Documentation for Perl Package Chart
Version 2.4.3

Chart Group!

Last change: 2010-10-17

'Bundesamt fiir Kartographie und Geodisie, Geoditisches Observato-
rium Wettzell, Sackenrieder Strasse 25, D-93444 Bad Kotzting, E-mail:
chart@fs.wettzell.de

Contents

8

9

10 Chart::

11 Chart::

12 Chart::

13 Chart::

14 Chart::

15 Chart::

Description

Chart::

Chart::

Chart::

Chart::

Chart::

Chart::

Chart::

Chart::

Base

Bars
Composite
Direction
ErrorBars
HorizontalBars
Lines
LinesPoints
Mountain
Pareto

Pie

Points

Split

StackedBars

14

17

21

25

29

31

34

38

40

43

46

49

53

List of Figures

0 3 3 Tk W

S S S T (o
Uk W N = O

The hierarchy of Chartclasses 2
Layout Elements of a chart 3
Barchart 14
Composite chart 17
Direction chart 22
Error barschart 00000000 26
Chart with horizontal bars 29
Lineschart 31
Linespoints chart 34
Mountain chart 38
Paretochart oL 41
Piechart 43
Pointschart oo 46
Splitchart 52
Chart with stacked bars 53

ii

1 Description
Synopsis

use Chart::type; (type is one of: Bars, Composite,
Direction, ErrorBars, HorizontalBars, Lines, LinesPoints,
Mountain, Pareto, Pie, Points, Split or StackedBars)

$obj = Chart::type->new();

$obj = Chart::type->new(\$width, \$height);
$obj->set($key_1, $val_ 1, ... , $key_n, $val_n);
$obj->set($key_1 => $val_ 1, ... , $key_n => $val_n);

$obj->set (%hash);

GifGraph.pm-style API to produce PNG formatted charts:
@data = (\@x_tick_labels, \@dataset_1, ... , \@dataset_n);
$obj—>png("filename", \@data);

$obj->png($filehandle, \@data);

$obj->png(FILEHANDLE, \@data);

$obj->cgi_png();

Graph.pm-style API:

$obj->add_pt($label, $val_1, ..., $val_n);
$obj->add_dataset($val_1, ..., $val_n);
$obj->png("filename") ;

$obj->png($filehandle) ;

$obj->png (FILEHANDLE) ;

$obj->cgi_png();

Similar functions are available for JPEG output.

Retrieve imagemap information:
$obj->set (’imagemap’ => ’true’);
$imagemap_ref = $obj->imagemap_dump() ;

The Perl module Chart creates PNG or JPEG output which can be written
to a file or to stdout. Therefore, Chart can also create dynamic charts for
web sites.

Many different chart types are available, viz., Bars, Composite, Direc-
tion, ErrorBars, HorizontalBars, Lines, LinesPoints, Mountain, Pareto, Pie,
Points, Split, and StackedBars. Each specific type is implemented as a class
by itself which is derived from the same abstract superclass, Base.

The hierarchy of Chart classes is shown in Figure 1.

| Base pm |

IR

}_
}_
}_
’_

1

}_
}_
}_

1

wid sieg
wid-aysodwon
Lud-uoaang
Wi sieglolg
wid saur
wd sjuodsaun
wid ojaied
wdag
wid sjung
widnds
wid siegpayaels

| Ld siegeu0zI0H }—
e uiepunapy

Figure 1: The hierarchy of Chart classes

You must create an instance of one of the concrete subclasses to get a
Chart object. Take a look at the individual class descriptions to see how
they work.

All the methods and most of the options Chart provides are implemented
in the Chart::Base class. However, drawing of the graph itself happens in the
appropriate subclass. Figure 2 shows the elements of a chart from a layout
perspective.

The graph area in the middle is drawn by the subclass, all the other el-
ements are drawn by Chart::Base. But some classes do not need all of those
elements, or they may need additional elements. The Chart::Base meth-
ods producing these elements have then to be overwritten in the respective
subclass. For example, class Chart::Pie needs no axes, so the methods for
drawing these in file Base.pm are overwritten by methods in class Chart::Pie;
in this case, no axes are drawn. Furthermore, the legend in a pie chart is
slightly different. Therefore, Pie.pm has its own methods for drawing the
legends. All these rules are managed by Chart, so you do not have to attend

to it.

title

legend
[right)

s1xe-k

graph

|agel-4
spe-k

[ECElE

*-axis

x-label

Figure 2: Layout Elements of a chart

Chart uses Lincoln Stein’s GD module for all its graphics primitives calls.
So you need an installed version of GD.pm to use Chart. This module is
available in the CPAN online archive at http://www.cpan.org/, just like
Chart itself.

The table lists all attributes that are currently used within the Chart
package. It shows which of the concrete subclasses uses each attribute.

olia PR KKK KKK [Slsisialal

KKK KX

]

HKooW XK X ol

KRR KKK

B R o la

o3

KXW X\ X PR K KKK Slsisialsl

KKK KX

»

ol

KAEHEHEHE I KKK K KK K

oI Eolel

®

s lelolatotalalaloholohotaialaRalatst

»

[olal

el T T

»

e lelaRalalal oI T R T [olal

eI RaTel

®

[slelolsl

[elaloleloRolatolotsl

o TEK ®Kox X o

o

]

HKRK KKK

e leRaRalalal

eI RaTel

®

[elaleleloRolatolotsl [slelolalsl

[eEeT T

TEH WK R

»

oI T R T [olal

[lelaRalalal

eI Ra Tl

o3

Slsisialsl

e lalalalototatototel

olia

HKEX X X

»

e RaRalala HKooW XK X olia

SRRl

e laleletatetatoRahataRa R e Rttt o

»

[olial

HKAEX X XN

»

KW XK X [olial

e RoRolotal

SRl

I

HAEAHEAHAAI T T T TR KKK K K HK KA o

I

[olial

e la BTN T

I

KW XK X [olial

ShoRoRololal

eI Rala

»

I

[eleRoRolsl

el BT e lalololoRalatololsl

TEK WK R

»

el laRalalal oI T R T o

eI Ra Tl

o

el iaiatatalal iR oottt

KX XK XX X SR

]

ST T I ol

el sEelolat

B R o lel

e e lalalatatatootal slalolsl o

I

sleRolsl slalaRalatatatal [olial

KoM KK XK XK

S heRoRototal

SRl

X
X
X

el lalaletataRototel slalalataatal

olial

KRRk XK KEHEHEK KKK KKK K K "

PP PGP KKK KKK KK KKK

e e lalalaRatatototal [slalolalal ®

I

[olial

e la R T T

i

KW XK X [olial

S hoRoRolotal

eI Rata

greqers
gy £
TR1 4
sO197 4K
greqer 4
eqer 4
soul[~pras8-4A
soxe A

jord-Ax
a8ueIx

s[oqerx
SOI1™X

eqer~x
soul[~prag-x
juoredsueay
FUOFTI1Y

o1HY

us[mo
HuoFT[PqRITHON
ooeds)xa)
|l qus
opowraurjde)s
aurrdags

jIeYS
sieq-pooeds
1108

s3Iy A-dys
ssp1yx-dpys
sy jurdpys
aTe0s
soxe-A-owres
Iolro-oures
Surx

az1s~3d
uotsoaxd
jutod
1oproq-Sud
sared

ayo®rd-OU
syo19” A urw
S3OI9~X"uT;I
glrea uru
Trea-uru
reaTur
S[OIIo~uTW
S)OI)~A-Xewr
SOI)~X~Xeuw
glea~xewr
Trea~xew
rea-xeuw
SOOI~ XRUWL
aur|
soul[-puaga|
s[oqe-puaday
seneA~[oqR[puale|
juoj-puela]
azis~ojdwrexe-puago|
Jy3rey-ajdurexe-pualay
puado]
sonyea~[oqe|
oy eqel
SO1)"TRAIDUT
reAIajul
Auo~s¥o19~19809jUT
oIoz-apniour
deweSeurt
soul[~-pragd
punoidxoeq-4£a13
1opiroq-ydeid
[CIUR
P14y

P A7y
APITXTg
SO13~X"WO03SNd
ojur-ojisoduwod
SI10[0D

gozIs ysniq
TozISTYsnIq
9ZIS~YSNIq
morre
Tearajur-orSue

sregpodoels

31ds

SYUT0 J

o1d

ojereJ

UTRJUNOIN

SJUIOJSoUl]

sour|

SIeqejuozIIo

SIRIOXIT

UOT09II (T

931sodwo))

sreg

°INqLIY

2 Chart::Base

Name: Chart::Base

File:

Base.pm

Requires: GD, Carp, FileHandle
Description:

Chart::Base is the abstract superclass of classes Chart::Bars,
Chart::Composite, Chart::Direction, Chart::ErrorBars,
Chart::HorizontalBars, Chart::Lines, Chart::LinesPoints,

Chart::Mountain, Chart::Pareto, Chart::Pie, Chart::Points, Chart::Split,
and Chart::StackedBars.

Class Chart::Base provides all public methods and most of the at-
tributes of Chart objects.

Constructor:

An object instance of class Chart can be created with the constructor
new():

$obj
$obj

Chart:: Type —new();
Chart: : Type —new(width, height);

Type here denotes the type of chart that is to be returned, e.g.,
Chart::Bars—mnew() returns a bar chart.

If new() is called without arguments, the constructor will return an
object of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart object of the desired size.

Methods:
$obj—add dataset (Q@array)
$obj—add dataset (\ Qarray_ref)

Adds a dataset to the object. The argument is an array or a reference
to an array. Generally, the first array added is interpreted as being
the = tick labels. The subsequent arrays contain the data points.
E. g., after the calls

$obj—add_dataset (’Harry’, ’Sally’);

$obj—add dataset (5, 8);

Chart will draw a picture with two bars and label them ‘Harry’ and
‘Sally’.

Some modules will operate slightly differently. Have a look at the
description of the specific subclass to get more information. Such

differences will also come up if you want to use the xy_plot option
in order to create a x—y graph.

$obj—add_pt (@array)

$obj—add_pt (\ @array_ref)
This is a different method for adding data to a Chart object. The
argument can be an array or a reference to an array. If you use this
method, Chart wants the complete data of one data point, i.e., all
the data that are associated with the same x value specified first in
this call. E. g.,
$obj—add_pt (’Harry’, 5);
$obj—add pt(’Sally’, 8);
would create the same graph as the example for add_dataset()
above.

$obj—add datafile("filename", type)

$obj—add_datafile($filehandle, type)

$obj—add_datafile()
This method adds the contents of a complete data file to the chart
object. type can be ‘set’ or ‘pt’. In the former case, ‘set’, each
line in the data file must represent a complete data set (data series).
The values of the set must be separated by whitespace. E. g., the file
contents could look like this:

Harry Sally
38
21

If the argument is ‘pt’, the lines of the file must look analogous to
the parameter arrays used by method add_pt (): Each line includes
all the values of one data point (i.e., all the y values associated with
the same z value), also separated by whitespace. E. g.:

Harry 3 2
Sally 8 1

$obj—get_data()
If you want a copy of the data that have been added so far, make a
call to this method like so:
$dataref = $obj—get_data();

This will return a reference to an array of references to datasets. For
example, you can get the x tick labels by:
@x_labels = @{$dataref->[0]};

$obj—clear_data()
This is the method to remove all data that may have been entered

until now.
$obj—set (attribute; =wvaluey, ..., attribute, =valuey)
$obj—rset (%hash)
$obj—set (attribute! , value;, ..., attribute,, value,)
$obj—set (@Qarray)

Use this method to change the attributes of the chart object. set ()
looks for a hash of keys and values or an array of keys and values.
E.g.,
$obj—set(’title’ =’The title of the image’);
would set the title. This would do the same job:
%hash = (’title’ =-’The title of the image’);
$obj—set (%hash) ;

$obj—png("filename")

$obj—png($filehandle)

$obj—png(FILEHANDLE)

$obj—png("filename", \@data)

$obj—png)
This method creates a PNG file. The file parameter can be a file
name, a reference to a filehandle or a filehandle itself. If the file does
not exist, Chart will create it for you. If there is already a file, Chart
will overwrite it. In case of an error, the file is not created.
You can also add data to a Chart object through its png() method.
The @data array should contain references to arrays of data, with
the first array reference pointing to an array of x labels. @data might
look like this:
@data = ([’Harry’, ’Sally’]l, [5, 81, [50, 801);
This would set up a graph with two datasets and three data points
in these sets.

$obj— jpeg (" filename")

$obj— jpeg($filehandle)

$obj— jpeg(FILEHANDLE)

$obj—jpeg (" filename", \@data)

$obj—jpegO)
This is the method to create JPEG files. It works analogously to the
png () method.

$obj—cgi png()

$obj—cgi_jpeg()
With the cG1 methods you can create dynamic images for your web

site. The ¢GI methods will print the chart along with the appropriate
HTTP header to STDOUT, allowing you to call chart-generating scripts
directly from your HTML pages (e.g., with a ‘(img src="image.pl"
/)’ HTML tag).
$obj—imagemap_dump ()

Chart can also return pixel position information so that you can
create image maps from the files generated by Chart. Simply set the
‘imagemap’ option to ‘true’ before you generate the file, then at the
end call the imagemap dump() method to retrieve the information.
A structure will be returned almost identical to the @data array
described above to pass the data into Chart.

$imagemap_data = $obj—imagemap dump();

Instead of single data values, references to arrays of pixel informa-

tion are passed. For the classes Chart::Bars, Chart::HorizontalBars,
Chart::Pareto and Chart::StackedBars, the arrays will contain two

x—y pairs (specifying the upper left and the lower right corner of

the bar). Compare to:

($x1,8$y1,$x2,$y2) = 0{$imagemap data— [$dataset] [$datapoint]};

For the classes Chart::Lines, Chart::Points, Chart::LinesPoints and
Chart::Split, the arrays will contain a single x—y pair (specifying the
center of the point). Compare to:

($x, $y) = ©0{$imagemap data— [$dataset] [$datapoint] };

A few caveats apply here. First of all, Chart uses the GD module by
Lincoln Stein to draw lines, circles, strings, and so on. GD treats
the upper-left corner of the PNG/JPEG image as the reference point,
therefore, positive y values are measured from the top of the image,
not from the bottom. Second, these values will mostly contain long
decimal values. GD, of course, has to truncate these to integer pixel
coordinates. In a worst-case scenario, this will result in an error of
one pixel on your imagemap. If this is really an issue, your only
option is to experiment with it, or to contact Lincoln Stein and ask
him. Third, please remember that the 0" dataset will be empty,
since that is the place for the data point labels on the x axis.

Attributes/Options:

These are the options which take effect on most Chart types. There are three

different kinds of attributes:

e attributes expecting a number for value (e. g., the number of pixels),

e attributes expecting a textual value (e.g., the title of the chart),

e attributes expecting a Boolean value.

Before Version 2.5 of the module, the Boolean value ‘true’ was represented
by the string ’true’, and the Boolean value ‘false’ was represented by the
string ’false’. For all other values, the Boolean value was not well-defined.
From version 2.5 onwards, the Boolean value ‘true’ may be represented by
any of 1, ’t’ and ’true’, where case does not matter. From version 2.5
onwards, the Boolean value ‘false’ may be represented by any of 0, *f’,
’false’, and undef, where case does not matter. For all other values, the
Boolean value is again not well-defined. Note that this behaviour is closer
to the standard Perl way but is not identical, due to the need for backward
compatibility in this module.
transparent
Makes the background of the image transparent if set to ‘true’.
Useful for making web page images. However, it does not seem to
work for all browsers. Defaults to ‘false’.
png_border
Sets the number of pixels used as a border between the graph and
the edges of the image. Defaults to 10.
graph_border
Sets the number of pixels used as a border between the title/labels
and the actual graph within the image. Defaults to 10.
text_space
Sets the amount of space left on the sides of text, to make it more
readable. Defaults to 3.

title
Tells Chart what to use for the title of the graph. If empty, no title
is drawn. ‘\\’ is treated as a newline. If you want to use normal
quotation marks instead of single quotation marks, remember to
quote (‘\\\\\') to get a linebreak. Default is empty.

sub_title
Writes a subtitle under the title in smaller letters.

x_label
Tells Chart what text to use as a label for the x axis. If empty, no
label is drawn. Default is undef.

y_label

y_label2

Tells Chart what kind of label should be used for the description of
the y axis on the left or the right side accordingly. If empty, no label
is drawn. Default is undef.

legend
Specifies the placement of the legend. Valid values are ‘left’,
‘right’, ‘top’, ‘bottom’, and ‘none’. Choosing ‘none’ tells Chart
not to draw a legend. Default is ‘right’.

legend _labels
Sets the values for the labels for the different datasets. Should be
assigned a reference to an array of labels. E. g.,
@labels = (’foo’, ’bar’);
$obj->set (’legend labels’ =-\@labels);
Default is empty, in which case ‘Dataset 1’, ‘Dataset 2’, etc. are
used as labels.

tick_len
Sets the length of the z and y ticks in pixels. Default is 4.

x_ticks
Specifies how to draw the « tick labels. Valid values are ‘normal’,
‘staggered’ (labels are drawn alternatingly close to the axis and
further away from it), and ‘vertical’ (label texts are rotated 90
degrees counter-clockwise). Default is ‘normal’.

y_ticks
The number of ticks to plot on the y scale, including the end points.
E.g., for a y axis ranging from 0 to 50, with ticks every 10 units,
y_ticks should have a value of 6.

min_y_ticks
Sets the minimum number of y ticks to draw when generating the y
axis. Default is 6, minimum is 2.

max_y_ticks
Sets the maximum number of y ticks to draw when generating the
y axis. Default is 100. This limit is used to avoid plotting an un-
reasonably large number of ticks if non-round values are used for
min_val and max_val. The value for max_y_ticks should be at
least 5 times as large as min_y_ticks.

min_x_ticks

max_x_ticks
These work similar to max_y_ticks and min_y_ticks, respectively.
Of course, this applies only to z—y plots.

integer_ticks_only
Specifies how to draw the x and y ticks: as floating point (‘false’,
‘0’) or as integer numbers (‘true’, ‘1’). If you want integer ticks,
it may be better to set the attribute precision to zero. Default:
‘false’

10

skip_int_ticks
If integer_ticks_only was set to ‘true’ the labels and ticks for the y
axis will be drawn every n'” tick. (Note that in Chart::HorizontalBars
the y axis runs horizontally.) Defaults to 1, i.e., no skipping.
precision
Sets the number of digits after the decimal point. Affects in most
cases the y axis only. In z—y plots also affects the x axis, and in pie
charts the labels. Defaults to 3.
max_val
Sets the maximum y value on the graph, overriding normal autoscal-
ing. Does not work for Chart::Split charts. Default is undef.
min_val
Sets the minimum y value on the graph, overriding normal autoscal-
ing. Does not work for Split charts. Default is undef. Caution should
be used when setting max_val and min_val to floating point or non-
round numbers: The range must start and end on a tick, ticks must
have round-number intervals and must include round numbers.
Example: Suppose your dataset has a range of 35...114 units. If
you specify these values as min_val and max_val, respectively, the
y axis will be plotted with 80 ticks, so one at every unit. Without
specification of min_val and max_val, the system would autoscale
the range to 30...120 with 10 ticks every 10 units. If min_val and
max_val are specified to excessive precision, they may be overridden
by the system, plotting a maximum max_y_ticks ticks.
include_zero
If ‘true’, forces the y axis to include zero even if it is not in the
dataset range. Default is ‘false’. — Note: It is better to use this
option than to set min_val if this is all you want to achieve.
skip_x_ticks
Sets the number of z ticks and z tick labels to skip. (IL.e., if
skip_x_ticks were set to 4, Chart would draw every 4 z tick and z
tick label). Default is undef.
custom_x_ticks
This option allows you to specify exactly which x ticks and x tick
labels should be drawn. It should be assigned a reference to an array
of desired ticks. Just remember that we are counting from the 0"
element of the array. (E.g., if custom_x_ticks is assigned [0,3,4],
then the 0%, 374 and 4" z ticks will be displayed) This does not
apply to Chart::Split, Chart::HorizontalBars and Chart::Pie.
f_x_tick

11

Needs a reference to a function which accepts the x tick labels gen-
erated by $data— [0] as its argument. This function should return a
reformatted version of the label as a string. E.g.

$obj—set (Pf_x_tick’ =\&formatter;)

An example for the formatter function: Assume that x labels are sec-
onds since some event. The referenced function could be designed to
transform this number of seconds to hours, minutes and seconds.

fy_tick

colors

Similar to f x_tick, but for y labels.

This option lets you control the colors the chart will use. It takes
a reference to a hash. The hash should contain keys mapped to
references to arrays of RGB values. E.g.,
$obj->set(’colors’ =-’background’ =-[255,255,255]);
sets the background color to white (which is the default). Valid keys
for this hash are
e ‘background’ (background color for the chart)
e ‘title’ (color of the title)
e ‘text’ (all the text in the chart)
e ‘x label’ (color of the x axis label)
e ‘y_label’ (color of the primary y axis label)
e ‘y_label2’ (color of the secondary y axis label)
e ‘grid_lines’ (color of the grid lines)
e ‘x grid_lines’ (color of the x grid lines — on x axis ticks)
e ‘y grid_lines’ (color of the y grid lines — on primary y axis
ticks)
e ‘y2 grid lines’ (color of the y2 grid lines — on secondary y axis
ticks)
e ‘datasetQ’ ...‘dataset63’ (the different datasets)

e ‘misc’ (everything else, e.g., ticks, box around the legend)

NB. For composite charts, there is a limit of eight datasets per com-
ponent. The colors for ‘dataset8’ through ‘dataset15’ will be the
same as those for ‘datasetQ’ through ‘dataset7’ for the second com-
ponent chart.

title_font

12

This option changes the font of the title line. The value must be a
GD font, e.g., GD: :Font—Large.

label _font
This option changes the font of the labels. The value must be a GD
font.

legend_font
This option changes the font for the legend text. The value must be
a GD font.

tick_label _font
This option changes the font of the ticks. The value must be a GD
font.

grey_background
Puts a nice soft grey background on the actual data plot when set
to ‘true’. Default is ‘true’.

x_grid_lines
Draws grid lines matching up to x ticks if set to ‘true’. Default is
‘false’.

y_grid_lines
Draws grid lines matching up to y ticks if set to ‘true’. Default is
‘false’.

grid_lines
Draws grid lines matching up to « and y ticks if set to ‘true’. Default
is ‘false’.

imagemap
Lets Chart know that you are going to ask for information about
the placement of the data for use in creating an image map from the
chart. This information can be retrieved using the imagemap_dump ()
method. NB. The imagemap_dump() method cannot be called un-
til after the chart has been generated (e.g., using the png() or
cgi_png() methods).

ylabel2
The label for the secondary (right-hand side) y axis. (In a composite
chart, this is the axis for the second component). Default is undef.

no_cache
Adds ‘Pragma: no-cache’ to the HTTP header. Be careful with
this one, since some older browsers (like Netscape 4.5) are unhappy
about POST using this method.

legend _example_size
Sets the length of the example line in the legend. Defaults to 20.

13

3 Chart::Bars

Name: Chart::Bars

File: Bars.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Bars creates a chart made up of vertical bars.
Chart::Bars is a subclass of Chart::Base.

Example:

Sold Cars in 2001

Hunber of Cars

Berlin Pariz Rome: Landon Munich

City

- January #— February = March - ppril
- June - July - pugust & Septenber —#— October
B Hovember ~#— December

Figure 3: Bar chart

use Chart::Bars;
$g = Chart::Bars->new(600,500);

$g->add_dataset(’Berlin’, ’Paris’, ’Rome’, ’London’, ’Munich’);

$g->add_dataset (14, 5, 4, 5, 11);
$g->add_dataset (12, 4, 6, 7, 12);
$g->add_dataset (18, 2, 3, 3, 9);
$g->add_dataset (17, 5, 7, 6, 6);
$g->add_dataset(15, 3, 4, 5, 11);
$g->add_dataset (11, 6, 5, 6, 12);

14

$g->add_dataset (12, 1, 4, 5, 15);
$g->add_dataset (10, 4, 6, 8, 10);
$g->add_dataset (14, 5, 4, 5, 11);
$g->add_dataset (12, 4, 6, 6, 12);
$g->add_dataset (18, 2, 3, 3, 9);
$g->add_dataset (17, 5, 7, 2, 6);

%hash = (’title’ => ’Sold Cars in 2001,

’text_space’ => 5,

’grey_background’ => ’false’,

’integer_ticks_only’ => ’true’,

’x_label’ => ’City’,

’y_label’ => ’Number of Cars’,

’legend’ => ’bottom’,

’legend_labels’ => [’January’, ’February’,
’March’, ’April’,
’May’, ’June’,
>July’, ’August’,
’September’,’October’,
’November’, ’December’

1,

‘min_val’ => 0,

’max_val’ => 20,

’grid_lines’ =>’true’,

’colors’ => {’title’ => ’red’,
’x_label’ => ’blue’,
’y_label’ => ’blue’

}

)
$g->set (}hash) ;

$g->png("bars.png") ;

Constructor:
An object instance of Chart::Bars can be created with the constructor
new():
$obj = Chart::Bars—new();
$obj = Chart::Bars—mnew(width, height);

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Bars object of the desired
size.

15

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
spaced_bars
Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.
y_axes
Tells Chart::Bars where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

16

4 Chart::Composite

Name: Chart::Composite

File: Composite.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Composite creates a two component chart with two
types of charts which are layered one above each other. Just set
the option composite_info. For example, you can create a two
component chart with bars and lines. A composite chart does not
make sense with all combinations of chart types, but it works pretty
good with Lines, Points, LinesPoints and Bars. Note that two similar
chart types may come into visual conflict. Chart::Composite can do
only composite charts made up of two components. Chart::Composite
is a subclass of Chart::Base.

Example:

Composite Chart
ElD:tazet 4 @l Datazet 2 =——(Datazet 3

0,700 12,000
0. 500 L10.,000
0,500 -

H 5. 000
0, i) -

L5000
0,300

L4000
0,200
0.100 - _2-000
0,000 0,000

1 z 3 4 5 &

Figure 4: Composite chart

use Chart::Composite;

$g = Chart::Composite->new();

17

$g->add_dataset (1, 2, 3, 4, 5, 6);
$g->add_dataset (0.1, 0.2, 0.3, 0.2, 0.4, 0.1);
$g->add_dataset (0.3, 0.5, 0.2, 0.6, 0.7, 0.4);
$g->add_dataset (10, 11, 6, 7, 7, 8);

$g->set (’composite_info’ => [[’Bars’, [1, 217,
[’LinesPoints’, [3]]
1,
’title’ => ’Composite Chart’,
’legend’ => ’top’,
’legend_example_height’ => ’true’,
’legend_example_height0..1’ => 10,
’legend_example_height2’ => 3,
)3

$g->set(’include_zero’ => ’true’);

$g->png("composite.png") ;

Constructor:
An object instance of Chart::Composite can be created with the con-
structor new():

$obj
$obj

Chart: :Composite—new();
Chart: :Composite—new (width, height) ;

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Composite object of the
desired size.

Methods:

All universally valid methods, see page 5 of class Chart::Base.

Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

brush_sizel

brush_size2
If using component charts having brush_size as one of their at-
tributes, you can define the sizes of the brushes individually. Default
is 6 (pixel).

composite_info

18

This option is only used for composite charts. It contains the infor-
mation which types to use for the two component charts, and which
datasets belong to which component chart. It should be a reference
to an array of array references, containing information like the fol-
lowing;:

$obj—set (’composite_info’ = ['Bars’, [1,2]], [Lines’, [3,4] |]);

This example would set the two component charts to be a bar chart
and a line chart. It would use the first two data sets for the bar
chart and the second two data sets for the line chart. The default
is undef. Note that the numbering starts at 1, not at 0 like most of
the other numbered things in Chart, because index 0 refers to the x
values which are shared by the two component charts. The ordering
of the components may be important, since the first component is
drawn first and then (partially) overdrawn with the second compo-
nent. E.g., when composing a line graph and a bar graph, it is safer
to have the bars in the first component since otherwise the line(s)
might be hidden behind them.

fy_tickl

fy_tick2
Needs a reference to a function which uses the y tick labels for the
primary and for the secondary y axis, respectively. These functions
should return a reformatted version of the label as a string. E. g.

$obj—set (Pf_y tickl’ =-\&formatterl);
$obj—set (Pf_y tick2’ =\&formatter2);

max_vall

max_val2
Only for composite charts. These options specify the maximum y
value for the first and the second component, respectively. Both
default to undef.

min_vall

min_val2
Only for composite charts. These options specify the minimum y
value for the first and the second component, respectively. Both
default to undef.

legend _example_height
Only for composite charts. This option changes the thickness of the
lines in the legend. If ‘legend_example_height’ is set to ‘true’ the

19

thickness of each legend line can be changed individually. Default is
false. E. g.

$obj—set (’legend example height’ =-’true’);
$obj—set (’legend example heightO’ =’37);
$obj—set (’legend example heightl..4’ =’10");

This example would set the thickness of the first line in the legend
to 3, and the thicknesses of the following 4 lines to 10 (using the
same indexing scheme as in ‘composite_info’). The default value
for each individual entry is 1, i.e. a ‘normal’ line is drawn. It is
not possible to change a 'legend_example_height#’(where # denotes
a dataset number) which was once defined. (The first setting will
remain unchanged.)

same_y_axes
Forces both component charts in a composite chart to use the same
maximum and minimum y values if set to ‘true’. This helps to keep
some composite charts from being too confusing. Default is undef.

y-ticksl

y_ticks2
The number of y ticks to use on the primary and on the secondary y
axis on a composite chart, respectively. Please note that if you just
set the ‘y_ticks’ option, both axes will use that number of y ticks.
Both default to undef.

20

5 Chart::Direction

Name: Chart::Direction

File:

Direction.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:

The class Chart::Direction creates a diagram based on polar coordi-
nates. This type of diagram is occasionally referred to as a radial or
as a radar chart. Chart::Direction plots data specified by angle (e. g.,
wind direction) and absolute value (e.g., wind strength). The first
dataset to add is always the set of angles in degrees. The second
set contains the absolute values. How additional datasets should
be entered depends on the option pairs (cf. below). By default,
Chart::Direction will draw a point chart. You can also get a lines
chart by setting the option point to ‘false’ and the option line to
‘true’. If you want a lines and point chart, then set both point and
line to ‘true’. In addition, Chart::Direction plots arrows from the
center to the point or to the end of the line if the option arrow is
set to ‘true’. Chart::Direction is a subclass of Chart::Base.

Example:

use Chart::Direction;
$g = Chart::Direction->new(500,500);

$g->add_dataset(0, 100, 50, 200, 280, 310);
$g->add_dataset (30, 40, 20, 35, 45, 20);

$g->add_dataset (10, 110, 60, 210, 290, 320);
$g->add_dataset (20, 30, 40, 20, 35, 45);

$g->add_dataset (20, 120, 70, 220, 300, 330);
$g->add_dataset (45, 20, 30, 40, 20, 35,);

%hash = (’title’ => ’Direction Demo’,
’angle_interval’ => 45,
’precision’ => 0,
’arrow’ => ’true’,
’point’ => ’false’,
’include_zero’ => ’true’,

21

Direction Demo

o

315°

N1

VD ’
A

225° 135°

270°

180°

Figure 5: Direction chart

’pairs’ => ’true’,

’legend’ => ’none’,

’grey_background’ => ’false’
)3

$g->set (%hash);

$g->png("direction.png");

Constructor:
An object instance of Chart::Direction can be created with the con-
structor new():

$obj
$obj

Chart: :Direction—new();
Chart: :Direction—new(width, height) ;

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Direction object of the desired
size.

22

Methods:

All universally valid methods, see page 5 of class Chart::Base.

Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

angle_interval
This option tells Chart::Direction how many angle lines should be
drawn. It is the difference between two angle lines. The default value
is 30, which means that one line will be drawn every 30 degrees. Not
all values are permissible; the valid ones are: 0, 5, 10, 15, 20, 30, 45,
and 90. If you choose 0, Chart::Direction will draw no lines.

arrow
Draws an arrow from the center of the chart to the point if set to
‘true’. By default ‘false’.

brush_size
Sets the width of the lines in pixels. Default is 6.

line
Connects the points with lines if set to ‘true’. Defaults to ‘false’.

max_circles
Sets the maximum number of circles to draw when generating the
set of circles. Default is 100. This limit is used to avoid plotting
an unreasonably large number of circles if non-round values are used
for min_val and max_val. The value for max_circles should be at
least 5 times that of min_circles.

min_circles
Sets the minimum number of circles to draw when generating a scale.
Default is 4, minimum is 2.

pairs
This option tells Chart::Direction how to handle additional datasets.
If pairs is set to ‘true’, Chart::Direction uses the first dataset as a set
of degrees and the second dataset as a set of values. Then, the third
set is a set of degrees and the fourth a set of values, and so forth.
If pairs is set to ‘false’, Chart::Direction uses the first dataset as a
set of angles and all following datasets as sets of values. Defaults to
‘false’.

point
Indicates to draw points for representing the data values. Possible
values: ‘true’ and ‘false’, by default ‘true’.

pt_size
Sets the radius of the points in pixels. Default is 18.

23

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted and line is set to ‘true’. Defaults to
‘false’.

24

6 Chart::ErrorBars

Name: Chart::ErrorBars
File: ErrorBars.pm
Requires: Chart::Base, GD, Carp, FileHandle

Description:

The class Chart::ErrorBars creates a point chart with error bars. This
class expects the error values within the data array. By use of the
add_dataset () method the error values are the next two sets after
the y values. The first set after the y values has to be the set of values
for the upper error bounds. The next set is the array of the lower
error bounds. Note that the error values are not specified absolutely
but rather as offsets from the y value: the upper error values will be
added to the y values, the lower error values will be subtracted.

If you want to use the same value for the upper and lower error, you
can set the same_error option to ‘true’. In this case only the set
after the y values is interpreted as a set of errors.

Of course, it is also possible to use the add_pt() method in the
appropriate way to achieve the same results. Chart::ErrorBars is a
subclass of Chart::Base.

Example:

use Chart: :ErrorBars;
$g = Chart::ErrorBars->new();

the x values
$g->add_dataset (quw(1
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5));

-
(=
=
N
(=
=
i
=
o
(=
[0}
=
\]

the y values
$g->add_dataset (quw (1l . . .14 1.15 1.26 1.2
1.1 1.191.2 1.4 1.6 2.0 2.5 3.1));

[
[
N
[N
[
[

the upper errors
$g->add_dataset(qw(0.4 O. . .14 0.15 0.26 0.27
0.1 0.19 0.2 0.1 0.1 0.2 0.1 0.3));

o
[N
o
N
o
[N
o

the lower errors
$g->add_dataset(qw(0.2 0.11 0.12 0.11 0.2 0.3 0.12 0.27
0.11 0.3 0.2 0.2 0.2 0.1 0.1 0.2));

25

Error Bars Demo

3.9
3.0 1
2.5
2.0 I
g4ttt 1 f +—T {
0.9
1.9 1.2 1.4 1.6 1.5 2.0 2.2 2.4 2.6
Figure 6: Error bars chart
$g->set(’xy_plot’ => ’true’,
’precision’ => 1,
’pt_size’ => 10,
’brush_size’ => 2,
’legend’ => ’none’,
’title’ => ’Error Bars Demo’,
’grid_lines’ => ’true’

)3
$g->png("errorbars.png") ;

Constructor:
An object instance of
structor new():

$obj
$obj

Chart::ErrorBars can be created with the con-

Chart: :ErrorBars—new() ;
Chart: :ErrorBars—mnew(width, height) ;

If new() is called without arguments, the constructor will return

an image of size 300x

400 pixels. If new() is called with two argu-

26

ments, width and height, it will return a Chart::ErrorBars object of
the desired size.

Methods:

All universally valid methods, see page 5 of class Chart::Base.

Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

brush _size
Sets the width of the lines in pixels. Default is 6.

pt_size
Sets the radius of the points in pixels. Default is 18.

same_error
Tells Chart::ErrorBars that you want to use the same values for upper
and lower error bounds if set to ‘true’. Then you have to add just
one set of error values. Defaults to ‘false’.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

xlabels

xrange
This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum z values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],
[10, 40, 70 D;
$chart->set(xlabels => \bs @labels,
xrange => [0, 100]
)3
xy_plot
Forces Chart::ErrorBars to plot a z—y graph if set to ‘true’, i.e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.
y_axes

27

Tells Chart::ErrorBars where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

28

7 Chart::HorizontalBars

Name: Chart::HorizontalBars

File: HorizontalBars.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::HorizontalBars creates a chart of horizontally ori-
ented bars. Chart::HorizontalBars is a subclass of Chart::Base.

Example:
Horizontal Bars Demo
bat —#—[atazet 1
——[ztazet 2
ding
wo
-;Junk
m
1
o
bar
Foo
I T T
L) [t} =+ [n] oo L)
-

H=aHis

Figure 7: Chart with horizontal bars

use Chart::HorizontalBars;

$g = Chart::HorizontalBars->new();
$g->add_dataset(’Foo’, ’bar’, ’junk’, ’ding’, ’bat’);
$g->add_dataset (4, 3, 4, 2, 8);

$g->add_dataset (2, 10, 3, 8, 3);

%hash = (’title’ => ’Horizontal Bars Demo’,
’grid_lines’ => ’true’,

29

’x_label’ => ’x axis’,

’y_label’ => ’y axis’,
’include_zero’ => ’true’,
’x_ticks’ => ’vertical’,

)3
$g->set (}hash) ;

$g->png("hbars.png") ;

Constructor:
An object instance of Chart::HorizontalBars can be created with the
constructor new():

Chart: :HorizontalBars—new() ;
Chart: :HorizontalBars—new (width, height) ;

$obj
$obj

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::HorizontalBars object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
skip_y_ticks
Does the same fo the y axis in a horizontal chart as skip_x_ticks
does for other charts. Defaults to 1.
spaced_bars
Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.
y_axes
Tells Chart::HorizontalBars where to place the y axis. ‘left’, ‘right’
and ‘both’. Defaults to ‘left’.

30

8 Chart::Lines

Name: Chart::Lines
Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Lines creates a lines chart. (If you want the data
points marked with symbols, check Chart::LinesPoints on page 34.)
Chart::Lines is a subclass of Chart::Base.

Example:

Lines Demao
10000

L0 (i

——1st Quarter \
——] (T 8.000 / \ P 8000
——3rd Quarter & .000 6000
——dth Quarter 4.000 \ I /\ 4,000
TR AN YT
2000 2000
0000 \ \ H L Telv]
—2.000 /Y \ \‘ —2.000
—4 000 fl\ 74 —d 00
: IAd 7 :
=6, 000 =6 . 000
=5 . 000 fl =5 (i
=10, 000 e Lo L)

foo har junk ding hat

Figure 8: Lines chart

use Chart::Lines;

$g = Chart::Lines->new();

$g->add_dataset(’foo’, ’bar’, ’junk’, ’ding’, ’bat’);
$g->add_dataset(-4, 3, -4, -5, -2);
$g->add_dataset(2, 10, -3, 8, 3);
$g->add_dataset(-10, 2, 4, -3, -3);
$g->add_dataset(7, -5, -3, 4, 7);

%hash = (’legend_labels’ => [’1st Quarter’, ’2nd Quarter’,
’3rd Quarter’, ’4th Quarter’],

’y_axes’ => ’both’,
title’ => ’Lines Demo’,
’grid_lines’ => ’true’,

’legend’ => ’left’,

’legend_example_size’ => 20,

’colors’ => {’text’ => ’blue’,
‘misc’ => ’blue’,
’background’ => ’grey’,
’grid_lines’ => ’light_blue’,

’dataset0’ => [220,0,0],
’datasetl’ => [200,0,100],
’dataset?2’ => [150,50,175],
’dataset3’ => [170,0,255]
}
);
$g->set (%hash);
$g->png("lines.png");
Constructor:
An object instance of Chart::Lines can be created with the construc-
tor new():
$obj = Chart::Lines—new();
$obj = Chart::Lines—mnew(width, height);

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Lines object of the desired
size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush _size

Sets the width of the lines in pixels. Default is 6.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

stepline

The points are connected by a stepping function,instead of by a
direct line if set to ‘true’. Defaults to ‘false’.

32

stepline_mode
Determines whether to plot each stepping line at the level of the
start of the interval (if set to ‘begin’) or at its end if set to ‘end’.
Defaults to ‘begin’.

xlabels

xrange
This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the = values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],

(10, 40, 70 1);
$chart—->set(xlabels => \bs @labels,

xrange => [0, 100]

);

xy_plot

Forces Chart::Lines to plot a z—y graph if set to ‘true’, i.e., to treat
the z axis as numeric. Very useful for plots of mathematical func-
tions. Defaults to ‘false’.

33

9 Chart::LinesPoints

Name: Chart::LinesPoints

File: LinesPoints.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::LinesPoints creates a lines chart where addition-
ally the individual data points are marked with a symbol. (If you
want just lines without additional symbols, check Chart::Lines on
page 31. If you want just symbols for the data points but no lines,
check Chart::Points on page 46.) Chart::LinesPoints is a subclass of
Chart::Base.

Example:

Soccer Season 2002

8Ny Soccer Club
——Derver Tigers
—#—Houston Spacecats
—#—ashington Presidents

AV \

=

position in the table
w oo | o on = (5] ™2 [
[

A

1 2 3 4 5 &6 7 8§ 9 10 11 12 13 14 15 18 17
day of play

Figure 9: Linespoints chart

use Chart::LinesPoints;
use strict;

my (@datal, @data2, @datad, @data3, @labels, %hash, $g);

@labels = qw(1 2 34567 89 10 11 12 13 14 15 16 17);
@datal qw (-7 -5 -6 -8 -9 -7 -5 -4 -3 -2 -4 -6 -3 -5 -3 -4 -6);

34

@ata2 = qw (-1 -1 -1 -1 -2 -2 -3 -3 -4-4-6-3-2-2-2-1-1);
@data3 = qw (-4 -4 -3 -2 -1-1-1-2-1-1-3-2-4-3-4-2-2);
@datad =qw (-6 -3 -2 -3 -3-3-2-1-2-3-1-1-1-1-1-3-3);

$g = Chart::LinesPoints->new(600,300);
$g->add_dataset (@labels);
$g->add_dataset (@datal) ;
$g->add_dataset (@data2) ;
$g->add_dataset(@data3);
$g->add_dataset (@datad) ;

%hash = (’integer_ticks_only’ => ’true’,
‘title’ => ’Soccer Season 2002\n 7,
’legend_labels’ => [’NY Soccer Club’, ’Denver Tigers’,
’Houston Spacecats’,
’Washington Presidents’],

’y_label’ => ’position in the table’,
’x_label’ => ’day of play’,
’grid_lines’ => ’true’,

'f_y_tick’ => \&formatter,

)3
$g->set (%hash);
$g->png("d_linesp2.png");

Just a trick to have the y scale start at the biggest point:
Initialise with negative values, remove the minus sign!
sub formatter {

my $label = shift;

$label = substr($label, 1);

return $label;

¥

Constructor:
An object instance of Chart::LinesPoints can be created with the con-
structor new():

Chart::LinesPoints—new();
Chart::LinesPoints—new(width, height) ;

$obj
$obj

35

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::LinesPoints object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush _size
Sets the width of the lines in pixels. Default is 6.
pt_size
Sets the radius of the points in pixels. Default is 18.
sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.
stepline
The points are connected by a stepping function,instead of by a
direct line if set to ‘true’. Defaults to ‘false’.
stepline_mode
Determines whether to plot each stepping line at the level of the
start of the interval (if set to ‘begin’) or at its end if set to ‘end’.
Defaults to ‘begin’.
xlabels
xrange
This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum z values on
the axis. E.g.,
@labels = ([’Jan’, ’Feb’, ’Mar’],
[10, 40, 70 D;
$chart->set(xlabels => \bs @labels,
xrange => [0, 100]
);
xy_plot

36

Forces Chart::LinesPoints to plot a x—y graph if set to ‘true’, i.e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.

y_axes
Tells Chart::LinesPoints where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

37

10 Chart::Mountain

Name: Chart::Mountain
File: Mountain.pm
Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Mountain creates a mountain chart, i. e., the individ-
ual data sets are stacked and the areas under the curves are colour
filled. The first data set will be shown at the top of the stack, the
last at the bottom. Chart::Mountain is a subclass of Chart::Base.

Example:

Mountain Chart

—#—[Datazet 1
- [atazet 2
—#—[Datazet 3

1510 1950 1950 1970

Figure 10: Mountain chart

use Chart::Mountain;

$g = Chart::Mountain->new();

@data = [[1910, 1930, 1950, 1970],
[1! 3, 4) 2]’

(2, 4, 3, 31,
0.5, 1, 2, 111;

38

$g->set("title’ => ’Mountain Chart’,
’grid_lines’ => ’false’,
’precision’ => 1);

$g->png("mountain.png", @data);

Constructor:
An object instance of Chart::Mountain can be created with the con-
structor new():

Chart: :Mountain—new();
Chart: :Mountain—new (width, height) ;

$obj
$obj

If new() is called without arguments, the constructor will return
an image of size 300x400 pixels. If new() is called with two argu-
ments, width and height, it will return a Chart::Mountain object of
the desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
y_axes
Tells Chart::Mountain where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

39

11 Chart::Pareto

Name: Chart::Pareto

File: Pareto.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Pareto creates a Pareto chart, i.e., a set of absolute
values overlaid with a line chart of the accumulated values. (This
latter curve is also known as an empirical cumulative distribution
function or as a Lorenz curve.) This representation usually makes
sense only if the values are sorted (either in ascending or in de-
scending order). Chart::Pareto plots only one data set and its labels.
Chart::Pareto is a subclass of Chart::Base.

Example:

use Chart: :Pareto;

$g = Chart::Pareto->new(500,400);

$g->add_dataset(’1st week’, ’2nd week’, ’3rd week’, ’4th week’,
’bth week’, ’6th week’, ’7th week’, ’8th week’,
’9th week’, ’10th week’);

$g->add_dataset (37, 15, 9, 4, 3.5, 2.1, 1.2, 1.5, 6.2, 16);

%hash = (’colors’ => { ’dataset0’ => ’mauve’,
’datasetl’ => ’light_blue’,
’title’ => ’orange’

3,
title’ => ’Visitors at the Picasso Exhibition’,
’integer_ticks_only’ => ’true’,
’skip_int_ticks’ => 5,
’grey_background’ => ’false’,
‘max_val’ => 100,
’y_label’ => ’Visitors in Thousands’,
’x_ticks’ => ’vertical’,
’spaced_bars’ => ’true’,
’legend’ => ’none’

);
$g->set (Yhash) ;

40

Visitors at the Picasso Exhikition

100 0T

Visitors in Thousands
B
L
1

15 -
101 4
> i
o B -
T = T =l = = = T - T
[T [Tl [T [Tl [T [N [T [T] [T
2 £ 2 £ 2 £ 2 2 £ 2
+ = = = = = = = = =
4 & & 5 S i (S & & =
Figure 11: Pareto chart
$g->png("pareto.png");
Constructor:
An object instance of Chart::Pareto can be created with the construc-
tor new():
$obj = Chart::Pareto—new();
$obj = Chart::Pareto—new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Pareto object of the desired
size.

41

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.
spaced_bars
Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.
y_axes
Tells Chart::Pareto where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

42

12 Chart::Pie

Name: Chart::Pie

File: Pie.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Pie creates a pie chart. The first added set must
contain the labels, the second set the values. Chart::Pie is a subclass
of Chart::Base.

Example:

Another Pie Demo Chart

Tar 11.25% 9000
Her 18.75% 15000

kure 13.75% 11000

Ert 16.25% 13000

Har 15.00% 12000

Sug 25,00 20000

The Hinner iz Tean Blue!

Figure 12: Pie chart

use Chart::Pie;
$g = Chart::Pie->new();

$g->add_dataset (’Har’, ’Sug’, ’Ert’, ’Her’, ’Tar’, ’Kure’);
$g->add_dataset (12000, 20000 , 13000, 15000, 9000, 11000);

%hopt = (’title’ => ’Another Pie Demo Chart’,
’label_values’ => ’both’,
’legend’ => ’none’,

43

’text_space’
’png_border’

’graph_border’

’colors’ => { ’x_label’

’x_label’

)

$g->set (Jiopt) ;

$g->png("pie.png");

Constructor:

An object instance of Chart::Pie can be created with the constructor

new():

$obj
$obj

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Pie object of the desired size.

Methods:

1,

=> 10,

=> 1,
=> 0,

=>
‘misc’ =>
’background’ =>
’dataset0’ =>
’datasetl’ =>
’dataset?2’ =>
’dataset3’ =>
’dataset4’ =>
’datasetb’ =>
=> ’The Winner

Chart: :Pie—new() ;
Chart: :Pie—new(width, height);

‘red’,

’plum’,

‘grey’,

[120, 0, 255],
[120, 100, 255],
[120, 200, 255],
[255, 100, 0],
[255, 50, 0],
[2565, 0, O],

is Team Blue!’,

All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

label_values

Tells Chart::Pie what kind of value labels to show alongside the pie.
Valid values are ‘percent’; ‘value’, ‘both’ and ‘none’. Defaults to
‘percent’.

legend_label _values

44

Tells Chart::Pie what kind of labels to show in the legend. Valid
values are ‘percent’, ‘value’, ‘both’ and ‘none’. Defaults to ‘value’.
legend _lines
The labels drawn alongside the pie are connected with a line to the
segment if this option is set to ‘true’.
ring
The pie can have a ring shape instead of the usual disc shape. This
option determines the thickness of the ring as a fraction of the radius.
Default is 1, i. e., a full pie.

45

13 Chart::Points

Name: Chart::Points
File: Points.pm
Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Points creates a point chart (also called scatter-
gram) where the individual data points are marked with a symbol.
(If you want lines in addition, check Chart::LinesPoints on page 34.)
Chart::Points is a subclass of Chart::Base.

Example:

Points Chart
5000

L 2

5,000 » -»

&, Q00 -] -

3.000 - e *

2.000 4 * L

1.000

-
o

0000

0000

1.000-
20004
30004
4000 <
5,000
G000

Figure 13: Points chart

use Chart::Points;

$g = Chart::Points->new();

$g->add_dataset (1, 4, 3, 6, 2, 2.5); # x-coordinates
$g->add_dataset (1, 5, 3, 2, 3, 3.2); # y-coordinates dataset 1
$g->add_dataset(2, 6, 4.8, 1, 4, 4.2); # y-coordinates dataset 2
@hash = (’title’ => ’Points Chart’,

’xy_plot’ => ’true’,

’x_ticks’ => ’vertical’,

’legend’ => ’none’,

46

’sort’ => ’true’,
’precision’ => 3,
’include_zero’ => ’true’,

)3
$g->set (Ghash);

$g->png("Grafiken/points.png") ;

Constructor:
An object instance of Chart::Points can be created with the construc-
tor new():
$obj = Chart::Points—new();
$obj = Chart::Points—new(width, height) ;

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Points object of the desired
size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
pt_size

Sets the radius of the points in pixels. Default is 18.

The points are extended by different brush styles.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

xlabels

xrange

This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

47

@labels = ([’Jan’, ’Feb’, ’Mar’],
[10, 40, 70 1);
$chart—->set(xlabels => \bs @labels,
xrange => [0, 100]
);
xy_plot
Forces Chart::Points to plot a z—y graph if set to ‘true’, i.e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.
y_axes
Tells Chart::Points where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

48

14 Chart::Split

Name: Chart::Split

File: Split.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::Split creates a lines chart where both x and y axes
are assumed to be numeric. Split charts are mainly intended for cases
where many data points are spread over a wide = range while at the
same time the y range is limited. Typical examples are weather or
seismic data. The z axis will be split into several intervals of the
same length (specified with the mandatory option interval). The
intervals will be displayed in a stacked fashion. The start of the
top interval is set with the mandatory option start. Chart::Split will
draw only positive z coordinates. The y axis will not be labelled with
the y values. Rather, the axis will show only the sequence numbers
of the intervals. Chart::Split is a subclass of Chart::Base.

Example:

use Chart::Split;
$g = Chart::Split->new (650, 900);

Get the data from a file and push them into arrays
open(FILE, "data.dat") or die "Can’t open the data file!\n";
while (<KFILE>) {

($x, $y) = split;

push (0x, $x);

push (Qy, $y);
}
close(FILE);

Add the data
$g->add_dataset (0x) ;
$g->add_dataset (Qy);

Set the optiomns
$g->set (’xy_plot’ => ’true’);

$g->set (’legend’ => ’none’);

49

$g->set (Ptitle’ => ’Split Demo’);

$g->set (’interval’ => 1/288);

$g->set ("interval_ticks’ => 10);

$g->set (’start’ => 260.5);

$g->set ("brush_size’ => 1);

$g->set (’precision’ => 4);

$g->set (’y_label’ => ’5 minutes interval’);

Give me a nice picture
$g->png("split.png");

Constructor:
An object instance of Chart::Split can be created with the constructor
new():
$obj = Chart::Split—mnew();
$obj = Chart::Split—mnew(width, height) ;

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::Split object of the desired
size.

Methods:

All universally valid methods, see page 5 of class Chart::Base.

Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

start
Sets the start value of the first interval. If the x coordinate of the
first data point is 0, start should also be set to 0. Required value
for a Chart::Split chart. Defaults to undef.

interval
Sets the interval of one segment to plot. Required value for a split
chart. Defaults to undef.

interval _ticks
Sets the number of ticks for the x axis. Defaults to 5.

scale
Every y value of a Chart::Split chart will be multiplied by this value,
without however changing the sclaing of the y axis. (This might
result in some segments being overdrawn by others.) Only useful

50

if you want to give prominence to the maximal amplitudes of data.
Defaults to 1.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

y_axes
Tells Chart::Split where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

o1

Split Demo

5 ninutes interval

14

11

260 SO0

T
ZE0 S0o0d

T
2605005

T T T T
260,901 260.9015 260.501%9 260.5023

Figure 14: Split chart

52

T
260 5027

T
260 5031

2605030

15 Chart::StackedBars

Name: Chart::StackedBars

File: StackedBars.pm

Requires: Chart::Base, GD, Carp, FileHandle
Description:

The class Chart::StackedBars creates a chart made up of stacked ver-
tical bars. The first data set will be shown at the bottom of the stack,
the last at the top. Chart::StackedBars is a subclass of Chart::Base.

Example:

Stacked Bar Chart
35,000

30,000
25,000
20,000
15,000
10000

5000

0000

foo bar Junk taco karp

—#—[Datazet 1 —#—[Datazet 2 —#—[Datazet 3

Figure 15: Chart with stacked bars

use Chart::StackedBars;

$g = Chart::StackedBars->new();
$g->add_dataset (qw(foo bar junk taco karp));
$g->add_dataset (3, 4, 9, 10, 11);
$g->add_dataset(8, 6, 1, 12, 1);
$g->add_dataset(5, 7, 2, 13, 4);

$g->set("title’ => ’Stacked Bar Chart’);

93

$g—>set(Py_grid_lines’ => ’true’);
$g->set (’legend’ => ’bottom’) ;

$g->png("stackedbars.png") ;

Constructor:
An object instance of Chart::StackedBars can be created with the
constructor new():

Chart: :StackedBars—new() ;
Chart: :StackedBars—new(width, height) ;

$obj
$obj

If new() is called without arguments, the constructor will return an
image of size 300x400 pixels. If new() is called with two arguments,
width and height, it will return a Chart::StackedBars object of the
desired size.

Methods:

All universally valid methods, see page 5 of class Chart::Base.

Attributes/Options:

All universally valid options, see page 8 of class Chart::Base. In addition,

the following options are defined for this class:

spaced_bars
Leaves some space between the individual bars when set to ‘true’.
This usually make it easier to read a bar chart, with stacked bars,
however, it is not as important as with groups of bars. Default is
‘true’.

y_axes
Tells Chart::StackedBars where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

54

Index

Attributes min_circles, 23
angle_interval, 23 min_val, 11
arrow, 23 min_vall, 19
brush_size, 23, 27, 32, 36 min_val2, 19
brush_sizel, 18 min_x_ticks, 10
brush_size2, 18 min_y_ticks, 10
colors, 12 no_cache, 13
composite_info, 18 pairs, 23
custom_x_ticks, 11 png_border, 9
fx_tick, 11 point, 23
fy_tick, 12 precision, 11
foy_tickl, 19 pt_size, 23, 27, 36, 47
foy_tick2, 19 ring, 45
graph_border, 9 same_error, 27
grey_background, 13 same_y_axes, 20
grid_lines, 13 scale, 50
imagemap, 13 skip_int_ticks, 11
include_zero, 11 skip_x_ticks, 11
integer_ticks_only, 10 skip_y_ticks, 30
interval, 50 sort, 24, 27, 32, 36, 42, 47, 51
interval_ticks, 50 spaced_bars, 16, 30, 42, 54
label _font, 13 start, 50
label_values, 44 stepline, 32, 36
legend, 10 stepline_mode, 33, 36
legend _example_height, 19 sub_title, 9
legend_example_size, 13 text_space, 9
legend_font, 13 tick_label _font, 13
legend _label values, 44 tick_len, 10
legend_labels, 10 title, 9
legend lines, 45 title_font, 12
line, 23 transparent, 9
max_circles, 23 x_grid_lines, 13
max_val, 11 x_label, 9
max_vall, 19 x_ticks, 10
max_val2, 19 xlabels, 27, 33, 36, 47
max_x_ticks, 10 xrange, 27, 33, 36, 47
max_y_ticks, 10 xy_plot, 27, 33, 36, 48

95

y_axes, 16, 27, 30, 37, 39, 42, 48,

51, 54

y-grid_lines, 13

Chart::Pareto, 5, 8, 4042
Chart::Pie, 2, 5, 11, 43-45
Chart::Points, 5, 8, 34, 4648

y_label, 9 Chart::Split, 5, 8, 11, 49-51
y_label2, 9 Chart::StackedBars, 5, 8, 53, 54
y_ticks, 10 Constructor, 5, 15, 18, 22, 26, 30, 32,
y_ticksl, 20 35, 39, 41, 44, 47, 50, 54
y_ticks2, 20
ylabel2, 13 GD (module by Lincoln Stein), 3
Chart::Bars, 14 Methods
Chart::Base, 5 add_datafile(), 6
Chart::Composite, 17 add_dataset(), 5
Chart::Direction, 21 add_pt(), 6
Chart::ErrorBars, 25 cgi_jpeg(), 7
Chart::HorizontalBars, 29 cgi_png(), 7
Chart::Lines, 31 clear_data(), 7
Chart::LinesPoints, 34 get_data(), 6
Chart::Mountain, 38 imagemap-dump(), 8
Chart::Pareto, 40 jpeg(), 7
Chart::Pie, 43 new(), 5, 15, 18, 22, 26, 30, 32,
Chart::Points, 46 35, 39, 41, 44, 47, 50, 54
Chart::Split, 49 png(), 7
Chart::StackedBars, 53 set(), 7
Class .
Synopsis, 1

Chart, 2, 3, 5-11, 13, 19

Chart::Bars, 5, 8, 14-16

Chart::Base, 2, 5, 14, 16-18, 21,
23, 25, 27, 29-32, 34, 36, 39,
40, 42-44, 46, 47, 49, 50, 53,
54

Chart::Composite, 5, 17, 18

Chart::Direction, 5, 21-23

Chart::ErrorBars, 5, 25-28

Chart::HorizontalBars, 5, 8, 11,
29, 30

Chart::Lines, 5, 8, 31-34

Chart::LinesPoints, 5, 8, 31, 34—
37, 46

Chart::Mountain, 5, 38, 39

56

