
C:\WINNT\SYSTEM32), and rerun the test.

Please report any other failures as described BIA&S AND CAVEATS

134

Perl Version 5.004 21-Jun-1997

win32 Perl Programmers Reference Guide win32

Installation

Type "nmake install" (or "dmake install*). This will put the newly built perl and the libraries under "C:\perl"
(actually whatever you sé&iiST_TOP to in the Makefile). It will also install the pod documentation under
$INST_TOP\lib\pod and HTML versions of the same un@NST_TOP\lib\pod\html. To use

the Perl you just installed, set your PATH environment variable to "C:\per\bir$INtBT_TOP\bin, if

you changed the default as above).

Usage Hints

Environment Variables

The installation paths that you set during the build get compiled into perl, so you don't have to do
anything additional to start using that perl (except add its location to your PATH variable).

If you put extensions in unusual places, you can set PERL5LIB to a list of paths separated by
semicolons where you want perl to look for libraries. Look for descriptions of other environment
variables you can set in the perlrun podpage.

Sometime in the future, some of the configuration information for perl will be moved into the
Windows registry.

File Globbing

By default, perl spawns an external program to do file globbing. The install process installs both a
periglob.exe and a perlglob.bat that perl can use for this purpose. Note that with the default
installation, perlglob.exe will be found by the system before perlglob.bat.

perlglob.exe relies on the argv expansion done by the C Runtime of the particular compiler you used,
and therefore behaves very differently depending on the Runtime used to build it. To preserve
compatiblity, perlglob.bat (a perl script/module that can be used portably) is installed. Besides being
portable, perlglob.bat also offers enhanced globbing functionality.

If you want perl to use perlglob.bat instead of perlglob.exe, just delete perlglob.exe from the install
location (or move it somewhere perl cannot find). Using File::DosGlob.pm (which is the same as
periglob.bat) to override the intern@BIORE::glob() works about 10 times faster than spawing
perlglob.exe, and you should take this approach when writing new modules. See File::DosGlob for
details.

Using perl from the command line

If you are accustomed to using perl from various command-line shells found in UNIX environments,
you will be less than pleased with what Windows NT offers by way of a command shell.

The crucial thing to understand about the "cmd" shell (which is the default on Windows NT) is that it
does not do any wildcard expansions of command-line arguments (so wildcards need not be quoted).

It also provides only rudimentary quoting. The only (useful) quote character is the double quote (). It

can be used to protect spaces in arguments and other special characters. The Windows NT
documentation has almost no description of how the quoting rules are implemented, but here are some
general observations based on experiments: The shell breaks arguments at spaces and passes them to
programs in argc/argv. Doublequotes can be used to prevent arguments with spaces in them from
being split up. You can put a double quote in an argument by escaping it with a backslash and
enclosing the whole argument within double quotes. The backslash and the pair of double quotes
surrounding the argument will be stripped by the shell.

The file redirection characters "<", "™, and "[" cannot be quoted by double quotes (there are probably
more such). Single quotes will protect those three file redirection characters, but the single quotes
don't get stripped by the shell (just to make this type of quoting completely useless). The caret "" has
also been observed to behave as a quoting character (and doesn'‘t get stripped by the shell also).

Here are some examples of usage of the "cmd" shell:

This prints two doublequotes:

21-Jun—-1997 Perl Version 5.004 135

win32 Perl Programmers Reference Guide win32

perl —e "print '\"\
This does the same:
perl —e "print \"\\W"\"\" "
This prints "bar" and writes "foo" to the file "blurch™:
perl —e "print 'foo’; print STDERR ’bar™ > blurch
This prints "foo" ("bar" disappears into nowhereland):
perl —e "print 'foo’; print STDERR 'bar™ 2> nul
This prints "bar" and writes "foo" into the file "blurch™:
perl —e "print 'foo’; print STDERR ’bar™ 1> blurch
This pipes "foo" to the "less" pager and prints "bar" on the console:
perl —e "print 'foo’; print STDERR 'bar™ | less
This pipes "foo\nbar\n" to the less pager:
perl —le "print 'foo’; print STDERR ’bar™ 2>&1 | less
This pipes "foo" to the pager and writes "bar" in the file "blurch":
perl —e "print 'foo’; print STDERR ’bar™ 2> blurch | less

Discovering the usage of the "command.com" shell on Windows95 is left as an exercise to the reader :)

Building Extensions

The Comprehensive Perl Archive Network (CPAN) offers a wealth of extensions, some of which
require a C compiler to build. Look in http://www.perl.com/ for more information on CPAN.

Most extensions (whether they require a C compiler or not) can be built, tested and installed with the
standard mantra:

perl Makefile.PL
$MAKE

SMAKE test
SMAKE install

where $MAKEstands for NMAKE or DMAKE. Some extensions may not provide a testsuite (so
"$MAKEtest" may not do anything, or fail), but most serious ones do.

If a module implements XSUBSs, you will need one of the supported C compilers. You must make sure
you have set up the environment for the compiler for command-line compilation.

If a module does not build for some reason, look carefully for why it failed, and report problems to the
module author. If it looks like the extension building support is at fault, report that with full details of
how the build failed using the perlbug utility.

Win32 Specific Extensions

A number of extensions specific to the Win32 platform are available from CPAN. You may find that
many of these extensions are meant to be used under the Activeware port of Perl, which used to be the
only native port for the Win32 platform. Since the Activeware port does not have adequate support for
Perl's extension building tools, these extensions typically do not support those tools either, and
therefore cannot be built using the generic steps shown in the previous section.

To ensure smooth transitioning of existing code that uses the Activeware port, there is a bundle of
Win32 extensions that contains all of the Activeware extensions and most other Win32 extensions
from CPAN in source form, along with many added bugfixes, and with MakeMaker support. This
bundle is available at:

136 Perl Version 5.004 21-Jun-1997

win32

Perl Programmers Reference Guide win32

http://www.perl.com/CPAN/authors/id/GSAR/libwin32-0.06.tar.gz

See the README in that distribution for building and installation instructions. Look for later versions
that may be available at the same location.

It is expected that authors of Win32 specific extensions will begin distributing their work in
MakeMaker compatible form subsequent to the 5.004 release of perl, at which point the need for a
dedicated bundle such as the above should diminish.

Miscellaneous Things

A full set of HTML documentation is installed, so you should be able to use it if you have a web
browser installed on your system.

perldoc s also a useful tool for browsing information contained in the documentation, especially in
conjunction with a pager likeess (recent versions of which have Win32 support). You may have to
set the PAGER environment variable to use a specific pager. "perldoc —f foo" will print information
about the perl operator "foo".

If you find bugs in perl, you can ruperlbug to create a bug report (you may have to send it
manually ifperlbug cannot find a mailer on your system).

BUGS AND CAVEATS

This port should be considered beta quality software at the present time because some details are still in flux
and there may be changes in any of these areas: build process, installation structure, supported
utilities/modules, and supported perl functionality. In particular, functionality specific to the Win32
environment may ultimately be supported as either core modules or extensions. This means that you should
be prepared to recompile extensions when binary incompatibilites arise due to changes in the internal
structure of the code.

The DLLs produced by the two supported compilers are incompatible with each other due to the conventions
they use to export symbols, and due to differences in the Runtime libraries that they provide. This means that
extension binaries built under either compiler will only work with the perl binaries built under the same
compiler. If you know of a robust, freely available C Runtime that can be used under win32, let us know.

If you have had prior exposure to Perl on Unix platforms, you will notice this port exhibits behavior different
from what is documented. Most of the differences fall under one of these categories. We do not consider
any of them to be serious limitations (especially when compared to the limited nature of some of the Win32
OSes themselves :)

° stat() andlstat() functions may not behave as documented. They may return values that
bear no resemblance to those reported on Unix platforms, and some fields (like the the one for
inode) may be completely bogus.

° The following functions are currently unavailabferk() , exec() , dump() , chown() ,
link() ,symlink() ,chroot() ,setpgrp() ,getpgrp() ,setpriority() ,
getpriority() , syscall() ,fentl) . This list is possibly very incomplete.
° Varioussocket() related calls are supported, but they may not behave as on Unix platforms.
° The four—-argumergelect() call is only supported on sockets.
° $? ends up with the exitstatus of the subprocess (this is different from Unix, where the exitstatus

is actually given by$? 8"). Failure tospawn() the subprocess is indicated by settftgto
"255<<8". This is subject to change.

° Building modules available on CPAN is mostly supported, but this hasn‘t been tested much yet.
Expect strange problems, and be prepared to deal with the consequences.

° utime() , times() and process-related functions may not behave as described in the
documentation, and some of the returned values or effects may be bogus.

21-Jun—-1997 Perl Version 5.004 137

win32 Perl Programmers Reference Guide win32

° Signal handling may not behave as on Unix platforms (where it doesn't exactly "behave", either
).
° File globbing may not behave as on Unix platforms. In particular, if you don‘t use periglob.bat

for globbing, it will understand wildcards only in the filename component (and not in the
pathname). In other words, something like "print <*/*.pl" will not print all the perl scripts in all
the subdirectories one level under the current one (like it does on UNIX platforms). perlglob.exe
is also dependent on the particular implementation of wildcard expansion in the vendor libraries
used to build it (which varies wildly at the present time). Using perlglob.bat (or File::DosGlob)
avoids these limitations, but still only provides DOS semantics (read "warts") for globbing.

Please send detailed descriptions of any problems and solutions that you may fiedidog@perl.com
along with the output produced pgrl -V

AUTHORS
Gary Ng <71564.1743@CompuServe.COM>

Gurusamy Sarathy <gsar@umich.edu>
Nick Ing—Simmons <nick@ni-s.u—-net.com>

SEE ALSO
perl

HISTORY

This port was originally contributed by Gary Ng around 5.003 24, and borrowed from the Hip
Communications port that was available at the time.

Nick Ing—Simmons and Gurusamy Sarathy have made numerous and sundry hacks since then.
Borland support was added in 5.004_01 (Gurusamy Sarathy).
Last updated: 11 June 1997

138 Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

NAME
Install — Build and Installation guide for perl5.

SYNOPSIS
The basic steps to build and install perl5 on a Unix system are:

rm —f config.sh
sh Configure
make

make test
make install

You may also wish to add these:

(cd /usr/include && h2ph *.h sys/*.h)

(installhtml ——help)

(cd pod && make tex && <process the latex files>)

Each of these is explained in further detail below.
For information on non—Unix systems, see the sectiotPorting information"below.

For information on what's new in this release, see the pod/perldelta.pod file. For more detailed information
about specific changes, see the Changes file.
DESCRIPTION

This document is written in pod format as an easy way to indicate its structure. The pod format is described
in pod/perlpod.pod, but you can read it as is with any pager or editor. Headings and items are marked by
lines beginning with ‘=". The other mark—up used is

B<text> embolden text, used for switches, programs or commands
C<code> literal code
L<name> A link (cross reference) to name

You should probably at least skim through this entire document before proceeding.

If you're building Perl on a non-Unix system, you should also read the README file specific to your
operating system, since this may provide additional or different instructions for building Perl.

If there is a hint file for your system (in the hints/ directory) you should also read that hint file for specific
information for your system. (Unixware users should use the svr4.sh hint file.)

Space Requirements

The complete perl5 source tree takes up about 7 MB of disk space. The complete tree after completing make
takes roughly 15 MB, though the actual total is likely to be quite system-dependent. The installation
directories need something on the order of 7 MB, though again that value is system—-dependent.

Start with a Fresh Distribution
If you have built perl before, you should clean out the build directory with the command

make realclean

The results of a Configure run are stored in the config.sh file. If you are upgrading from a previous version
of perl, or if you change systems or compilers or make other significant changes, or if you are experiencing
difficulties building perl, you should probably not re-use your old config.sh. Simply remove it or rename it,
e.g.

mv config.sh config.sh.old

If you wish to use your old config.sh, be especially attentive to the version and architecture—specific
guestions and answers. For example, the default directory for architecture—dependent library modules
includes the version name. By default, Configure will reuse your old name (e.g.
/opt/perl/lib/i86pc—solaris/5.003) even if you‘re running Configure for a different version, e.g. 5.004. Yes,

21-Jun—-1997 Perl Version 5.004 139

INSTALL Perl Programmers Reference Guide INSTALL

Configure should probably check and correct for this, but it doesn‘t, presently. Similarly, if you used a
shared libperl.so (see below) with version numbers, you will probably want to adjust them as well.

Also, be careful to check your architecture name. Some Linux systems (such as Debian) use i386, while
others may use 486 or i586. If you pick up a precompiled binary, it might not use the same name.

In short, if you wish to use your old config.sh, | recommend running Configure interactively rather than
blindly accepting the defaults.

Run Configure

Configure will figure out various things about your system. Some things Configure will figure out for itself,
other things it will ask you about. To accept the default, just press RETURN. The default is almost always
ok. At any Configure prompt, you can ty@e-d and Configure will use the defaults from then on.

After it runs, Configure will perform variable substitution on all the *.SH files and offer to run make depend.

Configure supports a number of useful options. Ranfigure —h to get a listing. To compile with gcc, for
example, you can run

sh Configure —Dcc=gcc

This is the preferred way to specify gcc (or another alternative compiler) so that the hints files can set
appropriate defaults.

If you want to use your old config.sh but override some of the items with command line options, you need to
useConfigure —-O.

By default, for most systems, perl will be installed in /usr/local/{bin, lib, man}. You can specify a different
‘prefix’ for the default installation directory, when Configure prompts you or by using the Configure
command line option —Dprefix="/some/directory‘, e.g.

sh Configure —Dprefix=/opt/perl

If your prefix contains the string "perl”, then the directories are simplified. For example, if you use
prefix=/opt/perl, then Configure will suggest /opt/perl/lib instead of /opt/perl/lib/perl5/.

By default, Configure will compile perl to use dynamic loading if your system supports it. If you want to
force perl to be compiled statically, you can either choose this when Configure prompts you or you can use
the Configure command line option —UusedlI.

If you are willing to accept all the defaults, and you want terse output, you can run
sh Configure —des
For my Solaris system, | usually use

sh Configure —Dprefix=/opt/perl —Doptimize="-xpentium —xO4’ —des

GNU-style configure

If you prefer the GNU-style configure command line interface, you can use the supplied configure
command, e.g.

CC=gcc ./configure

The configure script emulates a few of the more common configure options. Try
.Jconfigure ——help

for a listing.

Cross compiling is not supported.

For systems that do not distinguish the files "Configure" and "configure", Perl includes a copy of configure
named configure.gnu.

140

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

Extensions

By default, Configure will offer to build every extension which appears to be supported. For example,
Configure will offer to build GDBM_File only if it is able to find the gdbm library. (See examples below.)
Dynaloader, Fcntl, and 1O are always built by default. Configure does not contain code to test for POSIX
compliance, so POSIX is always built by default as well. If you wish to skip POSIX, you can set the
Configure variable useposix=false either in a hint file or from the Configure command line. Similarly, the
Opcode extension is always built by default, but you can skip it by setting the Configure variable
useopcode=false either in a hint file for from the command line.

You can learn more about each of these extensions by consulting the documentation in the individual .pm
modules, located under the ext/ subdirectory.

Even if you do not have dynamic loading, you must still build the DynalLoader extension; you should just
build the stub dI_none.xs version. (Configure will suggest this as the default.)

In summary, here are the Configure command-line variables you can set to turn off each extension:

DB_File i_db

Dynaloader (Must always be included as a static extension)
Fentl (Always included by default)
GDBM _File i_gdbm

10 (Always included by default)
NDBM_File i_ndbm

ODBM _File i_dbm

POSIX useposix

SDBM_File (Always included by default)
Opcode useopcode

Socket d_socket

Thus to skip the NDBM_File extension, you can use
sh Configure —Ui_ndbm
Again, this is taken care of automatically if you don‘t have the ndbm library.
Of course, you may always run Configure interactively and select only the extensions you want.

Note: The DB_File module will only work with version 1.x of Berkeley DB. Once Berkeley DB version 2
is released, DB_File will be upgraded to work with it. Configure will automatically detect this for you and
refuse to try to build DB_File with version 2.

Finally, if you have dynamic loading (most modern Unix systems do) remember that these extensions do not
increase the size of your perl executable, nor do they impact start—up time, so you probably might as well
build all the ones that will work on your system.

Including locally-installed libraries

Perl5 comes with interfaces to number of database extensions, including dom, ndbm, gdbm, and Berkeley
db. For each extension, if Configure can find the appropriate header files and libraries, it will automatically
include that extension. The gdbm and db libraries are not included with perl. See the library documentation
for how to obtain the libraries.

Note: If your database header (.h) files are not in a directory normally searched by your C compiler, then
you will need to include the appropriate —l/your/directory option when prompted by Configure. If your
database library (.a) files are not in a directory normally searched by your C compiler and linker, then you
will need to include the appropriate —L/your/directory option when prompted by Configure. See the
examples below.

Examples

21-Jun—-1997 Perl Version 5.004 141

INSTALL

Perl Programmers Reference Guide INSTALL

gdbm in /usr/local

Suppose you have gdbm and want Configure to find it and build the GDBM_File extension. This
examples assumes you have gdbm.h installed in /usr/local/include/gdbm.h and libgdbm.a installed in
/usr/local/lib/libgdbm.a. Configure should figure all the necessary steps out automatically.

Specifically, when Configure prompts you for flags for your C compiler, you should include
—l/usr/local/include.

When Configure prompts you for linker flags, you should include —L/usr/local/lib.

If you are using dynamic loading, then when Configure prompts you for linker flags for dynamic
loading, you should again include -L/ust/local/lib.

Again, this should all happen automatically. If you want to accept the defaults for all the questions and
have Configure print out only terse messages, then you can just run

sh Configure —des
and Configure should include the GDBM_File extension automatically.

This should actually work if you have gdbm installed in any of (/usr/local, /opt/local, /usr/gnu,
/opt/gnu, /usr/GNU, or /opt/GNU).

gdbm in /usr/you

Suppose you have gdbm installed in some place other than /usr/local/, but you still want Configure to
find it. To be specific, assume you have /usr/you/include/gdbm.h and /usr/you/lib/libgdbm.a. You
still have to add —Il/usr/you/include to cc flags, but you have to take an extra step to help Configure
find libgdbm.a. Specifically, when Configure prompts you for library directories, you have to add
/usrlyoullib to the list.

It is possible to specify this from the command line too (all on one line):

sh Configure —des \
—Dlocincpth="/usr/you/include” \
—Dloclibpth="/usr/you/lib"

locincpth is a space-separated list of include directories to search. Configure will automatically add
the appropriate I directives.

loclibpth is a space—separated list of library directories to search. Configure will automatically add the
appropriate —L directives. If you have some libraries under /usr/local/ and others under /usr/you, then
you have to include both, namely

sh Configure —des \
—Dlocincpth="/usr/you/include /usr/local/include" \
—Dloclibpth="/usr/you/lib /usr/local/lib"

Installation Directories

The installation directories can all be changed by answering the appropriate questions in Configure. For

convenience, all the installation questions are near the beginning of Configure.

I highly recommend running Configure interactively to be sure it puts everything where you want it. At any

point during the Configure process, you can answer a question &itth and Configure will use the
defaults from then on.

By default, Configure uses the following directories for library files (archname is a string like sun4-sunos,

determined by Configure)

/usr/local/lib/perl5/archname/5.004
/usr/local/lib/perl5/
/usr/local/lib/perl5/site_perl/archname
/usr/local/lib/perl5/site_perl

142

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

and the following directories for manual pages:

/usr/local/man/mani1
/usr/local/lib/perl5/man/man3

(Actually, Configure recognizes the SVR3-style /usr/local/man/l_man/manl directories, if present, and uses
those instead.) The module man pages are stuck in that strange spot so that they don‘t collide with other man
pages stored in /usr/local/man/man3, and so that Perl's man pages don‘t hide system man pages. On some
systemsman lesswould end up calling up Perl's less.pm module man page, rather than the less program.
(This location may change in a future release of perl.)

Note: Many users prefer to store the module man pages in /usr/local/man/man3. You can do this from the
command line with

sh Configure —Dman3dir=/ust/local/man/man3
Some users also prefer to use a .3pm suffix. You can do that with
sh Configure -Dman3ext=3pm

If you specify a prefix that contains the string "perl”, then the directory structure is simplified. For example,
if you Configure with —Dprefix=/opt/perl, then the defaults are

/opt/perl/lib/archname/5.004
/opt/perl/lib
/opt/perl/lib/site_perl/archname
lopt/perl/lib/site_perl

/opt/perl/man/manl
/opt/perl/man/man3

The perl executable will search the libraries in the order given above.

The directories site_perl and site_perl/archname are empty, but are intended to be used for installing local or
site-wide extensions. Perl will automatically look in these directories. Previously, most sites just put their
local extensions in with the standard distribution.

In order to support using things like #!/usr/local/bin/perl5.004 after a later version is released,
architecture—dependent libraries are stored in a version—specific directory, such as
/usr/local/lib/perl5/archname/5.004/. In Perl 5.000 and 5.001, these files were just stored in
lusr/local/lib/perl5/archname/. If you will not be using 5.001 binaries, you can delete the standard extensions
from the /usr/local/lib/perl5/archname/ directory. Locally—added extensions can be moved to the site_perl
and site_perl/archname directories.

Again, these are just the defaults, and can be changed as you run Configure.

Changing the installation directory

Configure distinguishes between the directory in which perl (and its associated files) should be installed and
the directory in which it will eventually reside. For most sites, these two are the same; for sites that use AFS,

this distinction is handled automatically. However, sites that use software such as depot to manage software
packages may also wish to install perl into a different directory and use that management software to move
perl to its final destination. This section describes how to do this. Someday, Configure may support an

option —Dinstallprefix=/foo to simplify this.

Suppose you want to install perl under the /tmp/perl5 directory. You can edit config.sh and change all the
install* variables to point to /tmp/perl5 instead of /usr/local/wherever. Or, you can automate this process by
placing the following lines in a file config.over before you run Configure (replace /tmp/perl5 by a directory
of your choice):

installprefix=/tmp/perl5
test —d $installprefix || mkdir $installprefix
test —d Sinstallprefix/bin || mkdir $installprefix/bin

21-Jun—-1997 Perl Version 5.004 143

INSTALL Perl Programmers Reference Guide INSTALL

installarchlib="echo S$installarchlib | sed "s!$prefix!$installprefix!"
installbin="echo S$installbin | sed "s!$prefix!$installprefix!™
installmanldir="echo $installmanldir | sed "s!$prefix!$installprefix!"
installman3dir="echo $installman3dir | sed "s!$prefix!$installprefix!"
installprivlib="echo $installprivlib | sed "s!$prefix!$installprefix!™
installscript="echo $installscript | sed "s!$prefix!$installprefix!"
installsitelib="echo $installsitelib | sed "s!$prefix!$installprefix!"
installsitearch="'echo $installsitearch | sed "s!$prefix!$installprefix!™

Then, you can Configure and install in the usual way:

sh Configure —des
make

make test

make install

Creating an installable tar archive

If you need to install perl on many identical systems, it is convenient to compile it once and create an archive
that can be installed on multiple systems. Here's one way to do that:

Set up config.over to install perl into a different directory,
e.g. /tmp/perl5 (see previous part).

sh Configure —des

make

make test

make install

cd /tmp/perl5

tar cvf ../perl5—archive.tar .

Then, on each machine where you want to install perl,
cd /usr/local # Or wherever you specified as $prefix

tar xvf perl5-archive.tar

Configure-time Options

There are several different ways to Configure and build perl for your system. For most users, the defaults are
sensible and will work. Some users, however, may wish to further customize perl. Here are some of the
main things you can change.

Binary Compatibility With Earlier Versions of Perl 5

If you have dynamically loaded extensions that you built under perl 5.003 and that you wish to continue to
use with perl 5.004, then you need to ensure that 5.004 remains binary compatible with 5.003.

Starting with Perl 5.003, all functions in the Perl C source code have been protected by default by the prefix
Perl_ (or perl_) so that you may link with third—party libraries without fear of namespace collisions. This
change broke compatibility with version 5.002, so installing 5.003 or 5.004 over 5.002 or earlier will force
you to re-build and install all of your dynamically loadable extensions. (The standard extensions supplied
with Perl are handled automatically). You can turn off this namespace protection by adding -DNO_EMBED
to your ccflags variable in config.sh.

Perl 5.003's namespace protection was incomplete, but this has been fixed in 5.004. However, some sites
may need to maintain complete binary compatibility with Perl 5.003. If you are building Perl for such a site,

then when Configure asks if you want binary compatibility, answer "y".

On the other hand, if you are embedding perl into another application and want the maximum namespace
protection, then you probably ought to answer "n" when Configure asks if you want binary compatibility.

The default answer of "y" to maintain binary compatibility is probably appropriate for almost everyone.

In a related issue, old extensions may possibly be affected by the changes in the Perl language in the current
release. Please see pod/perldelta for a description of what's changed.

144

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

Selecting File 10 mechanisms

Previous versions of perl used the standard 10 mechanisms as defined in stdio.h. Versions 5.003_02 and
later of perl allow alternate IO mechanisms via a "PerllO" abstraction, but the stdio mechanism is still the
default and is the only supported mechanism.

This PerllO abstraction can be enabled either on the Configure command line with
sh Configure —Duseperlio
or interactively at the appropriate Configure prompt.

If you choose to use the PerllO abstraction layer, there are two (experimental) possibilities for the underlying
IO calls. These have been tested to some extent on some platforms, but are not guaranteed to work
everywhere.

1. AT&T's "sfio". This has superior performance to stdio.h in many cases, and is extensible by the use
of "discipline" modules. Sfio currently only builds on a subset of the UNIX platforms perl supports.
Because the data structures are completely different from stdio, perl extension modules or external
libraries may not work. This configuration exists to allow these issues to be worked on.

This option requires the ‘sfio’ package to have been built and installed. A (fairly old) version of sfio is
in CPAN, and work is in progress to make it more easily buildable by adding Configure support.

You select this option by
sh Configure —Duseperlio —Dusesfio

If you have already selected —Duseperlio, and if Configure detects that you have sfio, then sfio will be
the default suggested by Configure.

Note: On some systems, sfio's iffe configuration script fails to detect that you have an atexit function
(or equivalent). Apparently, this is a problem at least for some versions of Linux and SunOS 4.

You can test if you have this problem by trying the following shell script. (You may have to add some
extra cflags and libraries. A portable version of this may eventually make its way into Configure.)

#1/bin/sh
cat > try.c <<’EOCP’
#include <stdio.h>
main() { printf("42\n"); }
EOCP
cc —o try try.c —lsfio
val="./try*
if test X$val = X42; then
echo "Your sfio looks ok"
else
echo "Your sfio has the exit problem.”
fi

If you have this problem, the fix is to go back to your sfio sources and correct iffe's guess about atexit
(or whatever is appropriate for your platform.)

There also might be a more recent release of Sfio that fixes your problem.

2. Normal stdio 10, but with all 10 going through calls to the PerllO abstraction layer. This configuration
can be used to check that perl and extension modules have been correctly converted to use the PerllO
abstraction.

This configuration should work on all platforms (but might not).

You select this option via:

21-Jun—-1997 Perl Version 5.004 145

INSTALL Perl Programmers Reference Guide INSTALL

sh Configure —Duseperlio —Uusesfio

If you have already selected —Duseperlio, and if Configure does not detect sfio, then this will be the
default suggested by Configure.

Building a shared libperl.so Perl library

Currently, for most systems, the main perl executable is built by linking the "perl library" libperl.a with
perlmain.o, your static extensions (usually just Dynal.oader.a) and various extra libraries, such as —Im.

On some systems that support dynamic loading, it may be possible to replace libperl.a with a shared
libperl.so. If you anticipate building several different perl binaries (e.g. by embedding libperl into different
programs, or by using the optional compiler extension), then you might wish to build a shared libperl.so so
that all your binaries can share the same library.

The disadvantages are that there may be a significant performance penalty associated with the shared
libperl.so, and that the overall mechanism is still rather fragile with respect to different versions and
upgrades.

In terms of performance, on my test system (Solaris 2.5 x86) the perl test suite took roughly 15% longer to
run with the shared libperl.so. Your system and typical applications may well give quite different results.

The default name for the shared library is typically something like libperl.s0.3.2 (for Perl 5.003_02) or
libperl.s0.302 or simply libperl.so. Configure tries to guess a sensible naming convention based on your C
library name. Since the library gets installed in a version—specific architecture—dependent directory, the
exact name isn‘t very important anyway, as long as your linker is happy.

For some systems (mostly SVR4), building a shared libperl is required for dynamic loading to work, and
hence is already the default.

You can elect to build a shared libperl by
sh Configure —Duseshrplib

To actually build perl, you must add the current working directory to your LD_LIBRARY_PATH
environment variable before running make. You can do this with

LD_LIBRARY_PATH='pwd":$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
for Bourne—-style shells, or
setenv LD_LIBRARY_PATH ‘pwd’

for Csh-style shells. You *MUST* do this before running make. Folks running NeXT OPENSTEP must
substitute DYLD_LIBRARY_PATH for LD_LIBRARY_PATH above.

There is also an potential problem with the shared perl library if you want to have more than one "flavor" of
the same version of perl (e.g. with and without —-DDEBUGGING). For example, suppose you build and
install a standard Perl 5.004 with a shared library. Then, suppose you try to build Perl 5.004 with
—-DDEBUGGING enabled, but everything else the same, including all the installation directories. How can
you ensure that your newly built perl will link with your newly built libperl.so.4 rather with the installed
libperl.so.4? The answer is that you might not be able to. The installation directory is encoded in the perl
binary with the LD_RUN_PATH environment variable (or equivalent [d command-line option). On Solaris,
you can override that with LD_LIBRARY_PATH; on Linux you can‘t. On Digital Unix, you can override
LD_LIBRARY_PATH by setting the _RLD_ROOT environment variable to point to the perl build directory.

The only reliable answer is that you should specify a different directory for the architecture—dependent
library for your -DDEBUGGING version of perl. You can do this with by changing all the *archlib*
variables in config.sh, namely archlib, archlib_exp, and installarchlib, to point to your new
architecture—dependent library.

146

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

Malloc Issues

Perl relies heavily on malloc(3) to grow data structures as needed, so perl‘'s performance can be noticeably
affected by the performance of the malloc function on your system.

The perl source is shipped with a version of malloc that is very fast but somewhat wasteful of space. On the
other hand, your systemsalloc() function is probably a bit slower but also a bit more frugal.

For many uses, speed is probably the most important consideration, so the default behavior (for most
systems) is to use the malloc supplied with perl. However, if you will be running very large applications
(e.g. Tk or PDL) or if your system already has an excellent malloc, or if you are experiencing difficulties
with extensions that use third—party libraries that call malloc, then you might wish to use your system's
malloc. (Or, you might wish to explore the experimental malloc flags discussed below.)

To build without perl‘s malloc, you can use the Configure command
sh Configure —Uusemymalloc
or you can answer ‘n’ at the appropriate interactive Configure prompt.

Malloc Performance Flags

If you are using Perl's malloc, you may add one or more of the following items to your cflags config.sh
variable to change its behavior in potentially useful ways. You can find out more about these flags by
reading the malloc.c source. In a future version of perl, these might be enabled by default.

—-DDEBUGGING_MSTATS

If DEBUGGING_MSTATS is defined, you can extract malloc statistics from the Perl interpreter. The
overhead this imposes is not large (perl just twiddles integers at malloc/free/sbrk time). When you run
perl with the environment variable PERL_DEBUG_MSTATS set to either 1 or 2, the interpreter will
dump statistics to stderr at exit time and (with a value of 2) after compilation. If you install the
Devel::Peek module you can get the statistics whenever you like by invokingt&g) function.

-DEMERGENCY_SBRK
If EMERGENCY_SBRK is defined, running out of memory need not be a fatal error: a memory pool
can allocated by assigning to the special varibM. See perlvar(1) for more details.
-DPACK_MALLOC
If PACK_MALLOC is defined, malloc.c uses a slightly different algorithm for small allocations (up to
64 bytes long). Such small allocations are quite common in typical Perl scripts.

The expected memory savings (with 8—byte alignmeaiignbytes) is about 20% for typical
Perl usage. The expected slowdown due to the additional malloc overhead is in fractions of a percent.
(It is hard to measure because of the effect of the saved memory on speed).

-DTWO_POT_OPTIMIZE

If TWO_POT_OPTIMIZE is defined, malloc.c uses a slightly different algorithm for large allocations
that are close to a power of two (starting with 16K). Such allocations are typical for big hashes and
special-purpose scripts, especially image processing. If you will be manipulating very large blocks
with sizes close to powers of two, it might be wise to define this macro.

The expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks). The expected slowdown is negligible.

Building a debugging perl
You can run perl scripts under the perl debugger at any timepeith-d your_script. If, however, you
want to debug perl itself, you probably want to do

sh Configure —Doptimize="-g’

This will do two independent things: First, it will force compilation to use cc —g so that you can use your
system’s debugger on the executable. (Note: Your system may actually require something like cc —g2.

21-Jun—-1997 Perl Version 5.004 147

INSTALL Perl Programmers Reference Guide INSTALL

Check you man pages for cc(1) and also any hint file for your system.) Second, it will add -DDEBUGGING
to your ccflags variable in config.sh so that you can pex —D to access perl's internal state. (Note:
Configure will only add ~-DDEBUGGING by default if you are not reusing your old config.sh. If you want

to reuse your old config.sh, then you can just edit it and change the optimize and ccflags variables by hand
and then propagate your changes as shovilrmpagating your changes to config.dilow.)

You can actually specify —g and -DDEBUGGING independently, but usually it's convenient to have both.

If you are using a shared libperl, see the warnings about multiple versions of perl under
Building a shared libperl.so Perl library

Other Compiler Flags

For most users, all of the Configure defaults are fine. However, you can change a number of factors in the
way perl is built by adding appropriate —D directives to your ccflags variable in config.sh.

For example, you can replace ttaamd() andsrand() functions in the perl source by any other random
number generator by a trick such as the following:

sh Configure —Dccflags="-Drand=random —Dsrand=srandom’

or by adding —Drand=random and —-Dsrand=srandom to your ccflags at the appropriate Configure prompt.
(Note: Although this worked for me, it might not work for you if your system's header files give different
prototypes forand() andrandom() orsrand() andsrandom() .)

You should also run Configure interactively to verify that a hint file doesn‘t inadvertently override your
ccflags setting. (Hints files shouldn't do that, but some might.)

What if it doesn‘t work?

Running Configure Interactively

If Configure runs into trouble, remember that you can always run Configure interactively so that you
can check (and correct) its guesses.

All the installation questions have been moved to the top, so you don‘t have to wait for them. Once
you'‘ve handled them (and your C compiler and flags) you can & at the next Configure prompt
and Configure will use the defaults from then on.

If you find yourself trying obscure command line incantations and config.over tricks, | recommend you
run Configure interactively instead. You'll probably save yourself time in the long run.

Hint files

The perl distribution includes a number of system-specific hints files in the hints/ directory. If one of
them matches your system, Configure will offer to use that hint file.

Several of the hint files contain additional important information. If you have any problems, it is a
good idea to read the relevant hint file for further information. See hints/solaris_2.sh for an extensive
example.

o** WHOA THERE!!! ***
Occasionally, Configure makes a wrong guess. For example, on SunOS 4.1.3, Configure incorrectly
concludes that tzname][] is in the standard C library. The hint file is set up to correct for this. You will
see a message:

*** \WWHOA THERE!! ***
The recommended value for $d_tzname on this machine was "undef"!
Keep the recommended value? [y]

You should always keep the recommended value unless, after reading the relevant section of the hint
file, you are sure you want to try overriding it.

If you are re-using an old config.sh, the word "previous" will be used instead of "recommended".
Again, you will almost always want to keep the previous value, unless you have changed something on

148

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

your system.

For example, suppose you have added libgdbm.a to your system and you decide to reconfigure perl to
use GDBM_File. When you run Configure again, you will need to add —lgdbm to the list of libraries.
Now, Configure will find your gdbm library and will issue a message:

** WHOA THERE!! ***
The previous value for $i_gdbm on this machine was "undef"!
Keep the previous value? [y]

In this case, you do not want to keep the previous value, so you should answer ‘n’. (You'll also have
to manually add GDBM_File to the list of dynamic extensions to build.)

Changing Compilers
If you change compilers or make other significant changes, you should probably not re-use your old
config.sh. Simply remove it or rename it, e.g. mv config.sh config.sh.old. Then rerun Configure with
the options you want to use.

This is a common source of problems. If you change from cc to gcc, you should almost always
remove your old config.sh.

Propagating your changes to config.sh
If you make any changes to config.sh, you should propagate them to all the .SH files by running

sh Configure —S
You will then have to rebuild by running

make depend
make

config.over
You can also supply a shell script config.over to over-ride Configure's guesses. It will get loaded up
at the very end, just before config.sh is created. You have to be careful with this, however, as
Configure does no checking that your changes make sense. See the section on
"Changing the installation directoryfor an example.

config.h

Many of the system dependencies are contained in config.h. Configure builds config.h by running the
config_h.SH script. The values for the variables are taken from config.sh.

If there are any problems, you can edit config.h directly. Beware, though, that the next time you run
Configure, your changes will be lost.

cflags
If you have any additional changes to make to the C compiler command line, they can be made in
cflags.SH. For instance, to turn off the optimizer on toke.c, find the line in the switch structure for
toke.c and put the command optimize='—g’ before the ;; . You can also edit cflags directly, but beware
that your changes will be lost the next time you run Configure.

To change the C flags for all the files, edit config.sh and change $ibfltags or $optimize,
and then re—run

sh Configure —S
make depend

No sh

If you don't have sh, you'll have to copy the sample file config_H to config.h and edit the config.h to
reflect your system's peculiarities. You'll probably also have to extensively modify the extension
building mechanism.

21-Jun—-1997 Perl Version 5.004 149

INSTALL Perl Programmers Reference Guide INSTALL

Porting information
Specific information for the OS/2, Plan9, VMS and Win32 ports is in the corresponding README

files and subdirectories. Additional information, including a glossary of all those config.sh variables,
is in the Porting subdirectory.

Ports for other systems may also be available. You should check out http://www.perl.com/CPAN/ports
for current information on ports to various other operating systems.

make depend

This will look for all the includes. The output is stored in makefile. The only difference between Makefile
and makefile is the dependencies at the bottom of makefile. If you have to make any changes, you should
edit makefile, not Makefile since the Unix make command reads makefile first. (On non-Unix systems, the
output may be stored in a different file. Check the valufiestmakefile in your config.sh if in

doubt.)

Configure will offer to do this step for you, so it isn‘t listed explicitly above.

make
This will attempt to make perl in the current directory.

If you can‘t compile successfully, try some of the following ideas. If none of them help, and careful reading

of the error message and the relevant manual pages on your system doesn'‘t help, you can send a message to
either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem. Seé&Reporting Problemsbelow.

hints
If you used a hint file, try reading the comments in the hint file for further tips and information.
extensions
If you can successfully build miniperl, but the process crashes during the building of extensions, you
should run

make minitest
to test your version of miniperl.

locale

If you have any locale-related environment variables set, try unsetting them. | have some reports that
some versions of IRIX hang while runnitigniniperl configpm with locales other than the C locale.
See the discussion undeake tesbelow about locales.

malloc duplicates
If you get duplicates upon linking for malloc et al, add -DHIDEMYMALLOC or
-DEMBEDMYMALLOC to your ccflags variable in config.sh.

varargs

If you get varargs problems with gcc, be sure that gcc is installed correctly. When using gcc, you
should probably have i_stdarg="define’ and i_varargs=‘undef’ in config.sh. The problem is usually
solved by running fixincludes correctly. If you do change config.sh, don‘t forget to propagate your
changes (se#ropagating your changes to config.délow). See also tHesprintf" item below.

croak
If you get error messages such as the following (the exact line numbers will vary in different versions
of perl):

util.c: In function ‘Perl_croak’:
util.c:962: number of arguments doesn’t match prototype
proto.h:45: prototype declaration

150 Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

it might well be a symptom of the gcc "varargs problem”. See the préviasgs" item.

Solaris and SunOS dynamic loading

If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are using GNU as
and GNU Id, you may need to add —B/bin/ (for SunOS) or —B/usr/ccs/bin/ (for Solaris) to your
$ccflags, $ldflags, and $lddlflags so that the system's versions of as and Id are used.
Note that the trailing ‘/ is required. Alternatively, you can use the GCC_EXEC_PREFIX environment
variable to ensure that Sun‘s as and Id are used. Consult your gcc documentation for further
information on the —B option and the GCC_EXEC_PREFIX variable.

One convenient way to ensure you are not using GNU as and Id is to invoke Configure with
sh Configure —Dcc="gcc —B/usr/ccs/bin/’
for Solaris systems. For a SunOS system, you must use —B/bin/ instead.

Id.so.1: ./perl: fatal: relocation error:

If you get this message on SunOS or Solaris, and you're using gcc, it's probably the GNU as or GNU
Id problem in the previous iteh$olaris and SunOS dynamic loading”

LD_LIBRARY_PATH

If you run into dynamic loading problems, check your setting of the LD_LIBRARY_PATH
environment variable. If you're creating a static Perl library (libperl.a rather than libperl.so) it should
build fine with LD_LIBRARY_PATH unset, though that may depend on details of your local set-up.

dlopen: stub interception failed

The primary cause of the ‘dlopen: stub interception failed’ message is that the LD_LIBRARY_PATH
environment variable includes a directory which is a symlink to /usr/lib (such as /lib).

The reason this causes a problem is quite subtle. The file libdl.so.1.0 actually *only* contains
functions which generate ‘stub interception failed’ errors! The runtime linker intercepts links to
"fusr/lib/libdl.s0.1.0" and links in internal implementation of those functions instead. [Thanks to Tim
Bunce for this explanation.]

nm extraction

If Configure seems to be having trouble finding library functions, try not using nm extraction. You
can do this from the command line with

sh Configure —Uusenm

or by answering the nm extraction question interactively. If you have previously run Configure, you
should not reuse your old config.sh.

vsprintf
If you run into problems with vsprintf in compiling util.c, the problem is probably that Configure failed
to detect your system's version e$printf() . Check whether your system haggrintf()

(Virtually all modern Unix systems do.) Then, check the variable d_vprintf in config.sh. If your
system has vprintf, it should be:

d_vprintf="define’

If Configure guessed wrong, it is likely that Configure guessed wrong on a number of other common
functions too. You are probably better off re-running Configure without using nm extraction (see
previous item).

do_aspawn
If you run into problems relating to do_aspawn or do_spawn, the problem is probably that Configure
failed to detect your systemfork() function. Follow the procedure in the previous items on
"vsprintf" and"nm extraction®

21-Jun—-1997 Perl Version 5.004 151

INSTALL Perl Programmers Reference Guide INSTALL

Optimizer
" If you can‘t compile successfully, try turning off your compiler‘s optimizer. Edit config.sh and change
the line
optimize="-0O’
to something like
optimize=""
then propagate your changes wsthConfigure —Sand rebuild withmake depend; make

CRIPPLED_CC
If you still can't compile successfully, try adding a -DCRIPPLED_CC flag. (Just because you get no
errors doesn't mean it compiled right!) This simplifies some complicated expressions for compilers
that get indigestion easily.

Missing functions
If you have missing routines, you probably need to add some library or other, or you need to undefine
some feature that Configure thought was there but is defective or incomplete. Look through config.h
for likely suspects.

toke.c
Some compilers will not compile or optimize the larger files (such as toke.c) without some extra
switches to use larger jump offsets or allocate larger internal tables. You can customize the switches
for each file in cflags. It's okay to insert rules for specific files into makefile since a default rule only
takes effect in the absence of a specific rule.

Missing dbmclose
SCO prior to 3.2.4 may be missimlpmclose() . An upgrade to 3.2.4 that includes libdbm.nfs
(which includesdbmclose()) may be available.

Note (probably harmless): No library found for —Isomething

If you see such a message during the building of an extension, but the extension passes its tests anyway
(see"make test"below), then don‘t worry about the warning message. The extension Makefile.PL
goes looking for various libraries needed on various systems; few systems will need all the possible
libraries listed. For example, a system may have —Icposix or —lposix, but it's unlikely to have both, so
most users will see warnings for the one they don't have. The phrase ‘probably harmless’ is intended
to reassure you that nothing unusual is happening, and the build process is continuing.

On the other hand, if you are building GDBM_File and you get the message
Note (probably harmless): No library found for —lgdbm

then it's likely you‘re going to run into trouble somewhere along the line, since it's hard to see how
you can use the GDBM_File extension without the —Igdbm library.

It is true that, in principle, Configure could have figured all of this out, but Configure and the extension
building process are not quite that tightly coordinated.

sh: ar: not found

This is a message from your shell telling you that the command ‘ar’ was not found. You need to check
your PATH environment variable to make sure that it includes the directory with the ‘ar command.
This is a common problem on Solaris, where ‘ar’ is in the /usr/ccs/bin directory.

db-recno failure on tests 51, 53 and 55

Old versions of the DB library (including the DB library which comes with FreeBSD 2.1) had broken
handling of recno databases with modified bval settings. Upgrade your DB library or OS.

152

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

Miscellaneous
Some additional things that have been reported for either perl4 or perl5:

Genix may need to use libc rather than libc_s, or #undef VARARGS.

NCR Tower 32 (OS 2.01.01) may need -W2,-SI,2000 and #undef MKDIR.
UTS may need one or more of —-DCRIPPLED_CC, -K or —g, and undef LSTAT.
If you get syntax errors on ‘(*, try -DCRIPPLED_CC.

Machines with half-implemented dbm routines will need to #undef |_ODBM

make test

This will run the regression tests on the perl you just made. If it doesn‘t say "All tests successful" then
something went wrong. See the file tREADME in the t subdirectory. Note that you can't run the tests in
background if this disables opening of /devi/tty.

If make test bombs out, just cd to the t directory and run ./TEST by hand to see if it makes any difference. If
individual tests bomb, you can run them by hand, e.g.,

Iperl op/groups.t

Another way to get more detailed information about failed tests and individual subtests is to cd to the t
directory and run

Jperl harness
(this assumes that most tests succeed, since harness uses complicated constructs).
You can also read the individual tests to see if there are any helpful comments that apply to your system.

Note: One possible reason for errors is that some external programs may be broken due to the combination
of your environment and the wayake testexercises them. For example, this may happen if you have one

or more of these environment variables set: LC ALL LC CTYPE LC_COLLATE LANG. In some
versions of UNIX, the non—-English locales are known to cause programs to exhibit mysterious errors.

If you have any of the above environment variables set, please try
setenv LC_ALL C

(for C shell) or
LC_ALL=C;export LC_ALL

for Bourne or Korn shell) from the command line and then retry make test. If the tests then succeed, you
may have a broken program that is confusing the testing. Please run the troublesome test by hand as shown
above and see whether you can locate the program. Look for things like: exec, ‘backquoted command',
system, open("|...") or open("...|"). All these mean that Perl is trying to run some external program.

make install

This will put perl into the public directory you specified to Configure; by default this is /usr/local/bin. It will
also try to put the man pages in a reasonable place. It will not nroff the man pages, however. You may need
to be root to rumake install. If you are not root, you must own the directories in question and you should
ignore any messages about chown not working.

If you want to see exactly what will happen without installing anything, you can run

Jperl installperl —n
Jperl installman —n

make install will install the following:

perl,
perl5.nnn where nnn is the current release number. This

21-Jun—-1997 Perl Version 5.004 153

INSTALL Perl Programmers Reference Guide INSTALL

will be a link to perl.

suidperl,
sperl5.nnn If you requested setuid emulation.
azp awk-to—perl translator

cppstdinThis is used by perl —P, if your cc —-E can’t
read from stdin.
c2ph, pstruct Scripts for handling C structures in header files.

s2p sed-to—perl translator

find2perl find—to—perl translator

h2ph Extract constants and simple macros from C headers
h2xs Converts C .h header files to Perl extensions.
perlbug Tool to report bugs in Perl.

perldoc Tool to read perl’'s pod documentation.

pl2pm Convert Perl 4 .pl files to Perl 5 .pm modules
pod2html, Converters from perl's pod documentation format
pod2latex, to other useful formats.

pod2man, and

pod2text

splain Describe Perl warnings and errors

library files in $privlib and $archlib specified to
Configure, usually under /usr/local/lib/perl5/.

man pages in the location specified to Configure, usually
something like /usr/local/man/man1.

module in the location specified to Configure, usually

man pages under /ust/local/lib/perl5/man/man3.

pod/*.pod in $privlib/pod/.

Installperl will also create the library directorigsiteperl and$sitearch listed in config.sh. Usually,
these are something like

/usr/local/lib/perl5/site_perl/

{usr/local/lib/perl5/site_pefarchname
where$archname is something like sun4-sunos. These directories will be used for installing extensions.

Perl's *.h header files and the libperl.a library are also installed Wadtehlib so that any user may later
build new extensions, run the optional Perl compiler, or embed the perl interpreter into another program even
if the Perl source is no longer available.

Coexistence with earlier versions of perl5

You can safely install the current version of perl5 and still run scripts under the old binaries for versions
5.003 and later ONLY. Instead of starting your script with #l/usr/local/bin/perl, just start it with
#l/usr/local/bin/perl5.003 (or whatever version you want to run.) If you want to retain a version of Perl 5
prior to 5.003, you'll need to install the current version in a separate directory tree, since some of the
architecture—independent library files have changed in incompatible ways.

The old architecture—dependent files are stored in a version—specific directory (such as
/usr/local/lib/perl5/sun4—sunos/5.003) so that they will still be accessible even after a later version is
installed. (Note: Perl 5.000 and 5.001 did not put their architecture—dependent libraries in a version—specific
directory. They are simply in /usr/local/lib/peafchname. If you will not be using 5.000 or 5.001, you

may safely remove those files.)

In general, the standard library files in /usr/local/lib/perl5 should be usable by all versions of perl5.
However, the diagnostics.pm module uses the /usr/local/lib/perl5/pod/perldiag.pod documentation file, so the
use diagnostics; pragma and the splain script will only identify and explain any warnings or errors
that the most recently—installed version of perl can generate.

Most extensions will probably not need to be recompiled to use with a newer version of perl. If you do run
into problems, and you want to continue to use the old version of perl along with your extension, simply

154

Perl Version 5.004 21-Jun-1997

INSTALL Perl Programmers Reference Guide INSTALL

move those extension files to the appropriate version directory, such as /ust/local/lib/perl/archname/5.003.
Then Perl 5.003 will find your files in the 5.003 directory, and newer versions of perl will find your newer
extension in the site_perl directory.

Many users prefer to keep all versions of perl in completely separate directories. One convenient way to do
this is by using a separate prefix for each version, such as

sh Configure —Dprefix=/opt/perl5.004

and adding /opt/perl5.004/bin to the shell PATH variable. Such users may also wish to add a symbolic link
/usr/local/bin/perl so that scripts can still start with #!/usr/local/bin/per!.

If you are installing a development subversion, you probably ought to seriously consider using a separate
directory, since development subversions may not have all the compatibility wrinkles ironed out yet.

Coexistence with perl4
You can safely install perl5 even if you want to keep perl4 around.

By default, the perl5 libraries go into /usr/local/lib/perl5/, so they don‘t override the perl4 libraries in
lusr/local/lib/perl/.

In your /usr/local/bin directory, you should have a binary named perl4.036. That will not be touched by the
perl5 installation process. Most perl4 scripts should run just fine under perl5. However, if you have any
scripts that require perl4, you can replace the #! line at the top of them by #!/usr/local/bin/perl4.036 (or
whatever the appropriate pathname is). See pod/perltrap.pod for possible problems running perl4 scripts
under perl5.

cd /usrf/include; h2ph *.h sys/*.h
Some perl scripts need to be able to obtain information from the system header files. This command will
convert the most commonly used header files in /usr/include into files that can be easily interpreted by perl.
These files will be placed in the architectural library directory you specified to Configure; by default this is
/usr/local/lib/perl5/ARCH/VERSION, where ARCH is your architecture (such as sun4-solaris) and
VERSION is the version of perl you are building (for example, 5.004).

Note: Due to differences in the C and perl languages, the conversion of the header files is not perfect. You
will probably have to hand-edit some of the converted files to get them to parse correctly. For example,
h2ph breaks spectacularly on type casting and certain structures.

=head installhtml —help

Some sites may wish to make perl documentation available in HTML format. The installhtml utility can be
used to convert pod documentation into linked HTML files and install install them.

The following command-line is an example of the one we use to convert perl documentation:

Jinstallhtml \
——podroot=. \
——podpath=lib:ext:pod:vms \
—-recurse \

——htmldir=/perl/nmanual \
——htmlroot=/perl/nmanual \
——splithead=pod/perlipc \
——splititem=pod/perlfunc \
——libpods=perlfunc:perlguts:perlvar:perirun:perlop \
—-verbose

See the documentation in installhtml for more details. It can take many minutes to execute a large

installation and you should expect to see warnings like "no title", "unexpected directive" and "cannot
resolve" as the files are processed. We are aware of these problems (and would welcome patches for them).

21-Jun—-1997 Perl Version 5.004 155

INSTALL Perl Programmers Reference Guide INSTALL

cd pod &&make tex && (process the latex files)

Some sites may also wish to make the documentation in the pod/ directory available in TeX format. Type

(cd pod && make tex && <process the latex files>)

Reporting Problems

If you have difficulty building perl, and none of the advice in this file helps, and careful reading of the error
message and the relevant manual pages on your system doesn'‘t help either, then you should send a message
to either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem.

Please include the output of the ./myconfig shell script that comes with the distribution. Alternatively, you
can use the perlbug program that comes with the perl distribution, but you need to have perl compiled and
installed before you can use it.

You might also find helpful information in the Porting directory of the perl distribution.

DOCUMENTATION

Read the manual entries before running perl. The main documentation is in the pod/ subdirectory and should
have been installed during the build process. Tiyaa perl to get started. Alternatively, you can type
perldoc perl to use the supplied perldoc script. This is sometimes useful for finding things in the library
modules.

Under UNIX, you can produce a documentation book in postscript form, along with its table of contents, by
going to the pod/ subdirectory and running (either):

Jroffitall —groff # If you have GNU groff installed
Jroffitall —psroff # If you have psroff

This will leave you with two postscript files ready to be printed. (You may need to fix the roffitall command
to use your local troff set-up.)

Note that you must have performed the installation already before running the above, since the script collects
the installed files to generate the documentation.

AUTHOR

Andy Dougherty doughera@lafcol.lafayette.edu , borrowing very heavily from the original README by
Larry Wall, and also with lots of helpful feedback from the perl5—porters@perl.org folks.

LAST MODIFIED

$ld: INSTALL,v 1.18 1997/05/29 18:24:10 doughera Exp

156

Perl Version 5.004 21-Jun-1997

installhtml Perl Programmers Reference Guide installhtml

NAME
installhtml — converts a collection of POD pages to HTML format.

SYNOPSIS

[-—htmldir=<name>] [--htmIroot=<name>] [-—norecurse] [-—recurse]
[-—splithead=<name>,...,<name>] [--splititem=<name>,...,<name>]
[--libpods=<name>,...,.<name>] [--verbose]
DESCRIPTION
installhtml converts a collection of POD pages to a corresponding collection of HTML pages. This is
primarily used to convert the pod pages found in the perl distribution.
OPTIONS

—help help
Displays the usage.

—podroot POD search path base directory
The base directory to search for all .pod and .pm files to be converted. Default is current directory.

—podpath POD search path
The list of directories to search for .pod and .pm files to be converted. Default is ‘podroot/.’.

—recurse recurse on subdirectories
Whether or not to convert all .pm and .pod files found in subdirectories too. Default is to not recurse.

—htmldir HTML destination directory
The base directory which all HTML files will be written to. This should be a path relative to the
filesystem, not the resulting URL.

—htmlroot URL base directory
The base directory which all resulting HTML files will be visible at in a URL. The default is ‘/.

—splithead POD files to split on =head directive
Colon-separated list of pod files to split by the =head directive. The .pod suffix is optional. These
files should have names specified relative to podroot.

—splititem POD files to split on =item directive
Colon-separated list of all pod files to split by the =item directive. The .pod suffix is optional.
installhtml does not do the actual split, rather it involegditpod to do the dirty work. As with
—splithead, these files should have names specified relative to podroot.

—splitpod Directory containing the splitpod program
The directory containing the splitpod program. The default is ‘podroot/pod’.

—libpods library PODs for L<> links
Colon-separated list of "library" pod files. This is the same list that will be passed to pod2html when
any pod is converted.

—verbose verbose output
Self-explanatory.

EXAMPLE
The following command-line is an example of the one we use to convert perl documentation:
Jinstallhtml ——podpath=lib:ext:pod:vms \

——podroot=/usr/src/perl \
——htmldir=/perl/nmanual \

21-Jun—-1997 Perl Version 5.004 157

installhtml Perl Programmers Reference Guide

installhtml

——htmlroot=/perl/nmanual \

——splithead=pod/perlipc \

——splititem=pod/perlfunc \

——libpods=perlfunc:perlguts:perlvar:perlrun:perlop \
—-recurse \

—-verbose

AUTHOR
Chris Hall <hallc@cs.colorado.edu>

TODO

158 Perl Version 5.004

21-Jun-1997

configpm Perl Programmers Reference Guide configpm

NAME
Config — access Perl configuration information

SYNOPSIS

use Config;

if ($Config{’cc’} =~ /gcc/) {
print "built by gcc\n”;

}

use Config gw(myconfig config_sh config_vars);
print myconfig();

print config_sh();

config_vars(gw(osname archname));

DESCRIPTION
The Config module contains all the information that was available t6dh&gure program at Perl build
time (over 900 values).

Shell variables from theonfig.shfile (written by Configure) are stored in the readonly—vari&bf@onfig ,
indexed by their names.

Values stored in config.sh as ‘undef’ are returned as undefined values. Theeigtsrl function can be
used to check if a named variable exists.

myconfig()
Returns a textual summary of the major perl configuration values. Seevails®&witches

config_sh()

Returns the entire perl configuration information in the form of the original config.sh shell variable
assignment script.

config_vars(@names)

Prints to STDOUT the values of the named configuration variable. Each is printed on a separate line in
the form:

name='value’;
Names which are unknown are outpuhame="UNKNOWN';. See alse-V:name in Switches

EXAMPLE
Here's a more sophisticated example of using %Config:

use Config;
use strict;

my %sig_num;

my @sig_name;

unless($Config{sig_name} && $Config{sig_num}) {
die "No sigs?";

}else {
my @names = split " ’, $Config{sig_name};
@sig_num{@names} = split ' ’, $Config{sig_num};
foreach (@names) {

$sig_name[$sig_num{$_}] |[|=$_;

}

}

print "signal #17 = $sig_name[17]\n";

21-Jun—-1997 Perl Version 5.004 159

configpm Perl Programmers Reference Guide configpm

if ($sig_num{ALRM}) {
print "SIGALRM is $sig_num{ALRMAn";
}
WARNING
Because this information is not stored within the perl executable itself it is possible (but unlikely) that the
information does not relate to the actual perl binary which is being used to access it.

The Config module is installed into the architecture and version specific library directory
($Config{installarchlib}) and it checks the perl version number when loaded.
NOTE

This module contains a good example of how to use tie to implement a cache and an example of how to
make a tied variable readonly to those outside of it.

160 Perl Version 5.004 21-Jun-1997

makeaperl Perl Programmers Reference Guide makeaper|

NAME
makeaper| — create a new perl binary from static extensions

SYNOPSIS
makeaper! —I library -m makefile —o target -t tempdir [object_files]
[static_extensions] [search_directories]

DESCRIPTION

This utility is designed to build new perl binaries from existing extensions on the fly. Called without any
arguments it produces a new binary with the ng@e in the current directory. Intermediate files are
produced intmp , if that is writeable, else in the current directory. The most important intermediate file is a
Makefile, that is used internally to catlake. The new perl binary will consist

The - switch lets you specify the name of a perl library to be linked into the new binary. If you do not
specify a library, makeaper! writes targets for #ibperl*.a it finds in the search path. The topmost
target will be the one related libperl.a

With the—mswitch you can provide a name for the Makefile that will be written (default
/tmp/Makefile.$3). Likewise specifies theo switch a name for the perl binary (defauétrl). The
-t switch lets you determine, in which directory the intermediate files should be stored.

All object files and static extensions following on the command line will be linked into the target file. If
there are any directories specified on the command line, these directories are searchedilies, and all

of the found ones will be linked in, too. If there is no directory named, then the cont&iC(d] are
searched.

If the command fails, there is currently no other mechanism to adjust the behaviour of the program than to
alter the generated Makefile and make by hand.

AUTHORS
Tim Bunce <Tim.Bunce@ig.co.uk, Andreas Koenig <koenig@franz.ww.TU-Berlin.DE;

STATUS
First version, written 5 Feb 1995, is considered alpha.

21-Jun—-1997 Perl Version 5.004 161

minimod Perl Programmers Reference Guide minimod

NAME
ExtUtils::Miniperl, writemain — write the C code for perlmain.c

SYNOPSIS
use ExtUtils::Miniperl;

writemain(@directories);

DESCRIPTION
This whole module is written when perl itself is built from a script called minimod.PL. In case you want to
patch it, please patch minimod.PL in the perl distribution instead.

writemain() takes an argument list of directories containing archive libraries that relate to perl modules

and should be linked into a new perl binary. It writes to STDOUT a corresponding perlmain.c file that is a

plain C file containing all the bootstrap code to make the modules associated with the libraries available
from within perl.

The typical usage is from within a Makefile generated by ExtUtils::MakeMaker. So under normal
circumstances you won'‘t have to deal with this module directly.

SEE ALSO
ExtUtils::MakeMaker

162 Perl Version 5.004 21-Jun-1997

ExtUtils::MakeMaker

perl Perl Programmers Reference Guide perl
NAME
perl — Practical Extraction and Report Language
SYNOPSIS
perl [-sTuU]
[-hv][-V[:configval]
[—cw] [—d[:debugge}] [-D[number/lis}]
[-pna] [—Fpattern] [—l[octal]] [—O[octal]
[=Idir] [-m[-]module] [-M[-]'module..."]
[-P]
[-S]
[—x[dir]]
[—i[extensioh]
[—e‘command’] [—] [programfile] [argument]...
For ease of access, the Perl manual has been split up into a number of sections:
perl Perl overview (this section)
perldelta Perl changes since previous version
perlfaq Perl frequently asked questions
perldata Perl data structures
perlsyn Perl syntax
perlop Perl operators and precedence
perlre Perl regular expressions
perlrun Perl execution and options
perlfunc Perl builtin functions
perlvar Perl predefined variables
perlsub Perl subroutines
perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlform Perl formats
perllocale Perl locale support
perlref Perl references
perldsc Perl data structures intro
perllol Perl data structures: lists of lists
perltoot Perl OO tutorial
perlobj Perl objects
perltie Perl objects hidden behind simple variables
perlbot Perl OO tricks and examples
perlipc Perl interprocess communication
perldebug Perl debugging
perldiag Perl diagnostic messages
perlsec Perl security
perltrap Perl traps for the unwary
perlstyle Perl style guide
perlpod Perl plain old documentation
perlbook Perl book information
perlembed Perl ways to embed perl in your C or C++ application
perlapio Perl internal 10 abstraction interface
perlxs Perl XS application programming interface
perlxstut Perl XS tutorial
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C
21-Jun-1997 Perl Version 5.004 163

perl

Perl Programmers Reference Guide perl

(If you're intending to read these straight through for the first time, the suggested order will tend to reduce
the number of forward references.)

By default, all of the above manpages are installed indkglocal/man/directory.

Extensive additional documentation for Perl modules is available. The default configuration for perl will
place this additional documentation in thsr/local/lib/perl5/mandirectory (or else in thean subdirectory

of the Perl library directory). Some of this additional documentation is distributed standard with Perl, but
you'll also find documentation for third—party modules there.

You should be able to view Perl's documentation with your man(1l) program by including the proper
directories in the appropriate start-up files, or in the MANPATH environment variable. To find out where
the configuration has installed the manpages, type:

perl =V:man.dir

If the directories have a common stem, sucliuaglocal/man/manland/usr/local/man/man3 you need
only to add that steniysr/local/man to your man(1) configuration files or your MANPATH environment
variable. If they do not share a stem, you'll have to add both stems.

If that doesn't work for some reason, you can still use the suppkeldoc script to view module
information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you‘re not sure where you should look for help,
try the—w switch first. It will often point out exactly where the trouble is.

DESCRIPTION

Perl is a language optimized for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information. It's also a good language for many system management tasks.
The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant,
minimal).

Perl combines (in the author‘s opinion, anyway) some of the best featuresexf @yk, andsh, so people

familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh Pascal, and even BASIC-PLUS.) Expression syntax corresponds quite closely to C
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if you‘ve

got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And
the tables used by hashes (previously called "associative arrays") grow as necessary to prevent degraded
performance. Perl uses sophisticated pattern matching techniques to scan large amounts of data very
quickly. Although optimized for scanning text, Perl can also deal with binary data, and can make dbm files
look like hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which
prevents many stupid security holes.

If you have a problem that would ordinarily used or awk or sh, but it exceeds their capabilities or must
run a little faster, and you don'‘t want to write the silly thing in C, then Perl may be for you. There are also
translators to turn yowsedandawk scripts into Perl scripts.

But wait, there's more...
Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

e Many usability enhancements
It is now possible to write much more readable Perl code (even within regular expressions).
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages are more
informative, and the optional warnings will catch many of the mistakes a novice might make. This
cannot be stressed enough. Whenever you get mysterious behavior-tny givitch!!! Whenever
you don‘t get mysterious behavior, try using anyway.

e Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rules have
been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all old Perl

164

Perl Version 5.004 21-Jun-1997

perl

Perl Programmers Reference Guide perl

scripts will continue to work unchanged.

e Lexical scoping

Perl variables may now be declared within a lexical scope, like "auto” variables in C. Not only is this
more efficient, but it contributes to better privacy for "programming in the large". Anonymous
subroutines exhibit deep binding of lexical variables (closures).

e Arbitrarily nested data structures

Any scalar value, including any array element, may now contain a reference to any other variable or
subroutine. You can easily create anonymous variables and subroutines. Perl manages your
reference counts for you.

e Modularity and reusability

The Perl library is now defined in terms of modules which can be easily shared among various
packages. A package may choose to import all or a portion of a module's published interface.
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

e Object-oriented programming

A package can function as a class. Dynamic multiple inheritance and virtual methods are supported
in a straightforward manner and with very little new syntax. Filehandles may now be treated as
objects.

e Embeddable and Extensible

Perl may now be embedded easily in your C or C++ application, and can either call or be called by
your routines through a documented interface. The XS preprocessor is provided to make it easy to
glue your C or C++ routines into Perl. Dynamic loading of modules is supported, and Perl itself can

be made into a dynamic library.

e POSIX compliant
A major new module is the POSIX module, which provides access to all available POSIX routines
and definitions, via object classes where appropriate.

e Package constructors and destructors

The new BEGIN and END blocks provide means to capture control as a package is being compiled,
and after the program exits. As a degenerate case they work just like awk's BEGIN and END when
you use the-p or —n switches.

e Multiple simultaneous DBM implementations

A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from the
same script simultaneously. In fact, the old dbmopen interface has been generalized to allow any
variable to be tied to an object class which defines its access methods.

e Subroutine definitions may now be autoloaded
In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for undefined
subroutine calls. It's not for just autoloading.

e Regular expression enhancements

You can now specify nongreedy quantifiers. You can now do grouping without creating a
backreference. You can now write regular expressions with embedded whitespace and comments for
readability. A consistent extensibility mechanism has been added that is upwardly compatible with
all old regular expressions.

e Innumerable Unbundled Modules

The Comprehensive Perl Archive Network describgokinmodlibcontains hundreds of
plug—and-play modules full of reusable code. Bige//www.perl.com/CPANor a site near you.

21-Jun—-1997 Perl Version 5.004 165

perl

Perl Programmers Reference Guide perl

e Compilability
While not yet in full production mode, a working perl-to—C compiler does exist. It can generate
portable byte code, simple C, or optimized C code.

Okay, that'sdefinitelyenough hype.

ENVIRONMENT

Seeperlrun.

AUTHOR

FILES

Larry Wall darry@wall.org with the help of oodles of other folks.

"ftmp/perl-e$$" temporary file for -e commands
"@INC" locations of perl libraries

SEE ALSO

azp awk to perl translator

s2p sed to perl translator

DIAGNOSTICS

BUGS

The-w switch produces some lovely diagnostics.
Seeperldiagfor explanations of all Perl‘s diagnostics.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In the case of a script passed to Pexlswi#iches, eachke is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure dependency".
Seeperlsec

Did we mention that you should definitely consider using-theswitch?

The-w switch is not mandatory.

Perl is at the mercy of your machine's definitions of various operations such as type east{hg, , and
floating—point output wittsprintf()

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn't apply teysread() andsyswrite() .)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still a
few arbitrary limits: a given variable name may not be longer than 255 characters, and no component of
your PATH may be longer than 255 if you us8 A regular expression may not compile to more than
32767 bytes internally.

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orfsrl -V) to <perlbug@perl.comlf you've succeeded in compiling
perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don't tell anyone | said that.

NOTES

The Perl motto is "There's more than one way to do it." Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

166

Perl Version 5.004 21-Jun-1997

perldata Perl Programmers Reference Guide perldata

NAME
perldata — Perl data types

DESCRIPTION

Variable names

Perl has three data structures: scalars, arrays of scalars, and associative arrays of scalars, known as "hashes".
Normal arrays are indexed by number, starting with 0. (Negative subscripts count from the end.) Hash
arrays are indexed by string.

Values are usually referred to by name (or through a named reference). The first character of the name tells
you to what sort of data structure it refers. The rest of the name tells you the particular value to which it
refers. Most often, it consists of a singlentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by

(or by’ , but that's deprecated); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (sd@ackagesfor details). It's possible to substitute for a simple
identifier an expression which produces a reference to the value at runtime; this is described in more detail
below, and imperlref.

There are also special variables whose names don‘t follow these rules, so that they don‘t accidentally collide
with one of your normal variables. Strings which match parenthesized parts of a regular expression are
saved under names containing only digits afterti(seeperlop andperlre). In addition, several special
variables which provide windows into the inner working of Perl have names containing punctuation
characters (segerlvar).

Scalar values are always named with ‘ even when referring to a scalar that is part of an array. It works
like the English word "the". Thus we have:

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb’} # the 'Feb’ value from hash %days
$#days # the last index of array @days
but entire arrays or array slices are denoted by ‘@°, which works much like the word "these" or "those":
@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as @days[3..5]
@days{'a’,'c’} # same as ($days{'a’},$days{’c’})

and entire hashes are denoted by ‘%"
%days # (keyl, vall, key2, val2? ...)

In addition, subroutines are named with an initi&l, * though this is optional when it's otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an initial
“**_but you don't really care about that yet.

Every variable type has its own namespace. You can, without fear of conflict, use the same name for a scalar
variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, or a label). This means that
$foo and @foo are two different variables. It also means$feat[1] is a part of @foo, not a part of

$foo. This may seem a bit weird, but that's okay, because it is weird.

Because variable and array references always start$ith‘@*, or ‘%’, the "reserved" words aren't in fact
reserved with respect to variable names. (They ARE reserved with respect to labels and filehandles,
however, which don‘t have an initial special character. You can‘t have a filehandle named "log", for
instance. Hint: you could saypen(LOG,' logdfile’) rather tharopen(log,‘logfile’) . Using
uppercase filehandles also improves readability and protects you from conflict with future reserved words.)
CaselS significant—"FOQ", "Foo", and "foo" are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

21-Jun—-1997 Perl Version 5.004 167

perldata Perl Programmers Reference Guide perldata

It is possible to replace such an alphanumeric name with an expression that returns a reference to an object of
that type. For a description of this, seelref.

Names that start with a digit may contain only more digits. Names which do not start with a letter,
underscore, or digit are limited to one character, &thor $$. (Most of these one character names have a
predefined significance to Perl. For instar®®,is the current process id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. There are two major contexts: scalar and list. Certain operations return list
values in contexts wanting a list, and scalar values otherwise. (If this is true of an operation it will be
mentioned in the documentation for that operation.) In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural. (Some words in English work this way, like "fish"
and "sheep".)

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides a scalar context for the <STDIN> operator, which responds by reading one
line from STDIN and passing it back to the integer operation, which will then find the integer value of that
line and return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides a list context for <STDIN>, which will proceed to read every line available
up to the end of file, and pass that list of lines back to the sort routine, which will then sort those lines and
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the righthand side in a scalar context, while assignment to an
array or array slice evaluates the righthand side in a list context. Assignment to a list also evaluates the
righthand side in a list context.

User defined subroutines may choose to care whether they are being called in a scalar or list context, but
most subroutines do not need to care, because scalars are automatically interpolated into lists. See
wantarray.

Scalar values

All data in Perl is a scalar or an array of scalars or a hash of scalars. Scalar variables may contain various
kinds of singular data, such as numbers, strings, and references. In general, conversion from one form to
another is transparent. (A scalar may not contain multiple values, but may contain a reference to an array or
hash containing multiple values.) Because of the automatic conversion of scalars, operations, and functions
that return scalars don't need to care (and, in fact, can‘t care) whether the context is looking for a string or a
number.

Scalars aren‘t necessarily one thing or another. There's no place to declare a scalar variable to be of type
"string", or of type "number", or type "filehandle", or anything else. Perl is a contextually polymorphic
language whose scalars can be strings, numbers, or references (which includes objects). While strings and
numbers are considered pretty much the same thing for nearly all purposes, references are strongly-typed
uncastable pointers with builtin reference—counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0 (or its
string equivalent, "0"). The Boolean context is just a special kind of scalar context.

There are actually two varieties of null scalars: defined and undefined. Undefined null scalars are returned
when there is no real value for something, such as when there was an error, or at end of file, or when you
refer to an uninitialized variable or element of an array. An undefined null scalar may become defined the
first time you use it as if it were defined, but prior to that you can usdefireed() operator to determine
whether the value is defined or not.

168

Perl Version 5.004 21-Jun-1997

perldata Perl Programmers Reference Guide perldata

To find out whether a given string is a valid nonzero number, it's usually enough to test it against both
numeric 0 and also lexical "0" (although this will cause noises). That's because strings that aren't
numbers count as 0, just as they dawk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That's usually preferable because otherwise you won't treat IEEE notation®NdilMeor Infinity
properly. At other times you might prefer to use a regular expression to check whether data is numeric. See
perlre for details on regular expressions.

warn "has nondigits" if AD/;
warn "not a whole number" unless /M\d+$/;
warn "not an integer" unless /A[+=]2\d+$/

warn "not a decimal number" unless /A[+=]2\d+\.2\d*$/
warn "not a C float"
unless /M ([+=]1?2)(?=\d\\d)\d*(\.\d*) ?([Ee]([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evékddys as

in csh (Actually, it's not the length of the array, it's the subscript of the last element, because there is
(ordinarily) a Oth element.) Assigning $#days changes the length of the array. Shortening an array by

this method destroys intervening values. Lengthening an array that was previously shv@drm@dGER

recovers the values that were in those elements. (It used to in Perl 4, but we had to break this to make sure
destructors were called when expected.) You can also gain some measure of efficiency by pre—extending an
array that is going to get big. (You can also extend an array by assigning to an element that is off the end of
the array.) You can truncate an array down to nothing by assigning the nQll kistit. The following are
equivalent:

@whatever = ();
$#whatever = -1;

If you evaluate a named array in a scalar context, it returns the length of the array. (Note that this is not true
of lists, which return the last value, like the C comma operator.) The following is always true:

scalar(@whatever) == $#whatever — $[+ 1;

Version 5 of Perl changed the semantic$[of files that don‘t set the value 6f no longer need to worry
about whether another file changed its value. (In other words, e isfdeprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1,
Some programmers choose to use an explicit conversion so nothing's left to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in a scalar context, it returns a value which is true if and only if the hash contains any
key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of the number of
used buckets and the number of allocated buckets, separated by a slash. This is pretty much useful only to
find out whether Perl's (compiled in) hashing algorithm is performing poorly on your data set. For example,
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which means only
one out of sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn‘t
supposed to happen.)

Scalar value constructors
Numeric literals are specified in any of the customary floating point or integer formats:
12345

12345.67
.23E-10

21-Jun—-1997 Perl Version 5.004 169

perldata Perl Programmers Reference Guide perldata

Oxffff # hex
0377 # octal
4 294 967_296 # underline for legibility

String literals are usually delimited by either single or double quotes. They work much like shell quotes:
double—quoted string literals are subject to backslash and variable substitution; single—quoted strings are not
(except for ' " and "\ "). The usual Unix backslash rules apply for making characters such as newline,
tab, etc., as well as some more exotic forms. (Bese and Quotelike Operatofsr a list.

Octal or hex representations in string literals (e.g. ‘Oxffff’) are not automatically converted to their integer
representation. Theex() andoct() functions make these conversions for you. t8s&ndoct for more
details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, arrays, and array slices. (In other words, names beginifing \@th
followed by an optional bracketed expression as a subscript.) The following code segment prints out "The

price is$100."
$Price ='$100’; # not interpreted
print "The price is $Price.\n"; # interpreted

As in some shells, you can put curly brackets around the name to delimit it from following alphanumerics.
In fact, an identifier within such curlies is forced to be a string, as is any single identifier within a hash
subscript. Our earlier example,

$days{'Feb’}
can be written as
$days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression.

Note that a single—quoted string must be separated from a preceding word by a space, because single quote is
a valid (though deprecated) character in a variable nam@éséagep

Three special literals are __FILE__, LINE__, and _ PACKAGE__, which represent the current filename,
line number, and package name at that point in your program. They may be used only as separate tokens;
they will not be interpolated into strings. If there is no current package (dupackage; directive),

__ PACKAGE__ is the undefined value.

The tokens __ END___and _ DATA__ may be used to indicate the logical end of the script before the actual
end of file. Any following text is ignored, but may be read via a DATA filehandle: main::DATA for
__END__, or PACKNAME::DATA (where PACKNAME is the current package) for _ DATA__. The two
control characters *D and ~Z are synonyms for _ END__ (or _ DATA__ in a modulebeBesaderfor

more description of _ DATA__, and an example of its use. Note that you cannot read from the DATA
filehandle in a BEGIN block: the BEGIN block is executed as soon as it is seen (during compilation), at
which point the corresponding _ DATA__ (or __END__) token has not yet been seen.

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These are
known as "barewords". As with filehandles and labels, a bareword that consists entirely of lowercase letters
risks conflict with future reserved words, and if you use-tweswitch, Perl will warn you about any such
words. Some people may wish to outlaw barewords entirely. If you say

use strict 'subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this by
sayingno strict ‘subs’

170 Perl Version 5.004 21-Jun-1997

perldata Perl Programmers Reference Guide perldata

Array variables are interpolated into double—quoted strings by joining all the elements of the array with the
delimiter specified in th&" variable $LIST_SEPARATORIn English), space by default. The following
are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double—quotish substitution) there is a bad ambiguity: Is
/$foo[bar)/ to be interpreted a${foo}[bar]/ (where[bar] is a character class for the regular
expression) or agb{foo[bar]}/ (where[bar] is the subscript to array @foo)? If @foo doesn‘t
otherwise exist, then it's obviously a character class. If @foo exists, Perl takes a good gudsabaqut

and is almost always right. If it does guess wrong, or if you're just plain paranoid, you can force the correct
interpretation with curly brackets as above.

A line—oriented form of quoting is based on the shell "here—doc" syntax. Followirgy®u specify a

string to terminate the quoted material, and all lines following the current line down to the terminating string
are the value of the item. The terminating string may be either an identifier (a word), or some quoted text. If
guoted, the type of quotes you use determines the treatment of the text, just as in regular quoting. An
unquoted identifier works like double quotes. There must be no space betwseratig:the identifier. (If

you put a space it will be treated as a null identifier, which is valid, and matches the first empty line.) The
terminating string must appear by itself (unquoted and with no surrounding whitespace) on the terminating

line.
print <<EOF;
The price is $Price.
EOF

print <<"EOF"; # same as above
The price is $Price.
EOF

print <<‘EOC'; # execute commands
echo hi there
echo lo there

EOC
print <<"foo", <<"bar"; # you can stack them
| said foo.
foo
| said bar.
bar
myfunc(<<"THIS", 23, <<'THAT);
Here's a line
or two.
THIS
and here’s another.
THAT

Just don't forget that you have to put a semicolon on the end to finish the statement, as Perl doesn‘t know
you'‘re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

21-Jun—-1997 Perl Version 5.004 171

perldata Perl Programmers Reference Guide perldata

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of the list literal is the value of the final element, as with the
C comma operator. For example,

@foo = ('cc’, '=E’, $bar);
assigns the entire list value to array foo, but
$foo = (‘'cc’, '—E’, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar context is
the length of the array; the following assigns the value$3do:

@foo = (cc’, '-E’, $bar);

$foo = @foo; # $foo gets 3
You may have an optional comma before the closing parenthesis of a list literal, so that you can say:
@foo = (
15
25
35
)i

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the list is
evaluated in a list context, and the resulting list value is interpolated into LIST just as if each individual
element were a member of LIST. Thus arrays lose their identity in a LIST—the list

(@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub when it's called in a list context. To make a list reference that
doesNOT interpolate, seperlref.

The null list is represented iy . Interpolating it in a list has no effect. TH@s(),()) is equivalent to
() . Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = (‘'a’,’b’,’c’,’d’,’e’,')[$digit—10];

A "reverse comma operator".
return (pop(@foo),pop(@fo0))[0];

You may assign tandef in a list. This is useful for throwing away some of the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

Lists may be assigned to if and only if each element of the list is legal to assign to:

172 Perl Version 5.004 21-Jun-1997

perldata Perl Programmers Reference Guide perldata

($a, $b, $c) = (1, 2, 3);
($map{’red’}, $map{’blue’}, $map{'green’}) = (0x00f, 0x0f0, Oxf0O);

Array assignment in a scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = 1()); # set $x to f()'s return count

This is very handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

The final element may be an array or a hash:

($a, $b, @rest) = split;
local($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will get a null value. This may be usefubira) ormy() .

A hash literal contains pairs of values to be interpreted as a key and a value:

same as map assignment above
%map = ('red’,0x00f,’blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are usually interchangeable, that's not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into key/value pairs. That's why it's good to use references sometimes.

It is often more readable to use the operator between key/value pairs. Hrweoperator is mostly just a
more visually distinctive synonym for a comma, but it also arranges for its left—-hand operand to be
interpreted as a string, if it's a bareword which would be a legal identifier. This makes it nice for initializing

hashes:
%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,
)i
or for initializing hash references to be used as records:
$rec ={
witch =>'Mable the Merciless’,
cat =>'Fluffy the Ferocious’,
date =>'10/31/1776’,
¥

or for using call-by—named-parameter to complicated functions:

$field = $query—>radio_group(
name =>’'group_name’,
values =>[eenie’,’meenie’,’'minie’],
default =>’'meenie’,
linebreak => 'true’,
labels =>\%labels

)i
Note that just because a hash is initialized in that order doesn't mean that it comes out in that ostet. See
for examples of how to arrange for an output ordering.

21-Jun—-1997 Perl Version 5.004 173

perldata Perl Programmers Reference Guide perldata

Typeglobs and Filehandles

Perl uses an internal type calledypeglobto hold an entire symbol table entry. The type prefix of a
typeglob is &, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed. It also used to be
the preferred way to pass filehandles into a function, but now that we have the *foo{THING} notation it
isn‘t often needed for that, either. It is still needed to pass new filehandles into functions (*HANDLE{IO}
only works if HANDLE has already been used).

If you need to use a typeglob to save away a filehandle, do it this way:
$th = *STDOUT;

or perhaps as a real reference, like this:
$th = *STDOUT;

This is also a way to create a local filehandle. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) || return undef;
return *FH;

}

$th = newopen('/etc/passwd’);
Another way to create local filehandles is with 10::Handle and its ilk, see the botigpenf) .

Seeperlref, perlsuh andSymbol Tables in perimddr more discussion on typeglobs.

174

Perl Version 5.004 21-Jun-1997

perlsyn Perl Programmers Reference Guide perlsyn

NAME

perlsyn — Perl syntax

DESCRIPTION

A Perl script consists of a sequence of declarations and statements. The only things that need to be declared
in Perl are report formats and subroutines. See the sections below for more information on those
declarations. All uninitialized user—created objects are assumed to start with a null or O value until they are
defined by some explicit operation such as assignment. (Though you can get warnings about the use of
undefined values if you like.) The sequence of statements is executed just once, usdit@rd awk

scripts, where the sequence of statements is executed for each input line. While this means that you must
explicitly loop over the lines of your input file (or files), it also means you have much more control over
which files and which lines you look at. (Actually, I'm lying—it is possible to do an implicit loop with
either the-n or —p switch. It's just not the mandatory default like it isedandawk.)

Declarations

Perl is, for the most part, a free-form language. (The only exception to this is format declarations, for
obvious reasons.) Comments are indicated by the "#" character, and extend to the end of the line. If you
attempt to use* */ C-style comments, it will be interpreted either as division or pattern matching,
depending on the context, and CH#+ comments just look like a null regular expression, so don‘t do that.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements—declarations all take effect at compile time. Typically all the declarations are put at
the beginning or the end of the script. However, if you‘re using lexically-scoped private variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine without defining it by sayprmgame |, thus:

sub myname;
$me = myname $0 or die "can’t get myname";

Note that it functions as a list operator, not as a unary operator; so be carefubitoinstead of| in this
case. However, if you were to declare the subroutineuasmyname ($), then myname would
functonion as a unary operator, so eitheror || would work.

Subroutines declarations can also be loaded up withetiigre statement or both loaded and imported
into your namespace withuse statement. Segerimodfor details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

Simple statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged there if the block takes up more than one line, because you may
eventually add another line.) Note that there are some operatoe/éik§} anddo {} that look like
compound statements, but aren't (they‘re just TERMs in an expression), and thus need an explicit
termination if used as the last item in a statement.

Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR

21-Jun—-1997 Perl Version 5.004 175

perlsyn Perl Programmers Reference Guide perlsyn

Theif andunless modifiers have the expected semantics, presuming you're a speaker of English. The
while anduntil modifiers also have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do—-BLOCK (or to the now-deprecated do—SUBROUTINE statement), in which
case the block executes once before the conditional is evaluated. This is so that you can write loops like:

do {
$line = <STDIN>;
} until $line eq ".\n";
Seedo. Note also that the loop control statements described lateN@illwork in this construct, because

modifiers don‘t take loop labels. Sorry. You can always wrap another block around it to do that sort of
thing.

Compound statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited by the
file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKS, not statements. This means that the
curly brackets areequired—no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

if (lopen(FOO)) { die "Can’t open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom’ : die "Can’t open $FOO: $!";
a bit exotic, that last one

Theif statement is straightforward. Because BLOCKSs are always bounded by curly brackets, there is never
any ambiguity about whicli anelse goes with. If you usanless in place ofif , the sense of the test
is reversed.

Thewhile statement executes the block as long as the expression is true (does not evaluate to the null string
or 0 or "0"). The LABEL is optional, and if present, consists of an identifier followed by a colon. The
LABEL identifies the loop for the loop control statemenext , last , andredo . If the LABEL is

omitted, the loop control statement refers to the innermost enclosing loop. This may include dynamically
looking back your call-stack at run time to find the LABEL. Such desperate behavior triggers a warning if
you use the-w flag.

If there is acontinue BLOCK, it is always executed just before the conditional is about to be evaluated
again, just like the third part offar loop in C. Thus it can be used to increment a loop variable, even
when the loop has been continued viartegt statement (which is similar to theoBntinue statement).

176

Perl Version 5.004 21-Jun-1997

perlsyn Perl Programmers Reference Guide perlsyn

Loop Control
Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Thelast command is like théreak statement in C (as used in loops); it immediately exits the loop in
guestion. Theontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

The redo command restarts the loop block without evaluating the conditional again.cofitiaue
block, if any, isnot executed. This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file liketc/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sN\$//) {
$ =<
redo unless eof();
}

now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =~ s/\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line

}

Or here's a simpleminded Pascal comment stripper (warning: assumes no { or } in strings).

LINE: while (<STDIN>) {
while (s|({.*}.9){}$1 |) {}
SI{HH I
it (sI{-*) {
$front=$_;
while (<STDIN>) {
if (}){ # end of comment?
s|™$front{|;
redo LINE;
}

print;

21-Jun—-1997 Perl Version 5.004 177

perlsyn Perl Programmers Reference Guide perlsyn

Note that if there were @ontinue block on the above code, it would get executed even on discarded lines.

If the wordwhile is replaced by the wondntil , the sense of the test is reversed, but the conditional is
still tested before the first iteration.

The formwhile/if BLOCK BLOCK , available in Perl 4, is no longer available. Replace any occurrence
of if BLOCK byif (do BLOCK)

For Loops

Perl's C-styldfor loop works exactly like the correspondiwwile loop; that means that this:

for ($i = 1; $i < 10; $i++) {

}

is the same as this:

$i=1;
while ($i < 10) {

} continue {
$i++;
}
(There is one minor difference: The first form implies a lexical scope for variables declaradwittiihe
initialization expression.)

Besides the normal array index loopifigr, can lend itself to many other interesting applications. Here's
one that avoids the problem you get into if you explicitly test for end—of-file on an interactive file descriptor
causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something

}

Foreach Loops

Theforeach loop iterates over a normal list value and sets the variable VAR to be each element of the list
in turn. If the variable is preceded with the keyworg then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former value upon
exiting the loop. If the variable was previously declared withit uses that variable instead of the global
one, but it's still localized to the loop. (Note that a lexically scoped variable can cause problems with you
have subroutine or format declarations.)

The foreach keyword is actually a synonym for ttfer keyword, so you can usereach for
readability orfor for brevity. If VAR is omitted$_ is set to each value. If LIST is an actual array (as
opposed to an expression returning a list value), you can modify each element of the array by modifying
VAR inside the loop. That's because foeesach loop index variable is an implicit alias for each item in

the list that you'‘re looping over.

Examples:
for (@ary) { s/foo/bar/ }

foreach my $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM’) {
print $count, "\n"; sleep(1);

178

Perl Version 5.004 21-Jun-1997

perlsyn Perl Programmers Reference Guide perlsyn

}
for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";
}

Here's how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @aryl; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :—(

}
Saryl[$i] += Sary2[$]];
}

this is where that last takes me

}

Whereas here's how a Perl programmer more comfortable with the idiom might do it:

OUTER: foreach my $wid (@ary1) {
INNER: foreach my $jet (@ary?2) {
next OUTER if $wid > $jet;
$wid += $jet;
}
}

See how much easier this is? It's cleaner, safer, and faster. It's cleaner because it's less noisy. It's safer
because if code gets added between the inner and outer loops later on, the new code won‘t be accidentally
executed. Theext explicitly iterates the other loop rather than merely terminating the inner one. And it's
faster because Perl executdsr@ach statement more rapidly than it would the equivalent loop.

Basic BLOCKs and Switch Statements

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note thatN@i¥ fsue in

eval{} , sub{} , or contrary to popular beliedlo{} blocks, which doNOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1; last SWITCH; }
if (/*xyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

There is no official switch statement in Perl, because there are already several ways to write the equivalent.
In addition to the above, you could write

SWITCH: {
$abc = 1, last SWITCH if /*abc/;
$def = 1, last SWITCH if /~def;
$xyz = 1, last SWITCH if /"xyz/;
$nothing = 1;

}

(That's actually not as strange as it looks once you realize that you can use loop control "operators" within an
expression, That's just the normal C comma operator.)

21-Jun—-1997 Perl Version 5.004 179

perlsyn Perl Programmers Reference Guide perlsyn

or
SWITCH: {
/Mabc/ && do { $abc = 1; last SWITCH; };
/~def/ && do { $def = 1; last SWITCH; };
I"xyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;
}
or formatted so it stands out more as a "proper" switch statement:
SWITCH: {
/Nabc/ && do {
$abc = 1;
last SWITCH,;
¥
/def/ && do {
$def = 1;
last SWITCH,;
¥
"xyz/ && do {
$xyz = 1;
last SWITCH,;
¥
$nothing = 1;
}
or
SWITCH: {
/~abc/ and $abc = 1, last SWITCH,;
/~def/ and $def = 1, last SWITCH;
["xyz/ and $xyz = 1, last SWITCH;
$nothing = 1;
}
or even, horrors,
if (/~abcl)
{$abc=1}
elsif (/~def/)
{$def=1}
elsif (/"xyz/)
{$xyz=1}

else
{ $nothing =1}

A common idiom for a switch statement is to feeeach ‘s aliasing to make a temporary assignment to
$_ for convenient matching:

SWITCH: for ($where) {
/In Card Names/ && do { push @flags, '-e’; last; };
/Anywhere/ && do { push @flags, '-h’; last; };
/In Rulings/ && do { last; };
die "unknown value for form variable where: ‘Swhere™;

}

Another interesting approach to a switch statement is arrangeléoblack to return the proper value:

180 Perl Version 5.004 21-Jun-1997

perlsyn Perl Programmers Reference Guide perlsyn

$amode = do {
if ($flag & O_RDONLY){"r"}
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {
if ($flag & O_CREAT) {"w+"}
else { ($flag & O_APPEND) ? "a+": "r+"}

Goto

Although not for the faint of heart, Perl does suppagb® statement. A loop‘’s LABEL is not actually a
valid target for ggoto ; it's just the name of the loop. There are three forms: goto—LABEL, goto—EXPR,
and goto&NAME.

The goto—-LABEL form finds the statement labeled with LABEL and resumes execution there. It may not be
used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It also can't
be used to go into a construct that is optimized away. It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it's usually better to use some other construct such as last or
die. The author of Perl has never felt the need to use this form of goto (in Perl, that is—C is another matter).

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn‘t necessarily recommended if you‘re optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$il;

The goto-&NAMEorm is highly magical, and substitutes a call to the named subroutine for the currently
running subroutine. This is used AYTOLOAD() subroutines that wish to load another subroutine and then
pretend that the other subroutine had been called in the first place (except that any modifications to @__ in the
current subroutine are propagated to the other subroutine.) Aftgotbe not evencaller() will be

able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the structured control flow mechanisms of
next ,last , orredo instead of resorting togoto . For certain applications, the catch and throw pair of
eval{} anddie() for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it's expecting the beginning of
a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

=headl Here There Be Pods!

Then that text and all remaining text up through and including a line beginningauth will be ignored.
The format of the intervening text is describegénlpod

This allows you to intermix your source code and your documentation text freely, as in
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph. This
means that the following secret stuff will be ignored by both the compiler and the translators.

21-Jun—-1997 Perl Version 5.004 181

perlsyn Perl Programmers Reference Guide perlsyn

$a=3;

=secret stuff

warn "Neither POD nor CODE!?"
=cut back

print "got $a\n";

You probably shouldn't rely upon thearn() being podded out forever. Not all pod translators are
well-behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)

Much like the C preprocessor, perl can process line directives. Using this, one can control perl's idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is the same as for most C preprocessors: it matches the regular
expression\s*line\s+(\d+)\s*(?:\s"([T*)")?/ with $1 being the line number for the

next line, and2 being the optional filename (specified within quotes).

Here are some examples that you should be able to type into your command shell:

% perl

line 200 "bzzzt"

the '‘#' on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

line 200 "bzzzt"

eval gq[\n#line 2001 ""\ndie 'foo’]; print $@;
__END__

foo at - line 2001.

% perl

eval gg[\n#line 200 "foo bar"\ndie 'foo’]; print $@;
__END__

foo at foo bar line 200.

% perl

line 345 "goop"

eval\n#line". LINE__.’"™. FILE__ ."\"\ndie 'foo™;
print $@;

__END__

foo at goop line 345.

182 Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

NAME
perlop — Perl operators and precedence

SYNOPSIS

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Note that all operators borrowed from C keep the same precedence relationship with each other, even where
C's precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left -

nonassoc ++ ——

right *x

right I ~\and unary + and -
left =~ I~

left *[% X

left +-.

left << >>

nonassoc named unary operators
nonassoc <><=>zltgtlege
nonassoc === <=>eq ne cmp
left &

left |~

left &&

left I

nonassoc

right ?:

right =+= —-="*=etc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators are covered in precedence order.
DESCRIPTION

Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl. They includes variables, quote and quote-like operators, any
expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren't really
functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. These are all documepeelfuinc

If any list operator(print() , etc.) or any unary operatqchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators puch assort , or chmod is either
very high or very low depending on whether you are looking at the left side or the right side of the operator.
For example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324
the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated

after. In other words, list operators tend to gobble up all the arguments that follow them, and then act like a
simple TERM with regard to the preceding expression. Note that you have to be careful with parentheses:

21-Jun—-1997 Perl Version 5.004 183

perlop

Perl Programmers Reference Guide perlop

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably doesn't do what you expect at first glance. M#med Unary Operatorfor more discussion of
this.

Also parsed as terms are tthe {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdfs and{} .

See als®@uote and Quote-like Operatoteward the end of this section, as welta®perators"

The Arrow Operator

Auto—i

Just as in C and C++:-2" is an infix dereference operator. If the right side is either]a or{...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or a location
capable of holding a hard reference, if it's an lvalue (assignable)peBee.

Otherwise, the right side is a method name or a simple scalar variable containing the method name, and the
left side must either be an object (a blessed reference) or a class name (that is, a package pamead)j. See

ncrement and Auto—decrement
"++" and "—" work as in C. That is, if placed before a variable, they increment or decrement the variable
before returning the value, and if placed after, increment or decrement the variable after returning the value.

The auto—-increment operator has a little extra builtin magic to it. If you increment a variable that is numeric,
or that has ever been used in a numeric context, you get a normal increment. If, however, the variable has
been used in only string contexts since it was set, and has a value that is not null and matches the pattern

/Na-zA-Z]*[0-9]*%/, the increment is done as a string, preserving each character within its range,
with carry:

print ++($foo ='99’); # prints '100°

print ++($foo ='a0’); # prints 'al’

print ++($foo = 'Az’); # prints 'Ba’

print ++($foo = 'zz’); # prints 'aaa’

The auto—decrement operator is not magical.

Exponentiation

Binary "**" is the exponentiation operator. Note that it binds even more tightly than unary minus, so —2**4
is —(2**4), not (-2)**4. (This is implemented using C's pow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators

Unary "I" performs logical negation, i.e., "not". See aisb for a lower precedence version of this.

Unary "-" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a string

consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returned. One effect of these rules is that
—bareword is equivalent t6—bareword"

Unary "~" performs bitwise negation, i.e., 1's complement. (Sedrasger Arithmetig

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function name

184

Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (See examples above uifi@ems and List Operators (Leftwarjl)

Unary "\" creates a reference to whatever follows it. |Sedref Do not confuse this behavior with the
behavior of backslash within a string, although both forms do convey the notion of protecting the next thing
from interpretation.

Binding Operators

Binary "=~" binds a scalar expression to a pattern match. Certain operations search or modify the string

by default. This operator makes that kind of operation work on some other string. The right argument is a
search pattern, substitution, or translation. The left argument is what is supposed to be searched, substituted,
or translated instead of the defahilt The return value indicates the success of the operation. (If the right
argument is an expression rather than a search pattern, substitution, or translation, it is interpreted as a search
pattern at run time. This can be is less efficient than an explicit search, because the pattern must be compiled
every time the expression is evaluated.

Binary "I~" is just like "=~" except the return value is negated in the logical sense.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of two numbers. Given integer opetandad$b: If $b is positive,
then$a % $b is $a minus the largest multiple &b that is not greater thefa. If $b is negative, then
$a % $b is $a minus the smallest multiple 8b that is not less tha®a (i.e. the result will be less than or
equal to zero).

Binary "X" is the repetition operator. In a scalar context, it returns a string consisting of the left operand
repeated the number of times specified by the right operand. In a list context, if the left operand is a list in
parentheses, it repeats the list.

print "=’ x 80; # print row of dashes
print "\t" x ($tab/8), '’ x ($tab%8); # tab over
@ones = (1) x 80; #alistof 80 1's
@ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators

Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers. (Sedisger Arithmetig

Binary " returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers. (Sedisger Arithmetig

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.
These include the filetest operators, ke —M etc. Se@erlfunc

If any list operator(print() , etc.) or any unary operatdchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call. Examples:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die

21-Jun—-1997 Perl Version 5.004 185

perlop Perl Programmers Reference Guide perlop

chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because * is higher precedence than ||:
chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; #rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; #rand (10 * 20)
See alsdTerms and List Operators (Leftward)"

Relational Operators
Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<="returns true if the left argument is numerically less than or equal to the right argument.
Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.
Binary "It" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.
Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "=="returns true if the left argument is numerically equal to the right argument.

Binary "I="returns true if the left argument is humerically not equal to the right argument.

Binary "<=>" returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.
Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to, or
greater than the right argument.

"It", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current locade ifocale
is in effect. Segerllocale

Bitwise And
Binary "&" returns its operators ANDed together bit by bit. (Seelateger Arithmetig

Bitwise Or and Exclusive Or
Binary "|" returns its operators ORed together bit by bit. (Sedraisger Arithmetic

Binary """ returns its operators XORed together bit by bit. (Seelalsger Arithmetic

C-style Logical And

Binary "&&" performs a short—circuit logical AND operation. That is, if the left operand is false, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

186 Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

C-style Logical Or
Binary "||" performs a short—circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

The || and&& operators differ from C's in that, rather than returning O or 1, they return the last value
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it's not "0") might be:

$home = SENV{'HOME'} || SENV{'LOGDIR’} ||
(getpwuid($<))[7] || die "You're homeless\n";

As more readable alternatives && and|| , Perl provides "and" and "or" operators (see below). The
short—circuit behavior is identical. The precedence of "and" and "or" is much lower, however, so that you
can safely use them after a list operator without the need for parentheses:

unlink "alpha”, "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would have been written like this:

unlink("alpha”, "beta", "gamma’)
|l (gripe(), next LINE);

Range Operator

Binary ".." is the range operator, which is really two different operators depending on the context. In a list
context, it returns an array of values counting (by ones) from the left value to the right value. This is useful
for writing for (1..10) loops and for doing slice operations on arrays. Be aware that under the current
implementation, a temporary array is created, so you'll burn a lot of memory if you write something like this:

for (1 .. 1_000_000) {
code

}

In a scalar context, ".." returns a boolean value. The operator is bistable, like a flip—flop, and emulates the
line-range (comma) operator &£d awk, and various editors. Each ".." operator maintains its own boolean
state. Itis false as long as its left operand is false. Once the left operand is true, the range operator stays true
until the right operand is tru&FTERwhich the range operator becomes false again. (It doesn't become
false till the next time the range operator is evaluated. It can test the right operand and become false on the
same evaluation it became true (aguvk), but it still returns true once. If you don‘t want it to test the right
operand till the next evaluation (asdad, use three dots ("...") instead of two.) The right operand is not
evaluated while the operator is in the "false" state, and the left operand is not evaluated while the operator is
in the "true" state. The precedence is a little lower than |R&nd The value returned is either the null

string for false, or a sequence number (beginning with 1) for true. The sequence number is reset for each
range encountered. The final sequence number in a range has the string "EQ" appended to it, which doesn't
affect its numeric value, but gives you something to search for if you want to exclude the endpoint. You can
exclude the beginning point by waiting for the sequence number to be greater than 1. If either operand of

scalar ".." is a numeric literal, that operand is implicity compared to$thevariable, the current line
number. Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines
nextline if (1 .. /"$/); # skip header lines
s> [if (/9] .. eof()); # quote body

As a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no—-op
@foo = @foo[$#foo—4 .. $#foo]; # slice last 5 items

21-Jun—-1997 Perl Version 5.004 187

perlop Perl Programmers Reference Guide perlop

The range operator (in a list context) makes use of the magical auto—increment algorithm if the operands are
strings. You can say

@alphabet = (A’ .. ’Z’);
to get all the letters of the alphabet, or
$hexdigit = (0 .. 9, 'a’ .. 'f)[$num & 15];
to get a hexadecimal digit, or
@z2 = (01’ .. '31"); print $z2[$mday];
to get dates with leading zeros. If the final value specified is not in the sequence that the magical increment
would produce, the sequence goes until the next value would be longer than the final value specified.

Conditional Operator

Ternary "?:" is the conditional operator, just as in C. It works much like an if-then—else. If the argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned. For
example:

printf "I have %d dog%s.\n", $n,
($n==1)72":"s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$a = $ok ? $b : $c; # get a scalar
@a = %ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal Ivalues (meaning that you can
assign to them):

($a_or_b ? $a: $b) = $c;
This is not necessarily guaranteed to contribute to the readability of your program.

Assignment Operators

=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

$a +=2;
is equivalent to
$a=$%a+2;
although without duplicating any side effects that dereferencing the Ivalue might trigger, such as from
tie() . Other assignment operators work similarly. The following are recognized:
= p= F= = <<= &&=
-= /= |: >>= ||:
= 0p= AN=

X=
Note that while these are grouped by family, they all have the precedence of assignment.

Unlike in C, the assignment operator produces a valid Ivalue. Modifying an assignment is equivalent to
doing the assignment and then modifying the variable that was assigned to. This is useful for modifying a
copy of something, like this:

($tmp = $global) =~ tr [A-Z] [a-Zz];

Likewise,

188 Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

($a +=2) *=3;
is equivalent to
$a +=2;
$a*=3;
Comma Operator

Binary "," is the comma operator. In a scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. This is just like C's comma operator.

In a list context, it's just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It's useful for documenting arguments
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a string.

List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical operators "and", "or", and
"not”, which may be used to evaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can't open: $!\n";

See also discussion of list operatord@ms and List Operators (Leftward)

Logical Not

Unary "not" returns the logical negation of the expression to its right. It's the equivalent of
very low precedence.

except for the

Logical And

Binary "and" returns the logical conjunction of the two surrounding expressions. It's equivalk&t to
except for the very low precedence. This means that it short—circuits: i.e., the right expression is evaluated
only if the left expression is true.

Logical or and Exclusive Or

Binary "or" returns the logical disjunction of the two surrounding expressions. It's equivalent to || except for
the very low precedence. This means that it short—circuits: i.e., the right expression is evaluated only if the
left expression is false.

Binary "xor" returns the exclusive—OR of the two surrounding expressions. It cannot short circuit, of course.

C Operators Missing From Perl
Here is what C has that Perl doesn‘t:

unary & Address-of operator. (But see the "\" operator for taking a reference.)

unary * Dereference—address operator. (Perl's prefix dereferencing operators are$typ@d:%, and
&)

(TYPE) Type casting operator.

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various kinds

of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. In the following

table, af} represents any pair of delimiters you choose. Non-bracketing delimiters use the same character
fore and aft, but the 4 sorts of brackets (round, angle, square, curly) will all nest.

Customary Generic Meaning Interpolates
" af} Literal no
qa{} Literal yes

21-Jun—-1997 Perl Version 5.004 189

perlop

Perl Programmers Reference Guide perlop
“ ax{} Command yes
gw{} Word list no
I m{} Pattern match yes
s{{} Substitution yes
tr{}{} Translation no

For constructs that do interpolation, variables beginning with 6r "@ are interpolated, as are the
following sequences:

\t tab (HT, TAB)
\n newline (LF, NL)
\r return (CR)

\f form feed (FF)

\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\033 octal char

\x1b hex char

\c[control char

\l lowercase next char

\u uppercase next char
\L lowercase till \E

\U uppercase till \E

\E end case modification
\Q guote regexp metacharacters till \E

If use locale is in effect, the case map used\by, \L ,\u and <\U is taken from the current locale. See
perllocale

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. If this is not what you want, ¥3eto interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation. In particular, contrary to the expectations
of shell programmers, back—quotes NOT interpolate within double quotes, nor do single quotes impede
evaluation of variables when used within double quotes.

Regexp Quote-Like Operators

Here are the quote-like operators that apply to pattern matching and related activities.

?PATTERN?

This is just like thdpattern/ search, except that it matches only once between calls to the
reset() operator. This is a useful optimization when you want to see only the first occurrence
of something in each file of a set of files, for instance. fypatterns local to the current
package are reset.

This usage is vaguely deprecated, and may be removed in some future version of Perl.
m/PATTERN/gimosx

/PATTERN/gimosx

Searches a string for a pattern match, and in a scalar context returns true (1) or false (). If no
string is specified via the~ or !~ operator, th&_ string is searched. (The string specified with

=~ need not be an lvalue—it may be the result of an expression evaluation, but remember the
binds rather tightly.) See algerlre. Seeperllocale for discussion of additional considerations
which apply wheruse locale s in effect.

Options are:

g Match globally, i.e., find all occurrences.

190

Perl Version 5.004 21-Jun-1997

perlop

Perl Programmers Reference Guide perlop

i Do case-insensitive pattern matching.
m Treat string as multiple lines.

o] Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

If "/" is the delimiter then the initiam is optional. With them you can use any pair of
non—-alphanumeric, non-whitespace characters as delimiters. This is particularly useful for
matching Unix path names that contain "/", to avoid LTS (leaning toothpick syndrome). If "?" is
the delimiter, then the match—only—once rul@BATTERN?applies.

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every
time the pattern search is evaluated. (Note $hatind$| might not be interpolated because
they look like end-of-string tests.) If you want such a pattern to be compiled only once, add a
/o after the trailing delimiter. This avoids expensive run-time recompilations, and is useful
when the value you are interpolating won‘t change over the life of the script. However,
mentioning/o constitutes a promise that you won't change the variables in the pattern. If you
change them, Perl won'‘t even notice.

If the PATTERN evaluates to a null string, the last successfully executed regular expression is
used instead.

If used in a context that requires a list value, a pattern match returns a list consisting of the
subexpressions matched by the parentheses in the patter§li.e$q, $3...). (Note that

here$1 etc. are also set, and that this differs from Perl 4's behavior.) If the match fails, a null
array is returned. If the match succeeds, but there were no parentheses, a list value of (1) is
returned.

Examples:

open(TTY, '/devitty’);
<TTY> =~ /"y/i && foo(); # do foo if desired

if (/Version: *([0-9.]%)/) { $version = $1; }
next if m#~/usr/spool/uucp#;

poor man'’s grep

$arg = shift;
while (<>) {

print if /$arg/o; # compile only once
}

if (BF1, $F2, SELC) = ($100 =~ NASH\s+ASHN\S*(.¥)1))

This last example split§foo into the first two words and the remainder of the line, and assigns
those three fields t&F1, $F2, and$Etc. The conditional is true if any variables were
assigned, i.e., if the pattern matched.

The/g modifier specifies global pattern matching—that is, matching as many times as possible
within the string. How it behaves depends on the context. In a list context, it returns a list of all
the substrings matched by all the parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In a scalar contexin//g iterates through the string, returning TRUE each time it matches, and
FALSE when it eventually runs out of matches. (In other words, it remembers where it left off
last time and restarts the search at that point. You can actually find the current match position of
a string or set it using th@os() function; seeos) A failed match normally resets the search
position to the beginning of the string, but you can avoid that by adding the "c" modifier (e.g.
m//gc). Modifying the target string also resets the search position.

21-Jun-1997

Perl Version 5.004 191

perlop

Perl Programmers Reference Guide

perlop

You can intermixm//g matches withm/N\G.../g

, where\G is a zero—width assertion that

matches the exact position where the previowfg , if any, left off. The\G assertion is not
supported without thég modifier; currently, withoutfg , \G behaves just likéA , but that's
accidental and may change in the future.

Examples:

list context
($one, $five, $fifteen) = (‘uptime’ =~ /\d+\.\d+)/g);

scalar context

while (defined($paragraph = <>)) {

}

while ($paragraph =~ /[a—z][")]*[.!?]+[")]*\s/g) {
$sentences++;

}

print "$sentences\n";

using m//gc with \G

$_ ="ppoogppqq";
while ($i++ < 2) {

}

print "1: ™

print $1 while /(0)/gc; print ", pos=", pos, "\n";
print "2: ™"

print $1 if AG(q)/gc; print ", pos=", pos, "\n";
print "3: ™

print $1 while /(p)/gc; print "', pos=", pos, "\n";

The last example should print:

=

2
3
1
2

3:

A useful idiom forlex -like scanners i8G.../gc

:'00’, pos=4
:'g’, pos=5
. ’pp’, pos=7
2", pos=7
:'g’, pos=8
”, pos=8

. You can combine several regexps like

this to process a string part—by-part, doing different actions depending on which regexp

matched. Each regexp tries to match where the previous one leaves off.

$ =<<EOL
$url = new URI::URL "http://iwww/"; die if $url eq "xXx";

EO

L

LOOP:

{

print(" digits"), redo LOOP if A\G\d+\b],.;]?\s*/gc;

print(" lowercase"), redo LOOP if A\G[a—-z]+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if AG[A-Z]+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP if N\G[A-Z][a-z]+\b],.;]?\s*/gc;
print(" MiXeD"), redo LOOP if A\G[A-Za-z]+\b],.;]?\s*/gc;

print(" alphanumeric"), redo LOOP if A\G[A-Za-z0-9]+\b][,.;]?\s*/gc;
print(" line—noise"), redo LOOP if N\G["A-Za-z0-9]+/gc;
print ". That's all\n";

192

Perl Version 5.004

21-Jun-1997

perlop Perl Programmers Reference Guide perlop

Here is the output (split into several lines):

line—noise lowercase line—noise lowercase UPPERCASE line—noise
UPPERCASE line—noise lowercase line—noise lowercase line—noise
lowercase lowercase line—noise lowercase lowercase line—noise
MiXeD line—-noise. That's all!

q/STRING/
‘STRING’

A single—quoted, literal string. A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it."";
$bar = q('This is it.”);
$baz ="\n’; # a two—character string

qa/STRING/
"STRING"

A double—quoted, interpolated string.
$_.=qq
(*** The previous line contains the naughty word "$1".\n)
if /(tclrexx|python)/; # :-)
$baz = "\n"; # a one—character string

gx/STRING/

‘STRING® A string which is interpolated and then executed as a system command. The collected standard
output of the command is returned. In scalar context, it comes back as a single (potentially
multi-line) string. In list context, returns a list of lines (however you‘ve defined lineshwitbr
$INPUT_RECORD_SEPARATOR).

$today = qx{ date };
SeeO Operators'for more discussion.

qW/STRING/

Returns a list of the words extracted out of STRING, using embedded whitespace as the word
delimiters. It is exactly equivalent to

split(" ’, g/STRING/);
Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with comma or to put comments into a
multi-line qw-string. For this reason th& switch produce warnings if the STRING contains
the "," or the "#" character.

S/IPATTERN/REPLACEMENT/egimosx

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (specifically, the empty
string).

If no string is specified via the~ or !~ operator, thes_ variable is searched and modified.
(The string specified witk~ must be a scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an Ivalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATTERN
or the REPLACEMENT. Otherwise, if the PATTERN contain$ that looks like a variable
rather than an end-of-string test, the variable will be interpolated into the pattern at run—time. If

21-Jun—-1997 Perl Version 5.004 193

perlop

Perl Programmers Reference Guide perlop

you want the pattern compiled only once the first time the variable is interpolated, use the
option. If the pattern evaluates to a null string, the last successfully executed regular expression
is used instead. Seqwerlre for further explanation on these. Seerllocale for discussion of
additional considerations which apply whese locale s in effect.

Options are:

e Evaluate the right side as an expression.
g Replace globally, i.e., all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

o] Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

Any non-alphanumeric, hon-whitespace delimiter may replace the slashes. If single quotes are
used, no interpretation is done on the replacement string/éthenodifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text is not
evaluated as a command. If the PATTERN is delimited by bracketing quotes, the
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes, e.g.,
s(foo)(bar) or s<foo>/bar/ . Al/e will cause the replacement portion to be interpreter

as a full-fledged Perl expression aewhl() ed right then and there. It is, however, syntax
checked at compile-time.

Examples:
s/\bgreen\b/mauve/q; # don’t change wintergreen
$path =~ s|/usr/bin|/usr/local/bin|;
s/Login: $foo/Login: $bar/; # run—time pattern
($foo = $bar) =~ s/this/that/;
$count = ($paragraph =~ s/Mister\b/Mr./g);
$_ ='abcl23xyz’;
sNd+/$&*2/e; # yields 'abc246xyz’

s/\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’
s\w/$& x 2/eq; # yields 'aabbcc 224466xxyyzz’

s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
s/*=(\w+)/&pod($1)/ge; # use function call

/e’s can even nest; this will expand
simple embedded variables in $_
s/(\$\w+)/$1/eeq;

Delete C comments.

$program =~ s {
N* # Match the opening delimiter.
*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

}gsx;
SIMs*(.*?)\s*$/$1/; # trim white space
s/I([M1%) *([1%)/$2 $1/; # reverse 1st two fields

Note the use db instead of \ in the last example. Unligked we use the Migit> form in only
the left hand side. Anywhere else Bsdigit >.

194

Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

Occasionally, you can't use just/@ to get all the changes to occur. Here are two common
cases:

put commas in the right places in an integer
1 while s/(.:A\d)(\d\d\d)/$1,$2/g; # perl4
1 while s/(\d)(\d\d\d)(?\d)/$1,$2/g; # perl5

expand tabs to 8—column spacing
1 while sA\t+/" * x (length($&)*8 — length($)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Translates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or deleted. If no
string is specified via the =~ or !~ operator, $hestring is translated. (The string specified with

=~ must be a scalar variable, an array element, a hash element, or an assignment to one of those,
i.e., an Ivalue.) Fosed devoteesy is provided as a synonym far . If the SEARCHLIST is
delimited by bracketing quotes, the REPLACEMENTLIST has its own pair of quotes, which
may or may not be bracketing quotes, drfA—-Z][a-z] ortr(+—*/)/ABCD/

Options:

¢ Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. [&the
modifier is specified, any characters specified by SEARCHLIST not found in

REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavior of
sometr programs, which delete anything they find in the SEARCHLIST, period.) Ifshe
modifier is specified, sequences of characters that were translated to the same character are
squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is
replicated till it is long enough. If the REPLACEMENTLIST is null, the SEARCHLIST is
replicated. This latter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:
$ARGV[1] =~ tr/A-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # countthe starsin $_
$cnt = $sky =~ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla-zA-Z/ls; # bookkeeper —> bokeper
($HOST = $host) =~ trla-z/A-Z/,
trla-zA-Z/ Ics; # change non-alphas to single space
tr \200-\377]
[\000-\177]; # delete 8th bit

If multiple translations are given for a character, only the first one is used:
tr/AAA/XYZ/

will translate any A to X.

21-Jun—-1997 Perl Version 5.004 195

perlop

Perl Programmers Reference Guide perlop

Note that because the translation table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you want
to use variables, you must useemal()

eval "tr/$oldlist/Snewlist/";

die 3@ if $@;
eval "tr/$oldlist/$newlist/, 1" or die $@;

I/O Operators

There are several 1/0 operators you should know about. A string is enclosed by backticks (grave accents)
first undergoes variable substitution just like a double quoted string. It is then interpreted as a command, and
the output of that command is the value of the pseudo-literal, like in a shell. In a scalar context, a single
string consisting of all the output is returned. In a list context, a list of values is returned, one for each line of
output. (You can se$/ to use a different line terminator.) The command is executed each time the
pseudo-literal is evaluated. The status value of the command is returi$&d (see perlvar for the
interpretation ofs?). Unlike incsh, no translation is done on the return data—newlines remain newlines.
Unlike in any of the shells, single quotes do not hide variable names in the command from interpretation. To
pass ab through to the shell you need to hide it with a backslash. The generalized form of backticks is
gx// . (Because backticks always undergo shell expansion as welkdsecfor security concerns.)

Evaluating a filehandle in angle brackets yields the next line from that file (newline, if any, included), or
undef at end of file. Ordinarily you must assign that value to a variable, but there is one situation where an
automatic assignment happerntand ONLY ifthe input symbol is the only thing inside the conditional of a
while or for(;;) loop, the value is automatically assigned to the varifble The assigned value is

then tested to see if it is defined. (This may seem like an odd thing to you, but you'll use the construct in
almost every Perl script you write.) Anyway, the following lines are equivalent to each other:

while (defined($_ = <STDIN>)) { print; }
while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while <STDIN>;

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehastdies , stdout , and
stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additional filehandles may be created withdpen() function. Seepen() for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list consisting of all the input lines is
returned, one line per list element. It's easy to mak&RGEdata space this way, so use with care.

The null filehandle <> is special and can be used to emulate the behasextafdawk. Input from <>

comes either from standard input, or from each file listed on the command line. Here's how it works: the
first time <> is evaluated, the @ARGYV array is checked, and if it is B8RGV[0] is set to "-", which

when opened gives you standard input. The @ARGYV array is then processed as a list of filenames. The
loop

while (<>) {
code for each line

}

is equivalent to the following Perl-like pseudo code:

unshift@ARGV, ') unless @ARGYV;
while (3ARGV = shift) {
open(ARGV, $ARGV);
while (RARGV>) {
code for each line

}

196

Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

except that it isn‘t so cumbersome to say, and will actually work. It really does shift array @ARGV and put
the current filename into variabARGV. It also uses filehandl@RGVinternally—<> is just a synonym

for <ARGV>, which is magical. (The pseudo code above doesn‘t work because it treats <ARGV> as
non—-magical.)

You can modify @ARGYV before the first <> as long as the array ends up containing the list of flenames you
really want. Line numbersp() continue as if the input were one big happy file. (But see example under
eof() for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. If you want to pass switches into your
script, you can use one of the Getopts modules or put a loop on the front like this:

while ($_ = $SARGVI[0], /I"-/) {
shift;
last if IN——9/;
if (/A-D(.*)/) { $debug = $1}
if (I*-vl) {$verbose++ }
other switches

while (<>) {
code for each line

}

The <> symbol will return FALSE only once. If you call it again after this it will assume you are processing
another @ARGYV list, and if you haven't set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar variable§fgz)< then that variable
contains the name of the filehandle to input from, or a reference to the same. For example:

$fh = *STDIN;
$line = <$fh>;

If the string inside angle brackets is not a filehandle or a scalar variable containing a filehandle name or
reference, then it is interpreted as a filename pattern to be globbed, and either a list of flenames or the next
filename in the list is returned, depending on context. One lev&linterpretation is done first, but you

can‘t say<$foo> because that's an indirect filehandle as explained in the previous paragraph. (In older
versions of Perl, programmers would insert curly brackets to force interpretation as a filename glob:
<${foo}>. These days, it's considered cleaner to call the internal function directipl$foo),

which is probably the right way to have done it in the first place.) Example:

while (<*.c>) {
chmod 0644, $_;
}

is equivalent to

open(FOO, "echo *.c | tr —s " \t\r\f’ "\\012\\012\\012\\012'|");
while (<FOO>) {

chop;

chmod 0644, $_;
}

In fact, it's currently implemented that way. (Which means it will not work on filenames with spaces in
them unless you have csh(1) on your machine.) Of course, the shortest way to do the above is:

chmod 0644, <*.c>;

Because globbing invokes a shell, it's often faster torealdidir() yourself and do your owgrep()
on the filenames. Furthermore, due to its current implementation of using a shglihbihe routine may
get "Arg list too long" errors (unless you‘ve installed tcsh(1U/pasgcsh).

21-Jun—-1997 Perl Version 5.004 197

perlop Perl Programmers Reference Guide perlop

A glob evaluates its (embedded) argument only when it is starting a new list. All values must be read before
it will start over. In a list context this isn‘t important, because you automatically get them all anyway. In a
scalar context, however, the operator returns the next value each time it is called, or a FALSE value if you‘ve

just run out. Again, FALSE is returned only once. So if you‘re expecting a single value from a glob, it is
much better to say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning FALSE.

It you'‘re trying to do variable interpolation, it's definitely better to usegiod() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time, whenever it determines that all
of the arguments to an operator are static and have no side effects. In particular, string concatenation

happens at compile time between literals that don‘t do variable substitution. Backslash interpretation also
happens at compile time. You can say

'Now is the time for all’ . "\n" .
'good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (—s $file >5 + 100 * 2**16){ ... }
}
the compiler will precompute the number that expression represents so that the interpreter won'‘t have to.
Integer Arithmetic
By default Perl assumes that it must do most of its arithmetic in floating point. But by saying
use integer;

you may tell the compiler that it's okay to use integer operations from here to the end of the enclosing
BLOCK. An inner BLOCK may countermand this by saying

no integer;
which lasts until the end of that BLOCK.

The bitwise operators &", "|", """, "~", "<<", and ") always produce integral results. Howewee

integer still has meaning for them. By default, their results are interpreted as unsigned integers.
However, ifuse integer is in effect, their results are interpreted as signed integers. For exafple,
usually evaluates to a large integral value. Howass integer; ~0 is —1.

Floating—point Arithmetic

While use integer provides integer—only arithmetic, there is no similar ways to provide rounding or
truncation at a certain number of decimal places. For rounding to a certain number cfigit§) or
printf() is usually the easiest route.

The POSIX module (part of the standard perl distribution) implenoeii(3 , floor() , and a number of

other mathematical and trigonometric functions. The Math::Complex module (part of the standard perl
distribution) defines a number of mathematical functions that can also work on real numbers.
Math::Complex not as efficient as POSIX, but POSIX can‘t work with complex numbers.

198 Perl Version 5.004 21-Jun-1997

perlop Perl Programmers Reference Guide perlop

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

21-Jun—-1997 Perl Version 5.004 199

perire Perl Programmers Reference Guide perlre
NAME

perlre — Perl regular expressions
DESCRIPTION

This page describes the syntax of regular expressions in Perl. For a description of usavegular
expressions in matching operations, plus various examples of the samé/, saels/// in perlop.

The matching operations can have various modifiers. The modifiers which relate to the interpretation of the
regular expression inside are listed below. For the modifiers that alter the behaviour of the operation, see
m// in perlopands// in perlop

i Do case-insensitive pattern matching.
If use locale is in effect, the case map is taken from the current localepe3kecale

m Treat string as multiple lines. That is, change "" &id from matching at only the very start or end
of the string to the start or end of any line anywhere within the string,

S Treat string as single line. That is, change "." to match any character whatsoever, even a newline,
which it normally would not match.

X Extend your pattern's legibility by permitting whitespace and comments.

These are usually written as "the modifier", even though the delimiter in question might not actually be a
slash. In fact, any of these modifiers may also be embedded within the regular expression itself using the
new(?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells the regular expression parser to ignore
whitespace that is neither backslashed nor within a character class. You can use this to break up your regular
expression into (slightly) more readable parts. Floharacter is also treated as a metacharacter introducing

a comment, just as in ordinary Perl code. This also means that if you want real whitegpekaracters in

the pattern that you'll have to either escape them or encode them using octal or hex escapes. Taken together,
these features go a long way towards making Perl's regular expressions more readable. See the C comment
deletion code iperlop.

Regular Expressions

The patterns used in pattern matching are regular expressions such as those supplied in the Version 8 regexp
routines. (In fact, the routines are derived (distantly) from Henry Spencer's freely redistributable
reimplementation of the V8 routines.) Séersion 8 Regular Expressiofar details.

In particular the following metacharacters have their stanelgnep-ish meanings:

\ Quote the next metacharacter

A Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)
| Alternation

() Grouping

[Character class

By default, the """ character is guaranteed to match at only the beginning of the strirl§j, tteatacter at

only the end (or before the newline at the end) and Perl does certain optimizations with the assumption that
the string contains only one line. Embedded newlines will not be matched by "$".or 'You may,
however, wish to treat a string as a multi-line buffer, such that the "" will match after any newline within
the string, and$" will match before any newline. At the cost of a little more overhead, you can do this by
using the /m modifier on the pattern match operator. (Older programs did this by $&ttirgut this

practice is now deprecated.)

To facilitate multi-line substitutions, the character never matches a newline unless you ise the
modifier, which in effect tells Perl to pretend the string is a single line—even if it isn't./sTheodifier

200

Perl Version 5.004 21-Jun-1997

perire Perl Programmers Reference Guide perlre

also overrides the setting 8f, in case you have some (badly behaved) older code that sets it in another
module.

The following standard quantifiers are recognized:

* Match O or more times
+ Match 1 or more times
? Match 1 or O times

{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated as a regular character.) The " modifier is
equivalent tof0,} , the "+" modifier to{1,} , and the "?" modifier t§¢0,1} . n and m are limited to
integral values less than 65536.

By default, a quantified subpattern is "greedy", that is, it will match as many times as possible (given a
particular starting location) while still allowing the rest of the pattern to match. If you want it to match the

minimum number of times possible, follow the quantifier with a "?". Note that the meanings don'‘t change,
just the "greediness™:

*? Match O or more times

+? Match 1 or more times

?? Match O or 1 time

{n}? Match exactly n times

{n,}? Match at least n times

{n,m}? Match at least n but not more than m times

Because patterns are processed as double quoted strings, the following also work:

\t tab (HT, TAB)

\n newline (LF, NL)

\r return (CR)

\f form feed (FF)

\a alarm (bell) (BEL)

\e escape (think troff) (ESC)
\033 octal char (think of a PDP-11)
\x1B hex char

\c[control char

\l lowercase next char (think vi)

\u uppercase next char (think vi)
\L lowercase till \E (think vi)

\U uppercase till \E (think vi)

\E end case modification (think vi)
\Q quote regexp metacharacters till \E

If use locale is in effect, the case map used\by, \L ,\u and <\U is taken from the current locale. See
perllocale

In addition, Perl defines the following:

\w Match a "word" character (alphanumeric plus " ")
\W Match a non-word character

\s Match a whitespace character

\S Match a non-whitespace character

\d Match a digit character

\D Match a non-digit character

Note that\w matches a single alphanumeric character, not a whole word. To match a word you‘d need to
say\w+ . If use locale is in effect, the list of alphabetic characters generategvbig taken from the

21-Jun—-1997 Perl Version 5.004 201

perire

Perl Programmers Reference Guide perlre

current locale. Seperllocale You may usaw, \W, \s ,\S,\d , and\D within character classes (though
not as either end of a range).

Perl defines the following zero—width assertions:

\b Match a word boundary

\B Match a non-(word boundary)

\A Match at only beginning of string

\Z Match at only end of string (or before newline at the end)
\G Match only where previous m//g left off (works only with /g)

A word boundary\p) is defined as a spot between two characters that Yvasoa one side of it and\aV

on the other side of it (in either order), counting the imaginary characters off the beginning and end of the
string as matching ®V. (Within character classéls represents backspace rather than a word boundary.)
The\A and\Z are just like """ and$" except that they won'‘t match multiple times when/themodifier

is used, while "M and$" will match at every internal line boundary. To match the actual end of the string,
not ignoring newline, you can us&?\n) . The\G assertion can be used to chain global matches (using
m//g), as described iRegexp Quote-Like Operators in perlop

It is also useful when writinex -like scanners, when you have several regexps which you want to match
against consequent substrings of your string, see the previous reference. The actual locatids wiikere
match can also be influenced by uspog() as an Ivalue. Sg®s

When the bracketing construgt..) is used, \<digit> matches the digit'th substring. Outside of the
pattern, always usé” instead of "\" in front of the digit. (While the \<digit> notation can on rare occasion
work outside the current pattern, this should not be relied upon. See the WARNING below.) The scope of
$<digit> (and$', $&, and$’) extends to the end of the enclosing BLOCK or eval string, or to the next
successful pattern match, whichever comes first. If you want to use parentheses to delimit a subpattern (e.g.,
a set of alternatives) without saving it as a subpattern, follow the (with a ?:.

You may have as many parentheses as you wish. If you have more than 9 substrings, the$&Djables

$11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc. refer back to substrings if
there have been at least that many left parentheses before the backreference. Otherwise (for backward
compatibility) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And so on. (\1 through
\9 are always backreferences.)

$+ returns whatever the last bracket match match®®l.returns the entire matched string$0 (used to
return the same thing, but not any moré&) returns everything before the matched strir§j. returns
everything after the matched string. Examples:

SIN[MT) *([N 1%)/%2 $1/; # swap first two words

if (Time: (..):(.):(IN {
$hours = $1;
$minutes = $2;
$seconds = $3;

}

Once perl sees that you need on8&f $ or$’ anywhere in the program, it has to provide them on each

and every pattern match. This can slow your program down. The same mechanism that handles these
provides for the use d§1, $2, etc., so you pay the same price for each regexp that contains capturing
parentheses. But if you never @&, etc., in your script, then regexpsthout capturing parentheses won't

be penalized. So avo&, $‘, and$' if you can, but if you can‘t (and some algorithms really appreciate
them), once you‘ve used them once, use them at will, because you‘ve already paid the price.

You will note that all backslashed metacharacters in Perl are alphanumeric, sbch\was \n . Unlike

some other regular expression languages, there are no backslashed symbols that aren‘t alphanumeric. So
anything that looks like \\, \(; \), \<, \>, \{{, or \} is always interpreted as a literal character, not a
metacharacter. This makes it simple to quote a string that you want to use for a pattern but that you are
afraid might contain metacharacters. Quote simply all the non—alphanumeric characters:

202

Perl Version 5.004 21-Jun-1997

perire Perl Programmers Reference Guide perlre

$pattern =~ s/(\W)\\$1/g;

You can also use the builtquotemeta() function to do this. An even easier way to quote metacharacters
right in the match operator is to say

/$unquoted\Q$quoted\E$unquoted/

Perl defines a consistent extension syntax for regular expressions. The syntax is a pair of parentheses with a
guestion mark as the first thing within the parentheses (this was a syntax error in older versions of Perl). The
character after the question mark gives the function of the extension. Several extensions are already
supported:

(?#text) A comment. The text is ignored. If the switch is used to enable whitespace formatting, a
simple# will suffice.

(?:regexp) This groups things lik&) " but doesn‘t make backreferences liKe " does. So
split(Ab(?:alb|c)\b/)
is like
split(/Ab(a|b|c)\b/)
but doesn‘t spit out extra fields.

(?=regexp) A zero—width positive lookahead assertion. For exaniphe;(?=\t)/ matches a word
followed by a tab, without including the tab$&..

(?'regexp) A zero—width negative lookahead assertion. For exartiptg?!bar)/ matches any
occurrence of "foo" that isn‘t followed by "bar". Note however that lookahead and
lookbehind are NOT the same thing. You cannot use this for lookbée(®tdo)bar/
will not find an occurrence of "bar" that is preceded by something which is not "foo". That's
because th€?!foo) s just saying that the next thing cannot be "foo"—and it's not, it's a
"bar", so "foobar" will match. You would have to do something l{Ré&foo)...bar/
for that. We say "like" because there's the case of your "bar" not having three characters
before it. You could cover that this wa§?:(?!foo)...|"..?)bar/ . Sometimes it's
still easier just to say:

if (/foo/ && $' =~ /bar$/)

(?imsx) One or more embedded pattern—match modifiers. This is particularly useful for patterns that
are specified in a table somewhere, some of which want to be case sensitive, and some of
which don‘t. The case insensitive ones need to include mggly at the front of the
pattern. For example:

$pattern = "foobar";
if (/$pattern/i)

more flexible:

$pattern = "(?i)foobar";
if (/$pattern/)

The specific choice of question mark for this and the new minimal matching construct was because 1)
guestion mark is pretty rare in older regular expressions, and 2) whenever you see one, you should stop and
"question" exactly what is going on. That's psychology...

Backtracking
A fundamental feature of regular expression matching involves the notion batt&ttacking which is
used (when needed) by all regular expression quantifiers, nantély +, +?, {n,m} , and{n,m}? .

For a regular expression to match, #mire regular expression must match, not just part of it. So if the
beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the pattern to fail,
the matching engine backs up and recalculates the beginning part—that‘s why it's called backtracking.

21-Jun—-1997 Perl Version 5.004 203

perire

Perl Programmers Reference Guide perlre

Here is an example of backtracking: Let's say you want to find the word following "foo" in the string "Food
is on the foo table.™:

$ ="Food is on the foo table.";
if (Ab(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
}

When the match runs, the first part of the regular expresgi(fiod)) finds a possible match right at the
beginning of the string, and loads @i with "Foo". However, as soon as the matching engine sees that
there's no whitespace following the "Foo" that it had savefilin it realizes its mistake and starts over

again one character after where it had the tentative match. This time it goes all the way until the next
occurrence of "foo". The complete regular expression matches this time, and you get the expected output of
"table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match everything between "foo" and
"bar". Initially, you write something like this:

$_ = "The food is under the bar in the barn.";
if (/foo(.*)bar/) {

print "got <$1>\n";
}

Which perhaps unexpectedly yields:
got <d is under the bar in the >

That's because® was greedy, so you get everything betweerfithe"foo" and theast "bar". In this case,
it's more effective to use minimal matching to make sure you get the text between a "foo" and the first "bar"
thereafter.

if (/foo(.*?)bar/) { print "got <$1>\n"}
got <d is under the >

Here's another example: let's say you'd like to match a number at the end of a string, and you also want to
keep the preceding part the match. So you write this:

$ ="l have 2 numbers: 53147";
if (/(X)0d¥)/){ # Wrong!
print "Beginning is <$1>, number is <$2>.\n";

}

That won'‘t work at all, becausé was greedy and gobbled up the whole string\d&s can match on an
empty string the complete regular expression matched successfully.

Beginning is <I have 2 numbers: 53147>, number is <>.
Here are some variants, most of which don‘t work:

$ ="l have 2 numbers: 53147";
@pats = qw{

(:)(\d*)

(::)(\d+)

(*?)(\d*)

(*?)(\d+)

((\d+)$

(*?)(\d+)$

(N\b(\d+)$

(A\D)(\d+)$

204

Perl Version 5.004 21-Jun-1997

perire Perl Programmers Reference Guide perlre

for $pat (@pats) {
printf "%-12s ", $pat;
if (/$pat/) {
print "<$1> <$2>\n";
}else {
print "FAIL\n";
}
}

That will print out:

(.:*)(\d*) <l have 2 numbers: 53147> <>
(.:*)(\d+) <l have 2 numbers: 5314> <7>
(F?2)(\d*) <><>

(.*?)(\d+) <l have > <2>

(*)(\d+)$ <l have 2 numbers: 5314> <7>
(-*?)(\d+)$ <I have 2 numbers: > <53147>
(-*)\b(\d+)$ <I have 2 numbers: > <53147>
(.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It's important to realize that a regular expression is merely a set of
assertions that gives a definition of success. There may be 0, 1, or several different ways that the definition
might succeed against a particular string. And if there are multiple ways it might succeed, you need to
understand backtracking to know which variety of success you will achieve.

When using lookahead assertions and negations, this can all get even tricker. Imagine you'd like to find a
sequence of non—-digits not followed by "123". You might try to write that as

$_="ABC123"

if (/M\D*(?1123)/){ # Wrong!
print "Yup, no 123 in $_\n";

}

But that isn‘t going to match; at least, not the way you‘re hoping. It claims that there is no 123 in the string.
Here's a clearer picture of why it that pattern matches, contrary to popular expectations:

$x ='ABC123’;
$y = 'ABC445’;

print "1: got $1\n" if $x =~ /A(ABC)(?!123)/ ;
print "2: got $1\n" if $y =~ /*(ABC)(?!123)/ ;

print "3: got $1\n" if $x =~ /M(\D*)(?!1123)/ ;
print "4: got $1\n" if $y =~ /A(\D*)(?!1123)/ ;

This prints

2: got ABC
3: got AB
4: got ABC

You might have expected test 3 to fail because it seems to a more general purpose version of test 1. The
important difference between them is that test 3 contains a quanfiffej &nd so can use backtracking,
whereas test 1 will not. What's happening is that you've asked "Is it true that at the $xartfoflowing 0

or more non-digits, you have something that's not 123?" If the pattern matcher Mad lekpand to

"ABC", this would have caused the whole pattern to fail. The search engine will initially kgtchvith

"ABC". Then it will try to match(?!123 with "123" which, of course, fails. But because a quantifier
(\D*) has been used in the regular expression, the search engine can backtrack and retry the match
differently in the hope of matching the complete regular expression.

21-Jun—-1997 Perl Version 5.004 205

perire

Perl Programmers Reference Guide perlre

Well now, the pattern reallygally wants to succeed, so it uses the standard regexp back-off-and-retry and
lets\D* expand to just "AB" this time. Now there's indeed something following "AB" that is not "123".
It's in fact "C123", which suffices.

We can deal with this by using both an assertion and a negation. We'll say that the firs§pariust be
followed by a digit, and in fact, it must also be followed by something that's not "123". Remember that the
lookaheads are zero—-width expressions—they only look, but don‘t consume any of the string in their match.
So rewriting this way produces what you‘d expect; that is, case 5 will fail, but case 6 succeeds:

print "5: got $1\n" if $x =~ /A(\D*)(?=\d)(?!123)/ ;
print "6: got $1\n" if $y =~ /A(\D*)(?=\d)(?!123)/ ;

6: got ABC

In other words, the two zero—width assertions next to each other work like they‘'re ANDed together, just as
you'd use any builtin assertiong®$/ matches only if you're at the beginning of the line AND the end of

the line simultaneously. The deeper underlying truth is that juxtaposition in regular expressions always
means AND, except when you write an explicit OR using the vertical fadw. means match "a" AND

(then) match "b", although the attempted matches are made at different positions because "a" is not a
zero—-width assertion, but a one—width assertion.

One warning: particularly complicated regular expressions can take exponential time to solve due to the
immense number of possible ways they can use backtracking to try match. For example this will take a very
long time to run

/((a{0,5}){0,5){0,5}

And if you used* ‘s instead of limiting it to O through 5 matches, then it would take literally forever—or
until you ran out of stack space.

Version 8 Regular Expressions

In case you'‘re not familiar with the "regular" Version 8 regexp routines, here are the pattern—matching rules
not described above.

Any single character matches itself, unless it imedacharactemwith a special meaning described here or
above. You can cause characters which normally function as metacharacters to be interpreted literally by
prefixing them with a "\" (e.g., "\." matches a ".", not any character; "\\" matches a "\"). A series of
characters matches that series of characters in the target string, so thebpattern would match "blurfl"

in the target string.

You can specify a character class, by enclosing a list of characfgrs which will match any one of the
characters in the list. If the first character after the "[" is """, the class matches any character not in the list.
Within a list, the "-" character is used to specify a range, sattmatepresents all the characters between

"a" and "z", inclusive.

Characters may be specified using a metacharacter syntax much like that used in C: "\n" matches a newline,
"\t" a tab, "\r" a carriage return, "\f* a form feed, etc. More generally \wherennnis a string of octal
digits, matches the character whose ASCII valuenis Similarly, \xan, wherenn are hexadecimal digits,
matches the character whose ASCII valuerisThe expression Xcmatches the ASCII character contral-

Finally, the "." metacharacter matches any character except "\n" (unless yeu) use

You can specify a series of alternatives for a pattern using "|" to separate themfesgiftbHoe will

match any of "fee", "fie", or "foe" in the target string (as wd({ddi|o)e). Note that the first alternative
includes everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the first "|",
and the last alternative contains everything from the last "|" to the next pattern delimiter. For this reason, it's
common practice to include alternatives in parentheses, to minimize confusion about where they start and
end. Note however that "|" is interpreted as a literal with square brackets, so if ydieeffiejfoe]

you're really only matchingfeio|]

Within a pattern, you may designate subpatterns for later reference by enclosing them in parentheses, and
you may refer back to theth subpattern later in the pattern using the metacharact&ubpatterns are

206

Perl Version 5.004 21-Jun-1997

perire Perl Programmers Reference Guide perlre

numbered based on the left to right order of their opening parenthesis. Note that a backreference matches
whatever actually matched the subpattern in the string being examined, not the rules for that subpattern.
Therefore, (0]0x)\d*\s\1\d* will match "0x1234 0x4321",but not "0x1234 01234", because
subpattern 1 actually matched "0x", even though theQj@be could potentially match the leading O in the
second number.

WARNING on\1vs $1
Some people get too used to writing things like
$pattern =~ s/(\W)\\1/g;

This is grandfathered for the RHS of a substitute to avoid shockirngetreddicts, but it's a dirty habit to
get into. That's because in PerlThink, the righthand sideséff a is a double—quoted stringl in the
usual double—quoted string means a control-A. The customary Unix meaningsokludged in fois///

However, if you get into the habit of doing that, you get yourself into trouble if you then afid an
modifier.

s/(\d+)/\1 + 1 /eqg;
Or if you try to do
s/(\d+)/\1000/;

You can‘t disambiguate that by sayi{d}000 , whereas you can fix it witB{1}000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference. Certainly
they mean two different things on tledt side of thes///

SEE ALSO
"Mastering Regular Expressions" (qeerlbook by Jeffrey Friedl.

21-Jun—-1997 Perl Version 5.004 207

perlrun Perl Programmers Reference Guide perlrun

NAME
perlrun — how to execute the Perl interpreter
SYNOPSIS
perl [-sTuU]
[-hv][-V[:configval]
[—cw] [—d[:debuggef] [-D[number/lis}]
[-pna] [—Fpattern] [—l[octal]] [—O[octal]
[=Idir] [-m[-]module] [-M[-]'module..."]
[-P]
[-S]
[—x[dir]]
[—i[extensioh]
[—e‘command’] [—] [programfile] [argument]...
DESCRIPTION

Upon startup, Perl looks for your script in one of the following places:
1. Specified line by line viae switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments—to pass
arguments to a STDIN script you must explicitly specify a "-" for the script name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you‘ve speeified a
switch, in which case it scans for the first line starting with #! and containing the word "perl", and starts there
instead. This is useful for running a script embedded in a larger message. (In this case you would indicate
the end of the script using theEND___token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you‘'re on a machine that
allows only one argument with the #! line, or worse, doesn‘t even recognize the #! line, you still can get
consistent switch behavior regardless of how Perl was invoked, evenwis used to find the beginning of

the script.

Because many operating systems silently chop off kernel interpretation of the #! line after 32 characters,
some switches may be passed in on the command line, and some may not; you could even get a "-" without
its letter, if you‘re not careful. You probably want to make sure that all your switches fall either before or
after that 32 character boundary. Most switches don‘t actually care if they're processed redundantly, but
getting a — instead of a complete switch could cause Perl to try to execute standard input instead of your
script. And a partiatl switch could also cause odd results.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "-*" and "- " are
specifically ignored so that you could, if you were so inclined, say

#!/bin/sh —— # —*— perl —*— —p
eval 'exec /usr/bin/perl $0 -S ${1+"$@"}
if $running_under_some_shell;

to let Perl see thep switch.

If the #! line does not contain the word "perl”, the program named after the #! is executed instead of the Perl
interpreter. This is slightly bizarre, but it helps people on machines that don‘t do #!, because they can tell a
program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct interpreter
for them.

After locating your script, Perl compiles the entire script to an internal form. If there are any compilation
errors, execution of the script is not attempted. (This is unlike the typical shell script, which might run
part—way through before finding a syntax error.)

208

Perl Version 5.004 21-Jun-1997

perlrun Perl Programmers Reference Guide perlrun

If the script is syntactically correct, it is executed. If the script runs off the end without hitteagt@n
ordie() operator, an impliciexit(0) is provided to indicate successful completion.
#! and quoting on non-Unix systems
Unix's #! technique can be simulated on other systems:
0S/2
Put

extproc perl =S —your_switches
as the first line irf.cmd file (-S due to a bug in cmd.exe's ‘extproc’ handling).

MS-DOS
Create a batch file to run your script, and codify iIRIlTERNATIVE_SHEBANGsee thalosish.hfile
in the source distribution for more information).

Win95/NT

The Win95/NT installation, when using the Activeware port of Perl, will modify the Registry to

associate the .pl extension with the perl interpreter. If you install another port of Perl, including the

one in the Win32 directory of the Perl distribution, then you'll have to modify the Registry yourself.
Macintosh

Macintosh perl scripts will have the appropriate Creator and Type, so that double—clicking them will

invoke the perl application.

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells. You'll
need to learn the special characters in your command-interptetergnd"” are common) and how to
protect whitespace and these characters to run one-linerse(sstow).

On some systems, you may have to change single—quotes to double ones, which YO Trdesbn Unix
or Plan9 systems. You might also have to change a single % to a %%.

For example:

Unix
perl —e "print "Hello world\n

MS-DOS, etc.
perl —e "print \"Hello world\n\

"

Macintosh
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

#VMS
perl —e "print ""Hello world\n

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither
works. If 4DOS was the command shell, this would probably work better:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking, but
just try to find documentation for its quoting rules.

Under the Macintosh, it depends which environment you are using. The MacPerl shell, or MPW, is much
like Unix shells in its support for several quoting variants, except that it makes free use of the Macintosh's
non—ASCII characters as control characters.

There is no general solution to all of this. It's just a mess.

21-Jun—-1997 Perl Version 5.004 209

perlrun Perl Programmers Reference Guide perlrun

Switches
A single—character switch may be combined with the following switch, if any.
#1/usr/bin/perl —spi.bak # same as —s —p —i.bak
Switches include:
—0[digits]
specifies the input record separathf) (as an octal number. If there are no digits, the null character

is the separator. Other switches may precede or follow the digits. For example, if you have a version
of find which can print filenames terminated by the null character, you can say this:

find . —name *.bak’ —print0 | perl —nOe unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will cause Perl
to slurp files whole because there is no legal character with that value.

—a turns on autosplit mode when used withraor —p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced byther —p.

perl —ane ’print pop(@F), "\n";’
is equivalent to

while (<>) {

@F = split(’);

print pop(@F), "\n";
}

An alternate delimiter may be specified usitlg

—-C causes Perl to check the syntax of the script and then exit without executing it. Actualily, it
executeBEGIN, ENDQ and use blocks, because these are considered as occurring outside the
execution of your program.

—-d runs the script under the Perl debugger. (seklebug
-d: foo

runs the script under the control of a debugging or tracing module installed as Devel::foo. E.g.,
—d:DProf executes the script using the Devel::DProf profiler. [Bs&lebug

-Dnumber
-Dlist

sets debugging flags. To watch how it executes your script—Ddd. (This works only if
debugging is compiled into your Perl.) Another nice valueD4024 which lists your compiled
syntax tree. And-D512 displays compiled regular expressions. As an alternative specify a list of
letters instead of numbers (e.gD14is equivalent te-Dtls):

1 p Tokenizing and Parsing

2 s Stack Snapshots

4 | Label Stack Processing

8 t Trace Execution

16 o Operator Node Construction

32 ¢ String/Numeric Conversions

64 P Print Preprocessor Command for —P
128 m Memory Allocation

256 f Format Processing

512 r Regular Expression Parsing
1024 x Syntax Tree Dump
2048 u Tainting Checks
4096 L Memory Leaks (not supported anymore)

210 Perl Version 5.004 21-Jun-1997

perlrun Perl Programmers Reference Guide perlrun

8192 H Hash Dump —- usurps values()
16384 X Scratchpad Allocation
32768 D Cleaning Up

—-e commandline

may be used to enter one line of script-dfis given, Perl will not look for a script filename in the
argument list. Multiple-e commands may be given to build up a multi-line script. Make sure to use
semicolons where you would in a normal program.

—Fpattern

specifies the pattern to split on-# is also in effect. The pattern may be surroundefl hy™ , or
“ , otherwise it will be put in single quotes.

-h prints a summary of the options.

—i[extension]
specifies that files processed by #we construct are to be edited in—place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. The extension, if supplied, is added to the name of the old file to make a
backup copy. If no extension is supplied, no backup is made. From the shell, saying

$ perl —p —i.bak —e "s/foo/bar/; ... "
is the same as using the script:

#1/usr/bin/perl —pi.bak
s/foo/bar/;

which is equivalent to

#1/usr/bin/perl
while (<>) {
if (JARGV ne $oldargv) {
rename($ARGV, $ARGV . ".bak’);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;
}
s/foo/bar/;
}
continue {
print; # this prints to original filename

}
select(STDOUT);

except that the-i form doesn‘t need to compa$ARGVto $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDOUT is
restored as the default output filehandle after the loop.

You can useof without parenthesis to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see exampéoin
—ldirectory

Directories specified byl are prepended to the search path for mod@s(, and also tells the C
preprocessor where to search for include files. The C preprocessor is invoketPyathdefault it
searches /usr/include and /ustr/lib/perl.

=l[octnum]

enables automatic line—ending processing. It has two effects: first, it automatically cl#tnps "
(the input record separator) when used withor —p, and second, it assign$\" (the output record

21-Jun—-1997 Perl Version 5.004 211

perlrun Perl Programmers Reference Guide perlrun

separator) to have the value @ftnumso that any print statements will have that separator added
back on. Ifoctnumis omitted, sets$\" to the current value ofs/". For instance, to trim lines to
80 columns:

perl —Ipe 'substr($_, 80) ="

Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separatorif shétch is followed by &0 switch:

gnufind / —print0 | perl =InOe ’print "found $_" if —-p’
This set$\ to newline and then se$¢ to the null character.

—-m[-]module

-M[-]module

-M[-]'module ...’

—[mM] [-]module=arg[,arg]...

—-mmoduleexecutesise module(); before executing your script.

—Mmoduleexecutesuse module; before executing your script. You can use quotes to add extra
code after the module name, e-gM‘'module qw(foo bar)’

If the first character after theMor —mis a dash+) then the ‘use’ is replaced with ‘no’.

A little builtin syntactic sugar means you can also-saynodule=foo,bar or

—Mmodule=foo,bar as a shortcut forM‘module gw(foo bar)’ . This avoids the need to
use quotes when importing symbols. The actual code generatddrbgdule=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the= form removes the distinction betweem
and-M

-n causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed —nor awk:

while (<>) {
your script goes here

}

Note that the lines are not printed by default. Se¢o have lines printed. Here is an efficient way
to delete all files older than a week:

find . -mtime +7 —print | perl —nle "unlink;’

This is faster than using th@xec switch offind because you don'‘t have to start a process on every
filename found.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

-p causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed

while (<>) {
your script goes here
} continue {
print;
}
Note that the lines are printed automatically. To suppress printing use #wdtch. A—p overrides
a—n switch.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

212 Perl Version 5.004 21-Jun-1997

perlrun Perl Programmers Reference Guide perlrun

—-P causes your script to be run through the C preprocessor before compilation by Perl. (Because both
comments and cpp directives begin with the # character, you should avoid starting comments with

any words recognized by the C preprocessor such as "if", "else", or "define".)

-s enables some rudimentary switch parsing for switches on the command line after the script name but
before any filename arguments (or before-a Any switch found there is removed from @ARGV
and sets the corresponding variable in the Perl script. The following script prints "true" if and only if
the script is invoked with axyz switch.

#l/usr/bin/perl —s
if ($xyz) { print "true\n"; }

-S makes Perl use the PATH environment variable to search for the script (unless the name of the script
starts with a slash). Typically this is used to emulate #! startup on machines that don‘t support #!, in
the following manner:

#1/usr/bin/perl
eval 'exec /usr/bin/perl =S $0 ${1+"$@"}
if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to execute the
Perl script as a shell script. The shell executes the second line as a normal shell command, and thus
starts up the Perl interpreter. On some syst&dndoesn‘t always contain the full pathname, so the
—Stells Perl to search for the script if necessary. After Perl locates the script, it parses the lines and
ignores them because the variaieinning_under_some_shell is never true. A better
construct than$* would be ${1+"$@"}, which handles embedded spaces and such in the
filenames, but doesn't work if the script is being interpreted by csh. To start up sh rather than csh,
some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can‘t control that, and need a totally devious construct that
will work under any of csh, sh, or Perl, such as the following:

eval '(exit $70)' && eval 'exec /usr/bin/perl =S $0 ${1+"$@"}
& eval 'exec /usr/bin/perl =S $0 $argv:q’
if $running_under_some_shell;

-T forces "taint" checks to be turned on so you can test them. Ordinarily these checks are done only
when running setuid or setgid. It's a good idea to turn them on explicitly for programs run on
another's behalf, such as CGI programs. [Saésec

-u causes Perl to dump core after compiling your script. You can then take this core dump and turn it
into an executable file by using thendump program (not supplied). This speeds startup at the
expense of some disk space (which you can minimize by stripping the executable). (Still, a "hello
world" executable comes out to about 200K on my machine.) If you want to execute a portion of
your script before dumping, use tdemp() operator instead. Note: availability ahdump is
platform specific and may not be available for a specific port of Perl.

-U allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings.

-V prints the version and patchlevel of your Perl executable.
-V prints summary of the major perl configuration values and the current value of @INC.

-V:name
Prints to STDOUT the value of the named configuration variable.
-w prints warnings about variable names that are mentioned only once, and scalar variables that are used

before being set. Also warns about redefined subroutines, and references to undefined filehandles or
filehandles opened read-only that you are attempting to write on. Also warns you if you use values

21-Jun—-1997 Perl Version 5.004 213

perlrun

Perl Programmers Reference Guide perlrun

as a number that doesn‘t look like numbers, using an array as though it were a scalar, if your
subroutines recurse more than 100 deep, and innumerable other things.

You can disable specific warnings using?WARN__hooks, as described perlvar andwarn. See
alsoperldiag andperltrap.

—X directory

tells Perl that the script is embedded in a message. Leading garbage will be discarded until the first
line that starts with #! and contains the string "perl”. Any meaningful switches on that line will be
applied. If a directory name is specified, Perl will switch to that directory before running the script.
The —x switch controls only the disposal of leading garbage. The script must be terminated with
__END___if there is trailing garbage to be ignored (the script can process any or all of the trailing
garbage via the DATA filehandle if desired).

ENVIRONMENT

HOME
LOGDIR
PATH
PERLS5LIB

PERL50OPT

PERLLIB

PERL5DB

Used if chdir has no argument.
Used if chdir has no argument and HOME is not set.
Used in executing subprocesses, and in finding the scriftig used.

A colon-separated list of directories in which to look for Perl library files before looking

in the standard library and the current directory. If PERL5LIB is not defined, PERLLIB is
used. When running taint checks (because the script was running setuid or setgid, or the
—T switch was used), neither variable is used. The script should instead say

use lib "/my/directory";

Command-line options (switches). Switches in this variable are taken as if they were on
every Perl command line. Only thgDIMUdmw] switches are allowed. When running
taint checks (because the script was running setuid or setgid, of thwitch was used),

this variable is ignored.

A colon-separated list of directories in which to look for Perl library files before looking
in the standard library and the current directory. If PERL5LIB is defined, PERLLIB is not
used.

The command used to load the debugger code. The default is:

BEGIN { require 'perl5db.pl’ }

PERL5SHELL (specific to WIN32 port)

May be set to an alternative shell that perl must use internally for executing "backtick"
commands orsystem() . Perl doesn't use COMSPEC for this purpose because
COMSPEC has a high degree of variability among users, leading to portability concerns.
Besides, perl can use a shell that may not be fit for interactive use, and setting COMSPEC
to such a shell may interfere with the proper functioning of other programs (which usually
look in COMSPEC to find a shell fit for interactive use).

PERL_DEBUG_MSTATS

Relevant only if your perl executable was built witDHDEBUGGING_MSTATS, if set,
this causes memory statistics to be dumped after execution. If set to an integer greater than
one, also causes memory statistics to be dumped after compilation.

PERL_DESTRUCT_LEVEL

Relevant only if your perl executable was built Wit DEBUGGING, this controls the
behavior of global destruction of objects and other references.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages. Segerllocale

214

Perl Version 5.004 21-Jun-1997

perlrun Perl Programmers Reference Guide perlrun

Apart from these, Perl uses no other environment variables, except to make them available to the script being
executed, and to child processes. However, scripts running setuid would do well to execute the following
lines before doing anything else, just to keep people honest:

$ENV{PATH]} = '/bin:/usr/bin’; # or whatever you need
$ENV{SHELL} = '/bin/sh’ if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

21-Jun—-1997 Perl Version 5.004 215

perlfunc Perl Programmers Reference Guide perlfunc

NAME

perlfunc — Perl builtin functions

DESCRIPTION

The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators. These differ in their precedence relationship with a following comma.
(See the precedence tableperlop.) List operators take more than one argument, while unary operators can
never take more than one argument. Thus, a comma terminates the argument of a unary operator, but merely
separates the arguments of a list operator. A unary operator generally provides a scalar context to its
argument, while a list operator may provide either scalar and list contexts for its arguments. If it does both,
the scalar arguments will be first, and the list argument will follow. (Note that there can ever be only one list
argument.) For instancsplice() has three scalar arguments followed by a list.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown with LIST as an argument. Such a list may consist of any combination of
scalar arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single—dimensional list value. Elements of the LIST
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but occasionally
surprising) rule is this: ILOOKSIlike a function, therefore iS a function, and precedence doesn‘t matter.
Otherwise it's a list operator or unary operator, and precedence does matter. And whitespace between the
function and left parenthesis doesn‘t count—so you need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.

print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.

print ((1+2)+4); # Prints 7.
If you run Perl with the-w switch it can warn you about this. For example, the third line above produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at — line 1.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated in a
scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following rule:

THERE IS NO GENERAL RULE FOR CONVERTING A LIST INTO A SCALAR!

Each operator and function decides which sort of value it would be most appropriate to return in a scalar
context. Some operators return the length of the list that would have been returned in a list context. Some
operators return the first value in the list. Some operators return the last value in the list. Some operators
return a count of successful operations. In general, they do what you want, unless you want consistency.

Perl Functions by Category

Here are Perl's functions (including things that look like functions, like some of the keywords and named
operators) arranged by category. Some functions appear in more than one place.
Functions for SCALARS or strings
chomp, chop, chr, crypt, hex, index, lc, Icfirst, length, oct, ord, pack, g/STRING/, qq/STRING/,
reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///
Regular expressions and pattern matching
m//, pos, quotemeta, s///, split, study

216

Perl Version 5.004 21-Jun-1997

perlfunc Perl Programmers Reference Guide perlfunc

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAY's
pop, push, shift, splice, unshift

Functions for list data
grep, join, map, qw/STRING/, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, domclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf, read,
readdir, rewinddir, seek, seekdir, select, syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn,
write

Functions for fixed length data or records
pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories
-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, Istat, mkdir, open, opendir, readlink, rename,
rmdir, stat, symlink, umask, unlink, utime

Keywords related to the control flow of your perl program
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray

Keywords related to scoping
caller, import, local, my, package, use

Miscellaneous functions
defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, gx/STRING/, setpgrp, setpriority, sleep,
system, times, wait, waitpid

Keywords related to perl modules
do, import, no, package, require, use

Keywords related to classes and object-orientedness
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, shutdown,
socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network info

endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnetbyname,
getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname, getservbyport, getservent,
sethostent, setnetent, setprotoent, setservent

21-Jun—-1997 Perl Version 5.004 217

perlfunc

Perl Programmers Reference Guide perlfunc

Time-related functions
gmtime, localtime, time, times

Functions new in perl5

abs,

bless, chomp, chr, exists, formline, glob, import, Ic, Icfirst, map, my, no, prototype, gx, qw,

readline, readpipe, ref, sub*, sysopen, tie, tied, uc, ucfirst, untie, use

* — sub was a keyword in perl4, but in perl5 it is an operator which can be used in expressions.

Functions obsoleted in perl5
dbmclose, dbmopen

Alphabetical Listing of Perl Functions
-X FILEHANDLE

-X EXPR
=X

A file test, where X is one of the letters listed below. This unary operator takes one argument,
either a filename or a filehandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tess , except for—t, which tests STDIN. Unless otherwise
documented, it returns for TRUE and’ for FALSE, or the undefined value if the file doesn't

exist. Despite the funny names, precedence is the same as any other named unary operator, and
the argument may be parenthesized like any other unary operator. The operator may be any of:

—-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
—x File is executable by effective uid/gid.
-0 File is owned by effective uid.

—-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
—X File is executable by real uid/gid.
-O File is owned by real uid.

—e File exists.
-z File has zero size.
—s File has nonzero size (returns size).

—f File is a plain file.

—-d File is a directory.

-l File is a symbolic link.

—-p File is a named pipe (FIFO).
-S Fileis a socket.

-b File is a block special file.

—c File is a character special file.
-t Filehandle is opened to a tty.

—u File has setuid bit set.
—g File has setgid bit set.
-k File has sticky bit set.

-T Fileis a text file.
—-B File is a binary file (opposite of —T).

-M Age of file in days when script started.
—A Same for access time.
—-C Same for inode change time.

The interpretation of the file permission operatars —R, —w, -W —x, and-X is based solely on
the mode of the file and the uids and gids of the user. There may be other reasons you can't
actually read, write or execute the file. Also note that, for the superuserR, -w, and-W

218

Perl Version 5.004 21-Jun-1997

perlfunc Perl Programmers Reference Guide perlfunc

always return 1, angx and-X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to detat() to determine the actual mode of the file, or temporarily
set the uid to something else.

Example:

while (<>) {
chop;
next unless —f $_; # ignore specials

}

Note that-s/a/b/ does not do a negated substitution. Sayiagp($foo) still works as
expected, however—only single letters following a minus are interpreted as file tests.

The-T and-B switches work as follows. The first block or so of the file is examined for odd
characters such as strange control codes or characters with the high bit set. If too many odd
characters (>30%) are found, it's—8 file, otherwise it's a-T file. Also, any file containing

null in the first block is considered a binary file.—If or—B is used on a filehandle, the current

stdio buffer is examined rather than the first block. Bofhand-B return TRUE on a null file,

or a file at EOF when testing a filehandle. Because you have to read a file to-dotés, on

most occasions you want to usefa against the file first, as inext unless —f $file

&& -T $file.

If any of the file tests (or either thetat() or Istat() operators) are given the special
filehandle consisting of a solitary underline, then the stat structure of the previous file test (or stat
operator) is used, saving a system call. (This doesn‘t work-witfand you need to remember
thatIstat() and-| will leave values in the stat structure for the symbolic link, not the real
file.) Example:

print "Can do.\n" if -r $a || ~-w _ || =x _;

stat($filename);

print "Readable\n" if —r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n” if —u _;
print "Setgid\n" if —-g _;
print "Sticky\n" if -k _;

print "Text\n" if =T _;

print "Binary\n" if -B _;

abs VALUE
abs Returns the absolute value of its argument. If VALUE is omitted, $ises

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as the accept(2) system call does. Returns the packed
address if it succeeded, FALSE otherwise. See example in
Sockets: Client/Server Communication in petlipc

alarm SECONDS

alarm Arranges to have a SIGALRM delivered to this process after the specified number of seconds
have elapsed. If SECONDS is not specified, the value stoied im used. (On some machines,
unfortunately, the elapsed time may be up to one second less than you specified because of how
seconds are counted.) Only one timer may be counting at once. Each call disables the previous
timer, and an argument of 0 may be supplied to cancel the previous timer without starting a new
one. The returned value is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may use Begsktsll() interface to
access setitimer(2) if your system supports it, or elsésséect() . Itis usually a mistake to

21-Jun—-1997 Perl Version 5.004 219

perlfunc

Perl Programmers Reference Guide perlfunc

atan2 Y, X

intermixalarm() andsleep() calls.

If you want to useaalarm() to time out a system call you need to use an eval/die pair. You
can't rely on the alarm causing the system call to fail $itrset to EINTR because Perl sets up
signal handlers to restart system calls on some systems. Using eval/die always works.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
h
die if $@ && $@ ne "alarm\n”; # propagate errors
if ($@) {
timed out
}
else {
didn't
}

Returns the arctangent of Y/X in the range —PI to PI.

For the tangent operation, you may use B@SIX::tan() function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME

Binds a network address to a socket, just as the bind system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

binmode FILEHANDLE

Arranges for the file to be read or written in "binary” mode in operating systems that distinguish
between binary and text files. Files that are not in binary mode have CR LF sequences translated
to LF on input and LF translated to CR LF on output. Binmode has no effect under Unix; in
MS-DOS and similarly archaic systems, it may be imperative—otherwise your
MS-DOS-damaged C library may mangle your file. The key distinction between systems that
need binmode and those that don'‘t is their text file formats. Systems like Unix and Plan9 that
delimit lines with a single character, and that encode that character in C as ‘\n‘, do not need
binmode . The rest need it. If FILEHANDLE is an expression, the value is taken as the name
of the filehandle.

bless REF,CLASSNAME

bless REF

This function tells the thingy referenced by REF that it is now an object in the CLASSNAME
package—or the current package if no CLASSNAME is specified, which is often the case. It
returns the reference for convenience, becaudaess() is often the last thing in a
constructor. Always use the two—argument version if the function doing the blessing might be
inherited by a derived class. Sezrlobjfor more about the blessing (and blessings) of objects.

caller EXPR

caller

Returns the context of the current subroutine call. In a scalar context, returns the caller's
package name if there is a caller, that is, if we're in a subroutiegadf) or require()
and the undefined value otherwise. In a list context, returns

($package, $filename, $line) = caller;

220

Perl Version 5.004 21-Jun-1997

perlfunc Perl Programmers Reference Guide perlfunc

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The
value of EXPR indicates how many call frames to go back before the current one.

($package, $filename, $line, $subroutine,
$hasargs, $wantarray, $evaltext, $is_require) = caller($i);

Here$subroutine may be"(eval)" if the frame is not a subroutine call, butearal . In
such a case additional elemeftvaltext and$is_require are set$is_require is
true if the frame is created byrequire or use statement$evaltext contains the text of
the eval EXPR statement. In particular, for eval BLOCK statement$filename is
“(eval)" , but $evaltext is undefined. (Note also that eaoke statement creates a
require frame inside aeval EXPR) frame.

Furthermore, when called from within the DB package, caller returns more detailed information:
it sets the list variable @DB::args to be the arguments with which the subroutine was invoked.

chdir EXPR

Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to home
directory. Returns TRUE upon success, FALSE otherwise. See exampl&iefder

chmod LIST

Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number, and which definitely shou&d string of

octal digits:0644 is okay,'0644’ is not. Returns the number of files successfully changed.
See alsdoct, if all you have is a string.

$cnt = chmod 0755, 'foo’, 'bar’;

chmod 0755, @executables;

$mode ='0644"; chmod $mode, 'foo’; # !!l sets mode to ——w————r-T
$mode ='0644"; chmod oct($mode), 'foo’; # this is better

$mode = 0644; chmod $mode, 'foo’; # this is best

chomp VARIABLE

chomp LIST

chomp This is a slightly safer version é€hop It removes any line ending that corresponds to the
current value o/ (also known a$INPUT_RECORD_SEPARATQORtheEnglish module).

It returns the total number of characters removed from all its arguments. It's often used to
remove the newline from the end of an input record when you‘re worried that the final record
may be missing its newline. When in paragraph mé&le=(""), it removes all trailing
newlines from the string. If VARIABLE is omitted, it chomps. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);

}
You can actually chomp anything that's an Ivalue, including an assignment:

chomp($cwd = ‘pwd’);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

chop VARIABLE

chop LIST

chop Chops off the last character of a string and returns the character chopped. It's used primarily to
remove the newline from the end of an input record, but is much more efficierd/thén
because it neither scans nor copies the string. If VARIABLE is omitted, &hopExample:

21-Jun—-1997 Perl Version 5.004 221

perlfunc

Perl Programmers Reference Guide perlfunc

while (<>) {
chop; # avoid \n on last field
@array = split(/:/);

}

You can actually chop anything that's an Ivalue, including an assignment:

chop($cwd = ‘pwd";
chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, —1)

chown LIST

Changes the owner (and group) of a list of files. The first two elements of the list must be the
NUMERICALuid and gid, in that order. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

Here's an example that looks up nonnumeric uids in the passwd file:

print "User: ";

chop($user = <STDIN>);
print "Files: "
chop($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = <${pattern}>; # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you‘re the
superuser, although you should be able to change the group to any of your secondary groups. On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.

chr NUMBER

chr

Returns the character represented by that NUMBER in the character set. For exiar(Gdg,
is "A" in ASCII. For the reverse, ugerd.

If NUMBER is omitted, use$.

chroot FILENAME

chroot

This function works as the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with a "/* by your process and all of its
children. (It doesn‘t change your current working directory, which is unaffected.) For security
reasons, this call is restricted to the superuser. If FILENAME is omitted, does choot to

close FILEHANDLE

Closes the file or pipe associated with the file handle, returning TRUE only if stdio successfully
flushes buffers and closes the system file descriptor. If the file handle came from a piped open
close will additionally return FALSE if one of the other system calls involved fails or if the
program exits with non-zero status. (If the problem was that the program exited nabli-zero

will be set to 0.) You don‘t have to close FILEHANDLE if you are immediately going to do
anotheropen() on it, becausepen() will close it for you. (Se®pen() .) However, an
explicit close on an input file resets the line counge), (while the implicit close done by
open() does not. Also, closing a pipe will wait for the process executing on the pipe to
complete, in case you want to look at the output of the pipe afterwards. Closing a pipe explicitly

222

Perl Version 5.004 21-Jun-1997

perlfunc Perl Programmers Reference Guide perlfunc

also puts the status value of the command$fAto Example:

open(OUTPUT, ’|sort >foo’); # pipe to sort

print stuff to output
close OUTPUT; # wait for sort to finish
open(INPUT, foo’); # get sort’s results

FILEHANDLE may be an expression whose value gives the real filehandle name.

closedir DIRHANDLE
Closes a directory opened bgendir()

connect SOCKET,NAME

Attempts to connect to a remote socket, just as the connect system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

continue BLOCK

Actually a flow control statement rather than a function. If there éordinue BLOCK
attached to a BLOCK (typically in\ahile orforeach), it is always executed just before the
conditional is about to be evaluated again, just like the third partoof doop in C. Thus it can
be used to increment a loop variable, even when the loop has been continuednaat the
statement (which is similar to thed®ntinue statement).

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes c@sine of

For the inverse cosine operation, you may useRO&IX::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 — $_[0] *$_[0]), $_[0]) }

crypt PLAINTEXT,SALT

Encrypts a string exactly like the crypt(3) function in the C library (assuming that you actually
have a version there that has not been extirpated as a potential munition). This can prove useful
for checking the password file for lousy passwords, amongst other things. Only the guys
wearing white hats should do this.

Note that crypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) corresponding decrypt function. As a result, this function isn'‘t all
that useful for cryptography. (For that, see your nearby CPAN mirror.)

Here's an example that makes sure that whoever runs this program knows their own password:

$pwd = (getpwuid($<))[1];
$salt = substr($pwd, 0, 2);

system "stty —echo";

print "Password: ";

chop($word = <STDIN>);

print "\n";

system "stty echo";

if (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

}else {
print "ok\n";

}

Of course, typing in your own password to whomever asks you for it is unwise.

21-Jun—-1997 Perl Version 5.004 223

perlfunc

Perl Programmers Reference Guide perlfunc

dbmclose HASH

[This function has been superseded byuhie() function.]
Breaks the binding between a DBM file and a hash.

dbmopen HASH,DBNAME ,MODE

[This function has been superseded bytigh@ function.]

This binds a dbm(3), ndbm(3), sdbm(83bm() , or Berkeley DB file to a hash. HASH is the
name of the hash. (Unlike normal open, the first argumeadOi§ a filehandle, even though it
looks like one). DBNAME is the name of the database (withoutdineor .pag extension if

any). |If the database does not exist, it is created with protection specified by MODE (as
modified by theumask()). If your system supports only the older DBM functions, you may
perform only onadbmopen() in your program. In older versions of Perl, if your system had
neither DBM nor ndbm, callinglbmopen() produced a fatal error; it now falls back to
sdbm(3).

If you don‘t have write access to the DBM file, you can only read hash variables, not set them.
If you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside areval() , which will trap the error.

Note that functions such &gys() andvalues() may return huge array values when used
on large DBM files. You may prefer to use thach() function to iterate over large DBM
files. Example:

print out history file offsets
dbmopen(%HIST, /usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =, unpack(’L’,$val), "\n";
}
dbmclose(%HIST);

See als;AnyDBM_Filefor a more general description of the pros and cons of the various dbm
approaches, as well 88 _File for a particularly rich implementation.

defined EXPR

defined

Returns a Boolean value telling whether EXPR has a value other than the undefined value
undef . If EXPR is not presen$_ will be checked.

Many operations returundef to indicate failure, end of file, system error, uninitialized
variable, and other exceptional conditions. This function allows you to distinguigi from
other values. (A simple Boolean test will not distinguish amordgf , zero, the empty string,
and "0", which are all equally false.) Note that sinecelef is a valid scalar, its presence
doesn‘tnecessarilyindicate an exceptional conditiopop() returnsundef when its argument
is an empty arraygr when the element to return happens tahdef .

You may also usdefined() to check whether a subroutine exists. On the other hand, use of
defined() upon aggregates (hashes and arrays) is not guaranteed to produce intuitive results,
and should probably be avoided.

When used on a hash element, it tells you whether the value is defined, not whether the key
exists in the hash. Ugexistsfor the latter purpose.

Examples:

print if defined $switch{'D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }

224

Perl Version 5.004 21-Jun-1997

perlfunc

Perl Programmers Reference Guide perlfunc

$debugging = 0 unless defined $debugging;

Note: Many folks tend to overusiefined() , and then are surprised to discover that the
number 0 and "™ (the zero-length string) are, in fact, defined values. For example, if you say
"ab" =~ fa(.*)b/;

the pattern match succeeds, &idis defined, despite the fact that it matched "nothing". But it
didn't really match nothing—rather, it matched something that happened to be 0 characters long.
This is all very above-board and honest. When a function returns an undefined value, it's an
admission that it couldn‘t give you an honest answer. So you shouldeiised() only

when you'‘re questioning the integrity of what you‘re trying to do. At other times, a simple
comparison to 0 or "™ is what you want.

Currently, usingdefined() on an entire array or hash reports whether memory for that
aggregate has ever been allocated. So an array you set to the empty list appears undefined
initially, and one that once was full and that you then set to the empty list still appears defined.
You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%0a_hash) { print "has hash members\n" }

Usingundef() on these, however, does clear their memory and then report them as not defined
anymore, but you shoudin‘t do that unless you don‘t plan to use them again, because it saves
time when you load them up again to have memory already ready to be filled.

This counterintuitive behaviour ofefined() = on aggregates may be changed, fixed, or broken
in a future release of Perl.

See alsdundef /exists /ref.

delete EXPR

die LIST

Deletes the specified key(s) and their associated values from a hash. For each key, returns the
deleted value associated with that key, or the undefined value if there was no such key. Deleting
from $ENV{} modifies the environment. Deleting from a hash tied to a DBM file deletes the
entry from the DBM file. (But deleting from &e() d hash doesn‘t necessarily return
anything.)

The following deletes all the values of a hash:

foreach $key (keys %HASH) {
delete $HASH{$key};

}

And so does this:
delete @HASH{keys %HASH}

(But both of these are slower than thedef() command.) Note that the EXPR can be
arbitrarily complicated as long as the final operation is a hash element lookup or hash slice:

delete $ref—>[$x][$yl{$key};
delete @{$ref—>[$x][Sy]}{$keyl, $key2, @morekeys};

Outside of areval() , prints the value of LIST t8§ TDERRand exits with the current value of
$! (errno). If$! is 0, exits with the value ¢$? >>8) (backtick ‘command’ status). ($?

>> 8) is 0, exits with 255. Inside aval() , the error message is stuffed i@, and the
eval() is terminated with the undefined value; this makiex) the way to raise an
exception.

Equivalent examples:

die "Can’t cd to spool: $!\n" unless chdir '/usr/spool/news’;

21-Jun-1997

Perl Version 5.004 225

perlfunc

Perl Programmers Reference Guide perlfunc

chdir '/usr/spool/news’ or die "Can't cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Hint: sometimes appending ",
stopped" to your message will cause it to make better sense when the string "at foo line 123" is
appended. Suppose you are running script "canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See als@xit() andwarn() .

You can arrange for a callback to be called just beforelit(@ does its deed, by setting the
$SIG{__DIE__} hook. The associated handler will be called with the error text and can
change the error message, if it sees fit, by callied) again. Seeerlvar for details on
setting%SIGentries, an@val() for some examples.

do BLOCK

Not really a function. Returns the value of the last command in the sequence of commands
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do SUBROUTINE(LIST)

A deprecated form of subroutine call. $eelsub

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as a Perl script. Its

primary use is to include subroutines from a Perl subroutine library.
do 'stat.pl’;

is just like
eval ‘cat stat.pl;

except that it's more efficient, more concise, keeps track of the current filename for error
messages, and searches all thdibraries if the file isn‘t in the current directory (see also the
@INC array inPredefined Nam@s It's the same, however, in that it does reparse the file every
time you call it, so you probably don‘t want to do this inside a loop.

Note that inclusion of library modules is better done with tise() and require()
operators, which also do error checking and raise an exception if there's a problem.

dump LABEL

This causes an immediate core dump. Primarily this is so that you can usehgp program

to turn your core dump into an executable binary after having initialized all your variables at the
beginning of the program. When the new binary is executed it will begin by execufirig a
LABEL (with all the restrictions thajoto suffers). Think of it as a goto with an intervening
core dump and reincarnation. If LABEL is omitted, restarts the program from the top.
WARNING: any files opened at the time of the dump will NOT be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl. See @dimn

in perlrun.

Example:

#!/usr/bin/perl
require 'getopt.pl’;
require 'stat.pl’;

226

Perl Version 5.004 21-Jun-1997

perlfunc Perl Programmers Reference Guide perlfunc
%days = (
'Sun’ =>1,
'Mon’ => 2,
"Tue’ => 3,
'Wed' => 4,
'Thu’ => 5,
'Fri’ => 6,
'Sat’ => 7,
);
dump QUICKSTART if $ARGV[0] eq '-d’;
QUICKSTART:
Getopt('f);
each HASH

When called in a list context, returns a 2—element array consisting of the key and value for the
next element of a hash, so that you can iterate over it. When called in a scalar context, returns
the key for only the next element in the hash. (Note: Keys may be "0" or ", which are logically
false; you may wish to avoid constructs likdile ($k = each %foo) {} for this
reason.)

Entries are returned in an apparently random order. When the hash is entirely read, a null array
is returned in list context (which when assigned produces a FALSE (0) valug)ndefl is

returned in a scalar context. The next cakach() after that will start iterating again. There

is a single iterator for each hash, shared bgath() , keys() , andvalues() function calls

in the program; it can be reset by reading all the elements from the hash, or by eviéyating
HASHor values HASH . If you add or delete elements of a hash while you're iterating over it,
you may get entries skipped or duplicated, so don't.

The following prints out your environment like the printenv(1) program, only in a different
order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";

}

See als&keys() andvalues()

eof FILEHANDLE

eof ()
eof

Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not
open. FILEHANDLE may be an expression whose value gives the real filehandle name. (Note
that this function actually reads a character and tingietc() s it, so it is not very useful in an
interactive context.) Do not read from a terminal file (or eaf(FILEHANDLE) on it) after
end-of-file is reached. Filetypes such as terminals may lose the end-of-file condition if you
do.

An eof without an argument uses the last file read as argument. Empty parefthesayg be
used to indicate the pseudo file formed of the files listed on the command lineofi(e., is
reasonable to use insidewdile (<>) loop to detect the end of only the last file. Use
eof(ARGV) or eof without the parentheses to teACHfile in a while (<>) loop. Examples:

reset line numbering on each input file
while (<>) {

print "$.\t$_";

close(ARGV) if (eof); # Not eof().

21-Jun-1997

Perl Version 5.004 227

perlfunc Perl Programmers Reference Guide perlfunc

insert dashes just before last line of last file
while (<>) {
if (eof()) {
print " \n";
close(ARGV);# close or break; is needed if we
are reading from the terminal

}
print;

}

Practical hint: you almost never need to esé in Perl, because the input operators return undef
when they run out of data.

eval EXPR
eval BLOCK

EXPR is parsed and executed as if it were a little Perl program. It is executed in the context of
the current Perl program, so that any variable settings or subroutine and format definitions
remain afterwards. The value returned is the value of the last expression evaluated, or a return
statement may be used, just as with subroutines. The last expression is evaluated in scalar or
array context, depending on the context of the eval.

If there is a syntax error or runtime error, atiea() statement is executed, an undefined value
is returned byeval() , and$@is set to the error message. If there was no ed@ris
guaranteed to be a null string. If EXPR is omitted, evaluiates The final semicolon, if any,
may be omitted from the expression. Beware that usirad() neither silences perl from
printing warnings to STDERR, nor does it stuff the text of warning messaged@ntoTo do
either of those, you have to use $&G{ WARN__} facility. Seewarn() andperlvar.

Note that, becauseval() traps otherwise—fatal errors, it is useful for determining whether a
particular feature (such asocket() or symlink()) is implemented. It is also Perl's
exception trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn‘t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Examples:

make divide—by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer = };

a run—time error
eval '$answer ='; # sets $@

When using the eval{} form as an exception trap in libraries, you may wish not to trigger any
__DIE__ hooks that user code may have installed. You can usectile
$SIG{_ _DIE__} construct for this purpose, as shown in this example:

a very private exception trap for divide-by-zero
eval { local $SIG{__DIE__'}; $answer = $a / $b; }; warn $@ if $@;

This is especially significant, given thatDIE__ hooks can caltlie() again, which has the
effect of changing their error messages:

_DIE__ hooks may modify error messages

{
local $SIG{__DIE__'} = sub { (my $x = $_[0O]) =~ s/foo/bar/g; die $x }

228 Perl Version 5.004 21-Jun-1997

perlfunc

Perl Programmers Reference Guide perlfunc

eval { die "foo foofs here" };

print $@ if $@; # prints "bar barfs here"
}
With aneval() , you should be especially careful to remember what's being looked at when:
eval $x; #CASE 1
eval "$x"; # CASE 2
eval "$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$x++" # CASE 5
$Ex++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the #iable
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
‘$x‘, which does nothing but return the value$af (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run—time.)
Case 5 is a place where normally YW&WOULD like to use double quotes, except that in this
particular situation, you can just use symbolic references instead, as in case 6.

exec LIST

The exec() function executes a system commaAND NEVER RETURNSunless the
command does not exist and is executed directly instead dfimiah —c (see below). Use
system() instead okxec() if you want it to return.
If there is more than one argument in LIST, or if LIST is an array with more than one value, calls
execvp(3) with the arguments in LIST. If there is only one scalar argument, the argument is
checked for shell metacharacters. If there are any, the entire argument is p@sseshto
—c for parsing. If there are none, the argument is split into words and passed directly to
execvp() , which is more efficient. Noteexec() andsystem() do not flush your output
buffer, so you may need to st to avoid lost output. Examples:

exec 'fbinfecho’, "Your arguments are: ', @ARGV;

exec "sort $outfile | uniq";
If you don't really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
"indirect object" (without a comma) in front of the LIST. (This always forces interpretation of
the LIST as a multivalued list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;

exec $shell '—sh’; # pretend it's a login shell
or, more directly,

exec {'/bin/csh’} '-sh’; # pretend it's a login shell

exists EXPR

Returns TRUE if the specified hash key exists in its hash array, even if the corresponding value
is undefined.

print "Exists\n" if exists $array{$key};
print "Defined\n" if defined Sarray{$key};
print "True\n" if $array{$key};

A hash element can be TRUE only if it's defined, and defined if it exists, but the reverse doesn‘t
necessarily hold true.

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash key

21-Jun-1997

Perl Version 5.004 229

perlfunc Perl Programmers Reference Guide perlfunc

lookup:
if (exists $ref->[$x][Sy{$key}) { ... }
exit EXPR
Evaluates EXPR and exits immediately with that value. (Actually, it calls any defiNéd

routines first, but th&NDroutines may not abort the exit. Likewise any object destructors that
need to be called are called before exit.) Example:

$ans = <STDIN>;
exit 0 if $ans =~ /"[Xx]/;

See alsalie() . If EXPR is omitted, exits with O status. The only universally portable values
for EXPR are 0 for success and 1 for error; all other values are subject to unpredictable
interpretation depending on the environment in which the Perl program is running.

You shouldn‘t useexit() to abort a subroutine if there's any chance that someone might want
to trap whatever error happened. ds=) instead, which can be trapped byemal()

exp EXPR
exp Returnse (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives

exp($)).
fentl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You'll probably have to say

use Fentl;

first to get the correct function definitions. Argument processing and value return works just like
ioctl() below. Note thafcntl() will produce a fatal error if used on a machine that
doesn‘t implement fcntl(2). For example:

use Fentl;
fentl($filehandle, F_GETLK, $packed_return_buffer);

fileno FILEHANDLE

Returns the file descriptor for a filehandle. This is useful for constructing bitmaps for
select() . If FILEHANDLE is an expression, the value is taken as the name of the filehandle.

flock FILEHANDLE,OPERATION

Calls flock(2), or an emulation of it, on FILEHANDLE. Returns TRUE for success, FALSE on
failure. Produces a fatal error if used on a machine that doesn‘t implement flock(2), fcntl(2)
locking, or lockf(3). flock() is Perl's portable file locking interface, although it locks only
entire files, not records.

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic
names if import them from the Fcntl module, either individually, or as a group using the “:flock’
tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
releases a previously requested lock. If LOCK_NB is added to LOCK_SH or LOCK_EX then
flock() will return immediately rather than blocking waiting for the lock (check the return
status to see if you got it).

To avoid the possibility of mis—coordination, Perl flushes FILEHANDLE before (un)locking it.

Note that the emulation built with lockf(3) doesn't provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics that lockf(3) implements.
Most (all?) systems implement lockf(3) in terms of fcntl(2) locking, though, so the differing

semantics shouldn‘t bite too many people.

230 Perl Version 5.004 21-Jun-1997

perlfunc

Perl Programmers Reference Guide perlfunc

Note also that some versionsflafck() cannot lock things over the network; you would need

to use the more system-specifiatl() for that. If you like you can force Perl to ignore your
system's flock(2) function, and so provide its own fcntl(2)-based emulation, by passing the
switch—-Ud_flock to theConfigure program when you configure perl.

Here's a mailbox appender for BSD systems.
use Fentl :flock’; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/SENV{'USER'}")
or die "Can't open mailbox: $!";

lock();
print MBOX $msg,"\n\n";
unlock();

See als®B_File for otherflock() examples.

fork Does a fork(2) system call. Returns the child pid to the parent process and 0 to the child process,
or undef if the fork is unsuccessful. Note: unflushed buffers remain unflushed in both
processes, which means you may need to$set($AUTOFLUSHIn English) or call the
autoflush() method of 10::Handle to avoid duplicate output.
If youfork() without ever waiting on your children, you will accumulate zombies:
$SIG{CHLD} = sub { wait };
There's also the double—fork trick (error checkingfank() returns omitted);
unless ($pid = fork) {
unless (fork) {
exec "what you really wanna do";
die "no exec";
#..0r...
(some_perl_code_here)
exit 0;
}
exit 0;
}
waitpid($pid,0);
See als@erlipc for more examples of forking and reaping moribund children.
Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are
actually connected by a pipe or socket, even if you exit, the remote server (such as, say, httpd or
rsh) won‘t think you‘re done. You should reopen those to /dev/null if it's any issue.
format Declare a picture format with use by tgte() function. For example:
format Something =
Test: @<<<<<<<< @||||| @>>>>>
21-Jun-1997 Perl Version 5.004 231

perlfunc

Perl Programmers Reference Guide perlfunc

$str, $%, '$. int($num)

$str = "widget";

$num = $cost/$quantity;
$~ ='Something’;

write;

Seeperlformfor many details and examples.

formline PICTURE,LIST

This is an internal function used Wgrmat s, though you may call it too. It formats (see
perlform) a list of values according to the contents of PICTURE, placing the output into the
format output accumulator$”A (or SACCUMULATORNn English). Eventually, when a
write() is done, the contents 8MA are written to some filehandle,