
API Documentation MatrixSSL 1.7

Page 1 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

MatrixSSL Public API documentation
One of the primary development goals in MatrixSSL was to create a simple and small
public application programming interface for users to integrate with their client or server
applications. The public interface and structures are contained in the matrixSsl.h header
file. The following API documentation describes the entire set of functions an
application would need to use in order to get the full benefits of secure socket
communications using MatrixSSL.

Commercial Version
Some functions or features described in this document are available only in the
commercially licensed version of MatrixSSL. Sections of this document that refer to the
commercial version will be noted and shaded.

MatrixSSL Public API documentation..1

Integer sizes...2
Structures...3

sslBuf_t..3
sslCertInfo_t ..4

Functions...6
matrixSslOpen...6
matrixSslClose..6
matrixSslReadKeys...7
matrixRsaReadKeysEx..9
matrixSslReadKeysMem...10
matrixRsaParseKeysMem...10
matrixSslFreeKeys..11
matrixSslNewSession..12
matrixSslDeleteSession...13
matrixSslDecode...14
matrixSslEncode..16
matrixSslEncodeClosureAlert...17
matrixSslEncodeClientHello...18
matrixSslEncodeHelloRequest..19
matrixSslSetSessionOption...20
matrixSslHandshakeIsComplete...21
matrixSslGetSessionId ..22
matrixSslFreeSessionId...23
matrixSslSetCertValidator ..24
matrixSslGetAnonStatus...25
matrixSslAssignNewKeys...26

API Documentation MatrixSSL 1.7

Page 2 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

Integer sizes
MatrixSSL was designed with the assumption that integer sizes are 32-bit. This
assumption has been clarified with the addition of int32 and uint32 type definitions.
These have been defined in matrixCommon.h of the MatrixSSL distribution. This change
was made to enable global redefintions for platforms that do not support 32-bit integer
types in the native int type. Although this document will continue to use the int type, the
code will reflect the use of int32.

API Documentation MatrixSSL 1.7

Page 3 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

Structures
There are five structure types used in the MatrixSSL public API set. Only the members
of the sslBuf_t and sslCertInfo_t structures have been exposed to the user. The ssl_t,
sslSessionId_t and sslKeys_t structures have been defined in the header file to be opaque
integer types because their members do not need to be accessed by the user.

sslBuf_t
 Definition

 typedef struct {
 unsigned char *buf;
 unsigned char *start;
 unsigned char *end;
 int size;

 } sslBuf_t;

 Context
 Client and Server

 Description

This structure is used for input and output message buffers for the set of public
APIs that decode and encode data. The start and end pointers in the buffer may
be modified by the MatrixSSL APIs to indicate the data that was parsed or written
to the buffer.

To get an idea of how to work with these buffers, here are some examples of
buffer arithmetic:

b.end – b.start Number of bytes of valid data in the

buffer
(b.buf + b.size) – b.end Number of bytes available in the buffer.
if (b.start > b.buf) If there are unused bytes at the start of

the buffer…

 Members

buf Pointer to the start of the buffer
start Pointer to the first valid byte of data
end Pointer one byte beyond the last valid

byte of data.
size Size of buffer in bytes

API Documentation MatrixSSL 1.7

Page 4 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

sslCertInfo_t
 Definition

 typedef struct sslCertInfo {
 int verified;
 unsigned char *serialNumber;
 int serialNumberLen;
 char *notBefore;
 char *notAfter;
 char *sigHash;
 int sigHashLen;
 subjectAltName_t subjectAltName;
 distinguishedName_t subject;
 distinguishedName_t issuer;
 struct sslCertInfo *next

 } sslCertInfo_t;

 typedef struct {
 char *country;
 char *state;
 char * locality;
 char *organization;
 char *orgUnit;
 char *commonName;

 } distinguishedName_t;

 typedef struct {
 char *dns;
 char *uri;
 char *email;

 } subjectAltName_t;

 Context
 Client.

Relevant to Server in commercial version as part of client authentication.

 Description

This structure is passed to a user callback routine set by the application to perform
any custom validation checks on a certificate. The default MatrixSSL validation
check will previously have tested whether or not the certificate authority
certificate has signed the certificate. The application code should call
matrixSslSetCertValidator with the function that will receive the sslCertInfo_t
information of the certificate that was passed to the other side.

API Documentation MatrixSSL 1.7

Page 5 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

Members
verified Status of the default validation check.

The value will be -1 if the validation
failed or 1 if it succeeded.

serialNumber Serial number assigned by the issuer
serialNumberLen Length of valid bytes in serialNumber

member
notBefore Start date of certificate validity
sigHash The MD5 or SHA1 hash of the

certificate signature
sigHashLen The length of the sigHash member.

Either 16 for MD5 or 20 for SHA1.
notAfter End date of certificate validity
subjectAltName The X509v3 subjectAltName extension

often used in Web client applications for
validating the FQDN

subject The distinguished name info for the
certificate being validated

issuer The distinguished name info of the
issuer of the certificate being validated

next Pointer to the next sslCertInfo_t
structure that represents the parent of the
current certificate. NULL if there is no
parent.

API Documentation MatrixSSL 1.7

Page 6 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

Functions
The public API specifications follow. For sample usage, see the example code provided
in the source code distribution.

matrixSslOpen
Prototype
int matrixSslOpen();

 Context
 Client and Server

Description
This function performs the one-time initialization for MatrixSSL. Applications
should call this function once as part of their own initialization to load the cipher
suite and perform any operating system specific set up.

Parameters

 None

Return Value
0 Success
< 0 Failure

matrixSslClose
 Prototype

void matrixSslClose();

 Context
 Client and Server

 Description

This function performs the one-time final cleanup for MatrixSSL. Applications
should call this function as part of their own final cleanup.

 Parameters
 None

 Return Value

 None

API Documentation MatrixSSL 1.7

Page 7 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslReadKeys
 Prototype
 int matrixSslReadKeys(sslKeys_t **keys, char *certFile, char *privFile,
 char *privPass, char * trustedCAcertFiles);

 Context
 Client and Server

Commercial users implementing memory pools should use matrixRsaReadKeysEx

 Description

This function is called to load the certificates and private key files from disk that
are needed for client-server authentication. The key material is loaded into the
keys output parameter.

The GNU MatrixSSL supports one-way authentication (server) so the parameters
to this function are specific to the client/server role of the application. The
certFile, privFile, and privPass parameters are server specific and should identify
the certificate and private key file for that server. The trustedCAcertFiles is client
specific and should identify the trusted root certificates that will be used to
validate the certificates received from a server. Multiple trusted root certificates
can be passed to this parameter as a semicolon delimited list of file names. Any
key file or password parameter that does not apply to the application context
should be passed in as NULL.

The commercial version of MatrixSSL supports two-way authentication. The
certFile and privFile parameters are used to specify the certificate of the local
entity. It is possible to identify a certificate chain (server side only) by using a
semi-colon delimited list of certificate names. The list must be given in
child/parent order with the first certificate being the server certificate. The private
key file must correspond with this first certificate in the list. The privPass
parameter is used if the privFile private key file is stored encrypted and password
protected on disk. The trustedCAcertFiles parameter identifies the trusted root
certificates that will be used to validate the certificates received from the other
side of the communication channel. Multiple trusted root certificates can be
passed to this parameter as a semicolon delimited list of file names. Any key file
or password parameter that does not apply to the application context should be
passed in as NULL.

In the commercial version the MatrixSSL library must be compiled with
USE_CLIENT_AUTH defined for client authentication support.

The sslKeys_t output parameter from this function is used as the input parameter
when starting a new SSL session via matrixSslNewSession. The sslKeys_t type
has been defined in the public matrixSsl.h file to simply be an opaque integer type
since applications do not need access to any of the structure members.

API Documentation MatrixSSL 1.7

Page 8 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

Calling this function is a relatively expensive operation because of the file access
and parsing required to extract the key material. For this reason, it is typical that
this function is only called once per set of key files for a given application. All
new sessions associated with that certificate can reuse the returned key pointer.
This function is separate from matrixSslOpen because some Web servers support
virtual servers that each have different key pairs. The user must free the key
structure using matrixSslFreeKeys.

 Parameters
keys Output parameter for storing the key material
certFile The filename (including path) of the certificate. Server only

in GNU version.
privKeyFile The filename (including path) of the private key file. Server

only in GNU version.
privKeyPass The password used to encrypt the private key file if used.

Only 3DES CBC encryption is supported. Server only in
GNU version.

trustedCAcertFile The filename (including path) of a trusted root certificate.
Multiple files may be passed in a semicolon delimited list.
Client only in GNU version.

 Return Value

0 Success. A valid key pointer will be returned in the keys
parameter for use in a subsequent call to matrixSslNewSession

<0 Failure

API Documentation MatrixSSL 1.7

Page 9 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixRsaReadKeysEx
Prototype
int matrixRsaReadKeysEx(psPool_t *pool, sslKeys_t **keys, char *certFile,

char *privFile, char *privPass, char * trustedCAcertFiles);

Context
Client and Server commercial version

Header File
Must include ‘src/pki/matrixPki.h’

Description
This extended version adds a psPool_t parameter so a user implementing memory
pools may specify the pool. Otherwise, it is identical in every way to the
parameter inputs, return codes, and usage described above. The
matrixSslReadKeys function will allocate the key structure from the
PEERSEC_BASE_POOL. If an implementation requires an indefinite number of
key reads and the extended version is not used, the base pool will become
exhausted.

API Documentation MatrixSSL 1.7

Page 10 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslReadKeysMem
 Prototype

int matrixSslReadKeysMem(sslKeys_t **keys, char *certBuf,
int certLen, char *privBuf, int32 privLen, char * trustedCABuf,
int32 trustedCALen);

 Context

Client and Server
Commercial users implementing memory pools should use
matrixRsaParseKeysMem

Description
An in-memory version of the matrixSslReadKeys function. This version can be
used in environments where the certificate material is not stored on disk. The
usage is identical to the file version except that this memory version does not
support certificate chaining. Reads an entire set of certificate, private key, and
CA certificate buffers for an SSL session and returns the sslKeys_t structure to be
passed to matrixSslNewSession. The keys parameter must be freed with a call to
matrixSslFreeKeys.

The buffers for the certificates and private key must be in ASN.1 standard format.
For certificates, this is the X.509 standard. For private keys, this is the PKCS #8
specification.

matrixRsaParseKeysMem
Prototype
int matrixRsaParseKeysMem(psPool_t *pool, sslKeys_t **keys, char *certBuf,

int certLen, char *privBuf, int32 privLen, char * trustedCABuf,
int32 trustedCALen);

Context
Client and Server

Header File
Must include ‘src/pki/matrixPki.h’

Description
This extended version of matrixSslReadKeysMem adds a psPool_t parameter so a
user implementing memory pools may specify the pool. Otherwise, it is identical
in every way to the parameter inputs, return codes, and usage as described above.
The matrixSslReadKeysMem function will allocate the key structure from the
PEERSEC_BASE_POOL. If an implementation requires an indefinite number of
key reads and the extended version is not used, the base pool will become
exhausted.

API Documentation MatrixSSL 1.7

Page 11 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslFreeKeys
 Prototype
 void matrixSslFreeKeys(sslKeys_t *keys);

 Context
 Client and Server

 Description

This function is called to free the key structure and elements allocated from a
previous call to matrixSslReadKeys.

 Parameters

keys A pointer to an sslKeys_t value returned from a previous call
to matrixSslReadKeys

 Return Value
 None

API Documentation MatrixSSL 1.7

Page 12 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslNewSession
 Prototype
 int matrixSslNewSession(ssl_t **ssl, sslKeys_t *keys, sslSessionId_t *sesssionId,
 int flags);

 Context
 Client and Server

 Description

This function is called to start a new SSL session, or resume a previous one, with
a client or server. The session is returned in the output parameter ssl. This
function requires a pointer to an sslKeys_t value returned from a previous call to
matrixSslReadKeys and the flags parameter to specify whether this is a server side
usage. MatrixSSL supports client initiated SSL sessions and the sessionId
parameter is specific to client implementations only. If the client is resuming a
prior session, this parameter will be the value returned from a call to
matrixSslGetSessionId. Otherwise, this parameter must be NULL. The client
must pass 0 as the flags parameter. A client will make a call to this function prior
to calling matrixSslEncodeClientHello.

When a server application has received notice that a client is requesting a secure
socket connection (a socket accept on a secure port), this function should be
called to initialize the new session structure. The sessionId parameter must be set
to NULL for server side implementations.

The server must pass SSL_FLAGS_SERVER as one of the flags, otherwise the
resulting SSL session will be initialized to parse the client side protocol.

Commercial users may optionally include the SSL_FLAGS_CLIENT_AUTH
parameter if client authentication is desired. The MatrixSSL library must be
compiled with USE_CLIENT_AUTH defined for client authentication support.

The output parameter is an ssl_t structure that will be used as input parameters to
the matrixSslDecode and matrixSslEncode family of APIs for decrypting and
encrypting messages. The ssl_t type has been defined in the public matrixSsl.h
file to simply be an opaque integer type since users do not need access to any of
the structure members. The user must free the ssl_t structure using
matrixSslDeleteSession.

 Parameters

ssl Output. The new SSL session created by this call
keys The opaque key material pointer returned from a call to

matrixSslReadKeys
sessionId Prior session id obtained from matrixSslGetSessionId if

API Documentation MatrixSSL 1.7

Page 13 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

client is resuming a session. NULL otherwise.
flags SSL_FLAGS_SERVER for server and 0 for client. Servers

may optionally include SSL_FLAGS_CLIENT_AUTH in
the commercial version.

 Return Value

0 Success. A newly allocated session structure will be returned
in the ssl parameter for use as the input parameter on session
related decoding and encoding APIs

<0 Failure

matrixSslDeleteSession
 Prototype
 void matrixSslDeleteSession(ssl_t *session);

 Context
 Client and Server

 Description

This function is called at the conclusion of an SSL session that was created using
matrixSslNewSession. This function will free the allocated memory associated
with the session. It should be called after the corresponding socket has been
closed.

A client wishing to reconnect later to the same server may choose to call
matrixSslGetSessionId prior to calling this delete session function to save aside
the session id for later use with matrixSslNewSession.

 Parameters
session The ssl_t session pointer returned from the call to

matrixSslNewSession

 Return Value
 None

API Documentation MatrixSSL 1.7

Page 14 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslDecode
 Prototype
 int matrixSslDecode(ssl_t *session, sslBuf_t * in, sslBuf_t *out,
 unsigned char *error, unsigned char *alertLevel,
 unsigned char *alertDescription);

 Context
 Client and Server

 Description

This is a powerful function used to decode all messages received from a peer,
including handshake and alert messages. The input parameters include the ssl_t
session from the previous call to matrixSslNewSession and an sslBuf_t input
buffer containing the message received from the client or server. This function is
typically called in a loop during the handshake process. The return value
indicates the type of message received and the out buffer parameter may contain
an encoded message to send to the other side or a decoded message for the
application to process. The in buffer may have its start pointer moved forward to
indicate the bytes that were successfully decoded. The out buffer end pointer may
be modified to reflect the output data written to the buffer.

 Parameters

session The ssl_t session structure associated with this instance.
Created by the call to matrixSslNewSession

in The sslBuf_t buffer containing the input message from the
other side of the client/server communication channel

out The output buffer after returned to the application
error On SSL_ERROR conditions, this output parameter specifies

the error description associated with the error
alertLevel On SSL_ALERT conditions, this output parameter specifies

the alert level associated with the client alert message
alertDescription On SSL_ALERT conditions, this output parameter specifies

the alert description associated with the client alert message

 Return Value

SSL_SUCCESS A handshake message was successfully decoded and
handled. No additional action is required for this
message. matrixSslDecode can be called again
immediately if more data is expected. This return
code gives visibility into the handshake process and
can be used in conjunction with
matrixSslHandshakeIsComplete to determine when
the handshake is complete and application data can
be sent.

SSL_SEND_RESPONSE This value indicates the input message was part of the

API Documentation MatrixSSL 1.7

Page 15 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

SSLv3 internal protocol and a reply is expected. The
application should send the data in the out buffer to
the other side and then call matrixSslDecode again to
see if any more message data needs to be decoded.

SSL_ERROR This value indicates there has been an error while
attempting to decode the data or that a bad message
was sent. The application should attempt to send the
contents of out buffer, if any (likely an error alert) to
the other side as a reply and then close the
communication layer (i.e. close the socket).

SSL_ALERT This value indicates the message was an alert sent
from the other side and the application should close
the communication layer (i.e. close the socket).

SSL_PARTIAL This value indicates that the input buffer was an
incomplete message or record. The application must
retrieve more data from the communications layer
(socket) and call matrixSslDecode again when more
data is available.

SSL_FULL This value indicates the output buffer was too small
to hold the output message. The application should
grow the output buffer and call matrixSslDecode
again with the same input buffer. The maximum size
of the buffer output buffer will never exceed 16K per
the SSLv3 standard.

SSL_PROCESS_DATA This value indicates that the message is application
specific data that does not require a response from the
server. This message is an implicit indication that
SSLv3 handshaking is complete. The decoded data
has been written to the output buffer for application
consumption.

API Documentation MatrixSSL 1.7

Page 16 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslEncode
 Prototype
 int matrixSslEncode(ssl_t *session, unsigned char * in, int inLen, sslBuf_t *out);

 Context
 Client and Server

 Description

This function is used by the application to generate encrypted messages to be sent
to the other side of the client/server communication channel. Only application
level messages should be generated with this API. Handshake messages are
generated internally as part of matrixSslDecode. It is the responsibility of the
application to actually transmit the generated output buffer to the other side.

 Parameters

session The ssl_t session identifier for this
session.

in The plain-text message buffer to encrypt
inLen The length of valid data in the input

buffer to encrypt
out The encrypted message to be passed to

the other side

 Return Value

>= 0 Success. The value is the length of the
encrypted data.

SSL_ERROR Error. The connection should be closed,
and session deleted.

SSL_FULL The output buffer is not big enough to
hold the encrypted data. Grow the
buffer and retry.

API Documentation MatrixSSL 1.7

Page 17 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslEncodeClosureAlert
 Prototype
 int matrixSslEncodeClosureAlert(ssl_t *session, sslBuf_t * out);

 Context
 Client and Server

 Description

An optional function call made before closing the communication channel with a
peer. This function alerts the peer that the connection is about to close. Some
implementations simply close the connection without an alert, but per spec, this
message should be sent first.

 Parameters

session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the client.

 Return Value

0 Success
SSL_FULL The output buffer is not big enough to

hold the encrypted data. Grow the
buffer and retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.7

Page 18 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslEncodeClientHello
 Prototype
 int matrixSslEncodeClientHello(ssl_t *session, sslBuf_t * out,
 unsigned short cipherSuite);

 Context
 Client

 Description

This function builds the initial CLIENT_HELLO message to be passed to a server
to begin SSL communications. This function is called once by the client before
entering into the matrixSslDecode handshake loop.

The cipherSuite parameter can be used to force the client to send a single cipher
to the server rather than the entire set of supported ciphers. Set this value to 0 to
send the entire cipher suite list. Otherwise the value is the two byte value of the
cipher suite specified in the standards. The supported values can be found in
matrixInternal.h.

This function may also be called by a client at the conclusion of the initial
handshake at any time to initiate a re-handshake. A re-handshake is a complete
SSL handshake protocol performed on an existing connection to derive new
symmetric key material and/or to change the cipher spec of the communications.
All re-handshake messages will be encrypted using the previously negotiated
cipher suite. If the caller wants to assure that a new session id is used for the re-
handshake, the function matrixSslDeleteCurrentSessionId should be called prior
to calling matrixSslEncodeClientHello. It is always at the discretion of the server
whether or not to resume on a session id passed in by the client in the
CLIENT_HELLO message. However, the client can force a new session if the
session id is not passed in originally.

 Parameters

session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the

client.
cipherSuite The two byte cipher suite identifier

 Return Value

0 Success
SSL_FULL The output buffer is not big enough to

hold the encrypted data. Grow the
buffer and retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.7

Page 19 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslEncodeHelloRequest
 Prototype
 int matrixSslEncodeHelloRequest(ssl_t *session, sslBuf_t * out);

 Context
 Server

 Description

This function builds a HELLO_REQUEST message to be passed to a client to
initiate a re-handshake. This is the only mechanism in the SSL protocol that
allows the server to initiate a handshake. A re-handshake can be done on an
existing session to derive new symmetric cryptographic keys, perform client
authentication, or to change the cipher spec. All messages exchanged during a
re-handshake are encrypted under the currently negotiated cipher suite.

If the server wishes to change any session options for the re-handshake it should
call matrixSslSetSessionOption to modify the handshake behavior.

Note: The SSL specification allows clients to ignore a HELLO_REQUEST
message. The MatrixSSL client does not ignore this message and will send a
CLIENT_HELLO message with the current session id.

 Parameters

session The ssl_t session identifier for this session
out The output alert closure message to be passed along to the

client.

 Return Value

0 Success
SSL_FULL The output buffer is not big enough to

hold the data. Grow the buffer and
retry.

SSL_ERROR Failure

API Documentation MatrixSSL 1.7

Page 20 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslSetSessionOption
 Prototype
 void matrixSslSetSessionOption(ssl_t *session, int option, void *arg);

 Context
 Client and Server

 Description

The matrixSslSetSessionOption function is used to modify the behavior of the
SSL handshake protocol for a re-handshake. This function is only meaningful to
call on an existing SSL session before a re-handshake to give the client or server
control over which handshake type to perform (full, resumed, or client
authentication).

A server initiated re-handshake is done by sending the HELLO_REQUEST
message which can be constructed by calling matrixSslEncodeHelloRequest. Prior
to sending this message, the server may wish to disallow a resumed re-handshake
by passing the option of SSL_OPTION_DELETE_SESSION as the option
parameter to this function. This will delete the current session information from
the local cache so it will not be found if the client passes a session id in the
subsequent CLIENT_HELLO message.

The commercial version the server also has the ability to enable or disable a client
authentication re-handshake by passing the option
SSL_OPTION_ENABLE_CLIENT_AUTH or
SSL_OPTION_DISABLE_CLIENT_AUTH as the option parameter to this
function.

A client initiated re-handshake is done by simply sending a new
CLIENT_HELLO message over an existing connection. If the client application
wishes a full re-handshake to be performed, it should call this function with
SSL_OPTION_DELETE_SESSION.

In both the client and server cases, a resumed re-handshake may be performed by
excluding any calls to this function before sending the HELLO_REQUEST or
CLIENT_HELLO messages.

For more information about re-handshaking, see the Re-handshake section of the
MatrixSSL Developers Guide.

 Parameters

session The ssl_t session identifier for a currently connected
session

option If server, one of: SSL_OPTION_DELETE_SESSION,
SSL_OPTION_DISABLE_CLIENT_AUTH, or

API Documentation MatrixSSL 1.7

Page 21 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

SSL_OPTION_ENABLE_CLIENT_AUTH (commercial
version only for CLIENT_AUTH options)

If client: SSL_OPTION_DELETE_SESSION

arg NULL. Reserved for future use.

 Return Value
 None

matrixSslHandshakeIsComplete
 Prototype
 int matrixSslHandshakeIsComplete(ssl_t *session);

 Context
 Client and Server

 Description

This function returns whether or not the handshake portion of the session is
complete. This API can be used to test when it is OK to send the first application
data record on an SSL connection.

 Parameters

session The ssl_t session identifier for this session

 Return Value

1 Handshake is complete
0 Handshake is NOT complete

API Documentation MatrixSSL 1.7

Page 22 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslGetSessionId
 Prototype
 int matrixSslGetSessionId(ssl_t *session, sslSessionId_t **sessionId);

 Context
 Client

 Description

This function is used by a client application to extract the session id from an
existing session for use in a subsequent call to matrixSslNewSession wishing to
resume a session. A resumed session is much faster to negotiate because the
public key encryption process does not need to be performed and two handshake
messages are avoided. The sessionId return parameter of this function is valid
even after matrixSslDeleteSession has been called on the current session. This
function should only be called by a client SSL session after the handshake is
complete (session id is established).

The sslSessionId_t structure has been defined in the public header as an opaque
integer type since the contents of the structure do not need to be accessed by the
application. The session id must be freed with a call to matrixSslFreeSessionId.

 Parameters

session The ssl_t session identifier for this session
sessionId Output. The returned session id for the given SSL session

 Return Value

0 Success. An allocated session id is returned in
sessionId

<0 Failure (sessionId unavailable)

API Documentation MatrixSSL 1.7

Page 23 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslFreeSessionId
 Prototype
 void matrixSslFreeSessionId(sslSessionId_t *sessionId);

 Context
 Client

 Description

This function is used by a client application to free a session id returned from a
previous call to matrixSslGetSessionId..

 Parameters

sessionId The sslSession_t identifier

 Return Value
 None

API Documentation MatrixSSL 1.7

Page 24 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

matrixSslSetCertValidator
 Prototype
 void matrixSslSetCertValidator(ssl_t *session,
 int (*certValidator)(sslCertInfo_t* , void *arg), void *arg);

 Context
 Client. Relevant to Server in the commercial version for client authentication.

 Description

This function is used by applications to register a callback routine that will be
invoked during the certificate validation process. This optional registration will
enable the application to perform custom validation checks or to pass certificate
information on to end users wishing to manually validate certificates.

In the commercial version this functionality may be used on the server side if
client authentication is being used (the MatrixSSL library must be compiled with
USE_CLIENT_AUTH defined and the SSL_FLAGS_CLIENT_AUTH must be
passed to matrixSslNewSession.)

The registered function must have the following prototype:

 int appCertValidator(sslCertInfo_t *certInfo, void *arg);

The certInfo parameter is the incoming sslCertInfo_t structure containing
information about the certificate. This certificate information is read-only from
the perspective of the validating callback function. The structure members are
available in the Structures section in this document and in the matrixSsl.h public
header file.

The verified member of certInfo will indicate whether or not the certificate passed
the default MatrixSSL validation checks. If the subjectCert is a chain, the parent
member will link to the next certificate in the chain A typical callback
implementation might be to check the value of the verified member and pass the
certificate information along to the user if it had not passed the default validation
checks. Additional tests a callback may want to perform on the certificate
information might include date validation and hostname verification.

The arg parameter is a user specific argument that was specified in the arg
parameter to the matrixSslSetCertValidator routine. This argument can be used to
give session context to the callback if needed.

The callback function should return a value 1 if the custom validation check is
successful and the certificate is determined to be acceptable. The callback may
also choose to return SSL_ALLOW_ANON_CONNECTION if an anonymous
connection is desired. The handshake will continue in this anonymous case and

API Documentation MatrixSSL 1.7

Page 25 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

the application data will be encrypted as usual. It is not typically advised to allow
anonymous connections in a standard use case, but may sometimes such a
connection is desirable.

The callback function must return a negative value if the validation checks fails or
if the user rejects the certificate for any reason. The negative return code will be
processed by the MatrixSSL library and the handshake process will terminate as
an authentication failure.

 Parameters

session The ssl_t session identifier for this session
certValidator The function callback that will be invoked to validate the

certificate
arg Implementation specific data that will be received by the

callback. Use to give session context if needed, NULL
otherwise.

 Return Value
 None

matrixSslGetAnonStatus
 Prototype
 void matrixSslGetAnonStatus(ssl_t *session, int *anonArg);

 Context
 Client. Relevant to Server in the commercial version for client authentication.

 Description

This function returns whether or not the provided session is anonymous in the
anonArg output parameter. A value of 1 indicates the connection is anonymous
and a value of 0 indicates the connection has been authenticated. An anonymous
connection in this case means the calling entity (client or server) explicitly
allowed the SSL handshake to continue despite not being able to authenticate the
certificate supplied by the other side with an available Certificate Authority. The
mechanism to allow an anonymous connection is for the certificate validation
callback function (see matrixSslSetCertValidator) to return
SSL_ALLOW_ANON_CONNECTION.

The matrixSslGetAnonStatus is only meaningful to call after the successful
completion of the SSL handshake to determine if the existing connection is
anonymous. Anonymous connections are not normally recommended but can be
useful in a scenario in which encryption is the primary security concern. Other
reasons the caller may choose to use anonymous connections might be to allow a
subset of the normal functionality to anonymous connectors or to temporarily
accept a connection while a certificate upgrade is being performed.

API Documentation MatrixSSL 1.7

Page 26 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

The anonymous status is only relevant to the entity that calls this routine. For
example, calling this routine from the server side is meaningless for an
implementation that has not performed client authentication because the server
can not know if it is anonymous to the client or not. Therefore, it is not possible
for one side of the connection to know if the other side believes the connection to
be anonymous from their standpoint. This is an easy rule to remember if you
recall the mechanism to allow anonymous connections is controlled through the
certificate validation callback routine when the
SSL_ALLOW_ANON_CONNECTION define is returned. Client authentication
is only available in the commercial version of MatrixSSL.

 Parameters

session The ssl_t session identifier for this session
anonArg Return status of the connection. 1 if anonymous and 0 if

authenticated.

 Return Value
 None

matrixSslAssignNewKeys
 Prototype
 void matrixSslAssignNewKeys(ssl_t *session, sslKeys_t *keys);

 Context
 Client and Server

 Description

This routine is used to change the underlying certificate or certificate authority
information for an existing, open connection. This function is intended to help
the process of upgrading certificate material between two SSL entities that are
currently connected. The keys parameter is an sslKeys_t type that was created by
a call to matrixSslReadKeys. The new key material is associated with the passed
in session.

The user should have freed any previously allocated keys with a call to
matrixSslFreeKeys before assigning new keys to the session with this routine.
Once the new keys are associated with the session, the application may initiate a
re-handshake over the existing connection to authenticate with the new key
material. In the client case, a new CLIENT_HELLO message
(matrixSslEncodeClientHello) should be sent to kick off the re-handshake. In the
server scenario, a HELLO_REQUEST (matrixSslEncodeHelloRequest) message
would be sent. The benefit of this method is that the current connection does not
have to be closed in order to upgrade certificate material.

API Documentation MatrixSSL 1.7

Page 27 of 27 Copyright ©2002-2005 PeerSec Networks, Inc.

 Parameters
session The ssl_t session identifier for this session
keys New keys returned from a previous call to matrixSslReadKeys

 Return Value
 None

