
Documentation for Perl Package Chart

Version 2.4.4

Chart Group1

Last change: 2012-01-06

1Bundesamt für Kartographie und Geodäsie, Geodätisches Observato-
rium Wettzell, Sackenrieder Strasse 25, D-93444 Bad Kötzting, E-mail:
chart@fs.wettzell.de



Contents

1 Description 1

2 Chart::Base 5

3 Chart::Bars 14

4 Chart::Composite 17

5 Chart::Direction 21

6 Chart::ErrorBars 25

7 Chart::HorizontalBars 29

8 Chart::Lines 31

9 Chart::LinesPoints 34

10 Chart::Mountain 38

11 Chart::Pareto 40

12 Chart::Pie 43

13 Chart::Points 46

14 Chart::Split 50

15 Chart::StackedBars 54

i



List of Figures

1 The hierarchy of Chart classes . . . . . . . . . . . . . . . . . . 2
2 Layout Elements of a chart . . . . . . . . . . . . . . . . . . . 3
3 Bar chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Composite chart . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Direction chart . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Error bars chart . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Chart with horizontal bars . . . . . . . . . . . . . . . . . . . . 29
8 Lines chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Linespoints chart . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 Mountain chart . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 Pareto chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12 Pie chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13 Points chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
14 Points chart as an example for brush styles . . . . . . . . . . 48
15 Split chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
16 Chart with stacked bars . . . . . . . . . . . . . . . . . . . . . 54

ii



1 Description

Synopsis

use Chart::type; (type is one of: Bars, Composite,

Direction, ErrorBars, HorizontalBars, Lines, LinesPoints,

Mountain, Pareto, Pie, Points, Split or StackedBars)

$obj = Chart::type->new();

$obj = Chart::type->new(\$width, \$height);

$obj->set( $key_1, $val_1, ... , $key_n, $val_n);

$obj->set( $key_1 => $val_1, ... , $key_n => $val_n);

$obj->set( %hash );

# Graph.pm-style API to produce PNG formatted charts:

@data = ( \@x_tick_labels, \@dataset_1, ... , \@dataset_n);

$obj->png( "filename", \@data );

$obj->png( $filehandle, \@data );

$obj->png( FILEHANDLE, \@data );

$obj->cgi_png();

# Graph.pm-style API:

$obj->add_pt($label, $val_1, ..., $val_n);

$obj->add_dataset($val_1, ..., $val_n);

$obj->png("filename");

$obj->png($filehandle);

$obj->png(FILEHANDLE);

$obj->cgi_png();

# Similar functions are available for JPEG output.

# Retrieve imagemap information:

$obj->set(’imagemap’ => ’true’);

$imagemap_ref = $obj->imagemap_dump();

1



The Perl module Chart creates png or jpeg output which can be written
to a file or to stdout. Therefore, Chart can also create dynamic charts for
web sites.

Many different chart types are available, viz., Bars, Composite, Direc-
tion, ErrorBars, HorizontalBars, Lines, LinesPoints, Mountain, Pareto, Pie,
Points, Split, and StackedBars. Each specific type is implemented as a class
by itself which is derived from the same abstract superclass, Base.

The hierarchy of Chart classes is shown in Figure 1.

Figure 1: The hierarchy of Chart classes

You must create an instance of one of the concrete subclasses to get a
Chart object. Take a look at the individual class descriptions to see how
they work.

All the methods and most of the options Chart provides are implemented
in the Chart::Base class. However, drawing of the graph itself happens in the
appropriate subclass. Figure 2 shows the elements of a chart from a layout
perspective.

The graph area in the middle is drawn by the subclass, all the other el-
ements are drawn by Chart::Base. But some classes do not need all of those
elements, or they may need additional elements. The Chart::Base meth-
ods producing these elements have then to be overwritten in the respective
subclass. For example, class Chart::Pie needs no axes, so the methods for
drawing these in file Base.pm are overwritten by methods in class Chart::Pie;
in this case, no axes are drawn. Furthermore, the legend in a pie chart is
slightly different. Therefore, Pie.pm has its own methods for drawing the
legends. All these rules are managed by Chart, so you do not have to attend
to it.

2



Figure 2: Layout Elements of a chart

Chart uses Lincoln Stein’s GD module for all its graphics primitives calls.
So you need an installed version of GD.pm to use Chart. This module is
available in the CPAN online archive at http://www.cpan.org/, just like
Chart itself.

The table lists all attributes that are currently used within the Chart
package. It shows which of the concrete subclasses uses each attribute.

3



A
tt
ri
b
u
te

B
a
rs

C
o
m
p
o
si
te

D
ir
e
c
ti
o
n

E
rr
o
rB

a
rs

H
o
ri
z
o
n
ta

lB
a
rs

L
in

e
s

L
in

e
sP

o
in
ts

M
o
u
n
ta

in
P
a
re

to
P
ie

P
o
in
ts

S
p
li
t

S
ta

c
k
e
d
B
a
rs

a
n
g
le

in
te

rv
a
l

X
a
rr
o
w

X
b
ru

sh
si
z
e

X
X

X
X

b
ru

sh
si
z
e
1

X
b
ru

sh
si
z
e
2

X
b
ru

sh
S
ty

le
X

X
b
ru

sh
S
ty

le
1

X
b
ru

sh
S
ty

le
2

X
c
o
lo
rs

X
X

X
X

X
X

X
X

X
X

X
X

X
c
o
m
p
o
si
te

in
fo

X
c
u
st
o
m

x
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
f
x

ti
c
k

X
X

X
X

X
X

X
X

X
X

X
X

X
f
y

ti
c
k

X
X

X
X

X
X

X
X

X
X

X
X

X
f
y

ti
c
k
1

X
f
y

ti
c
k
2

X
g
ra

p
h

b
o
rd

e
r

X
X

X
X

X
X

X
X

X
X

X
X

X
g
re

y
b
a
c
k
g
ro

u
n
d

X
X

X
X

X
X

X
X

X
X

X
X

X
g
ri
d

li
n
e
s

X
X

X
X

X
X

X
X

X
X

X
X

X
im

a
g
e
m
a
p

X
X

X
X

X
X

X
X

X
X

X
X

X
in

c
lu

d
e
z
e
ro

X
X

X
X

X
X

X
X

X
X

X
X

X
in
te

g
e
r
ti
c
k
s
o
n
ly

X
X

X
X

X
X

X
X

X
X

X
X

X
in
te

rv
a
l

X
in
te

rv
a
l
ti
c
k
s

X
la
b
e
l
fo
n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
la
b
e
l
v
a
lu

e
s

X
le
g
e
n
d

X
X

X
X

X
X

X
X

X
X

X
X

X
le
g
e
n
d

e
x
a
m
p
le

h
e
ig
h
t

X
le
g
e
n
d

e
x
a
m
p
le

si
z
e

X
X

X
X

X
X

X
X

X
X

X
X

X
le
g
e
n
d

fo
n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
le
g
e
n
d

la
b
e
l
v
a
lu

e
s

X
le
g
e
n
d

la
b
e
ls

X
X

X
X

X
X

X
X

X
X

X
X

X
le
g
e
n
d

li
n
e
s

X
li
n
e

X
m
a
x

c
ir
c
le
s

X
m
a
x

v
a
l

X
X

X
X

X
X

X
X

X
X

X
X

X
m
a
x

v
a
l1

X
m
a
x

v
a
l2

X
m
a
x

x
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
m
a
x

y
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
m
in

c
ir
c
le
s

X
m
in

v
a
l

X
X

X
X

X
X

X
X

X
X

X
X

X
m
in

v
a
l1

X
m
in

v
a
l2

X
m
in

x
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
m
in

y
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
n
o

c
a
c
h
e

X
X

X
X

X
X

X
X

X
X

X
X

X
p
a
ir
s

X
p
n
g

b
o
rd

e
r

X
X

X
X

X
X

X
X

X
X

X
X

X
p
o
in
t

X
p
re

c
is
io
n

X
X

X
X

X
X

X
X

X
X

X
X

X
p
t
si
z
e

X
X

X
X

ri
n
g

X
sa

m
e
e
rr
o
r

X
sa

m
e
y

a
x
e
s

X
sc

a
le

X
sk

ip
in
t
ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
sk

ip
x

ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
sk

ip
y

ti
c
k
s

X
so

rt
X

X
X

X
X

X
X

sp
a
c
e
d

b
a
rs

X
X

X
X

st
a
rt

X
st
e
p
li
n
e

X
X

st
e
p
li
n
e
m
o
d
e

X
X

su
b

ti
tl
e

X
X

X
X

X
X

X
X

X
X

X
X

X
te

x
t
sp

a
c
e

X
X

X
X

X
X

X
X

X
X

X
X

X
ti
c
k

la
b
e
l
fo
n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
ti
c
k

le
n

X
X

X
X

X
X

X
X

X
X

X
X

X
ti
tl
e

X
X

X
X

X
X

X
X

X
X

X
X

X
ti
tl
e
fo
n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
tr
a
n
sp

a
re

n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
x

g
ri
d

li
n
e
s

X
X

X
X

X
X

X
X

X
X

X
X

X
x

la
b
e
l

X
X

X
X

X
X

X
X

X
X

X
X

X
x

ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
x
la
b
e
ls

X
X

X
X

x
ra

n
g
e

X
X

X
X

x
y

p
lo
t

X
X

X
X

y
a
x
e
s

X
X

X
X

X
X

X
X

X
y

g
ri
d

li
n
e
s

X
X

X
X

X
X

X
X

X
X

X
X

X
y

la
b
e
l

X
X

X
X

X
X

X
X

X
X

X
X

X
y

la
b
e
l2

X
X

X
X

X
X

X
X

X
X

X
X

X
y

ti
c
k
s

X
X

X
X

X
X

X
X

X
X

X
X

X
y

ti
c
k
s1

X
y

ti
c
k
s2

X
y
la
b
e
l2

X
X

X
X

X
X

X
X

X
X

X
X

X

4



2 Chart::Base

Name: Chart::Base

File: Base.pm

Requires: GD, Carp, FileHandle

Description:
Chart::Base is the abstract superclass of classes Chart::Bars,
Chart::Composite, Chart::Direction, Chart::ErrorBars,
Chart::HorizontalBars, Chart::Lines, Chart::LinesPoints,
Chart::Mountain, Chart::Pareto, Chart::Pie, Chart::Points, Chart::Split,
and Chart::StackedBars.

Class Chart::Base provides all public methods and most of the at-
tributes of Chart objects.

Constructor:
An object instance of class Chart can be created with the constructor
new():

$obj = Chart::Type→new();

$obj = Chart::Type→new(width, height);

Type here denotes the type of chart that is to be returned, e. g.,
Chart::Bars→new() returns a bar chart.

If new() is called without arguments, the constructor will return an
object of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart object of the desired size.

Methods:
$obj→add dataset(@array)
$obj→add dataset(\@array ref )

Adds a dataset to the object. The argument is an array or a reference
to an array. Generally, the first array added is interpreted as being
the x tick labels. The subsequent arrays contain the data points.
E. g., after the calls
$obj→add dataset(’Harry’, ’Sally’);

$obj→add dataset(5, 8);

Chart will draw a picture with two bars and label them ‘Harry’ and
‘Sally’.

Some modules will operate slightly differently. Have a look at the
description of the specific subclass to get more information. Such

5



differences will also come up if you want to use the xy plot option
in order to create a x–y graph.

$obj→add pt(@array)
$obj→add pt(\@array ref )

This is a different method for adding data to a Chart object. The
argument can be an array or a reference to an array. If you use this
method, Chart wants the complete data of one data point, i. e., all
the data that are associated with the same x value specified first in
this call. E. g.,
$obj→add pt(’Harry’, 5);

$obj→add pt(’Sally’, 8);

would create the same graph as the example for add dataset()

above.
$obj→add datafile("filename", type )

$obj→add datafile($filehandle, type )

$obj→add datafile()

This method adds the contents of a complete data file to the chart
object. type can be ‘set’ or ‘pt’. In the former case, ‘set’, each
line in the data file must represent a complete data set (data series).
The values of the set must be separated by whitespace. E. g., the file
contents could look like this:

Harry Sally

3 8

2 1

If the argument is ‘pt’, the lines of the file must look analogous to
the parameter arrays used by method add pt(): Each line includes
all the values of one data point (i. e., all the y values associated with
the same x value), also separated by whitespace. E. g.:

Harry 3 2

Sally 8 1

$obj→get data()

If you want a copy of the data that have been added so far, make a
call to this method like so:
$dataref = $obj→get data();

This will return a reference to an array of references to datasets. For
example, you can get the x tick labels by:
@x labels = @{$dataref->[0]};

6



$obj→clear data()

This is the method to remove all data that may have been entered
until now.

$obj→set(attribute1 ⇒value1, ..., attributen ⇒valuen)
$obj→set(%hash)
$obj→set(attribute1, value1, ..., attributen, valuen)
$obj→set(@array)

Use this method to change the attributes of the chart object. set()
looks for a hash of keys and values or an array of keys and values.
E. g.,
$obj→set(’title’ ⇒’The title of the image’);

would set the title. This would do the same job:
%hash = (’title’ ⇒’The title of the image’);

$obj→set(%hash);

$obj→png("filename")
$obj→png($filehandle)
$obj→png(FILEHANDLE)

$obj→png("filename", \@data)
$obj→png()

This method creates a png file. The file parameter can be a file
name, a reference to a filehandle or a filehandle itself. If the file does
not exist, Chart will create it for you. If there is already a file, Chart
will overwrite it. In case of an error, the file is not created.
You can also add data to a Chart object through its png() method.
The @data array should contain references to arrays of data, with
the first array reference pointing to an array of x labels. @data might
look like this:
@data = ([’Harry’, ’Sally’], [5, 8], [50, 80]);

This would set up a graph with two datasets and three data points
in these sets.

$obj→jpeg("filename")
$obj→jpeg($filehandle)
$obj→jpeg(FILEHANDLE)

$obj→jpeg("filename", \@data)
$obj→jpeg()

This is the method to create jpeg files. It works analogously to the
png() method.

$obj→cgi png()

$obj→cgi jpeg()

With the cgi methods you can create dynamic images for your web

7



site. The cgi methods will print the chart along with the appropriate
http header to stdout, allowing you to call chart-generating scripts
directly from your html pages (e. g., with a ‘〈img src="image.pl"

/〉’ html tag).
$obj→imagemap dump()

Chart can also return pixel position information so that you can
create image maps from the files generated by Chart. Simply set the
‘imagemap’ option to ‘true’ before you generate the file, then at the
end call the imagemap dump() method to retrieve the information.
A structure will be returned almost identical to the @data array
described above to pass the data into Chart.

$imagemap data = $obj→imagemap dump();

Instead of single data values, references to arrays of pixel informa-
tion are passed. For the classes Chart::Bars, Chart::HorizontalBars,
Chart::Pareto and Chart::StackedBars, the arrays will contain two
x–y pairs (specifying the upper left and the lower right corner of
the bar). Compare to:
($x1,$y1,$x2,$y2) = @{$imagemap data→[$dataset][$datapoint]};
For the classes Chart::Lines, Chart::Points, Chart::LinesPoints and
Chart::Split, the arrays will contain a single x–y pair (specifying the
center of the point). Compare to:
($x, $y) = @{$imagemap data→[$dataset][$datapoint]};
A few caveats apply here. First of all, Chart uses the GD module by
Lincoln Stein to draw lines, circles, strings, and so on. GD treats
the upper-left corner of the png/jpeg image as the reference point,
therefore, positive y values are measured from the top of the image,
not from the bottom. Second, these values will mostly contain long
decimal values. GD, of course, has to truncate these to integer pixel
coordinates. In a worst-case scenario, this will result in an error of
one pixel on your imagemap. If this is really an issue, your only
option is to experiment with it, or to contact Lincoln Stein and ask
him. Third, please remember that the 0th dataset will be empty,
since that is the place for the data point labels on the x axis.

Attributes/Options:
These are the options which take effect on most Chart types. There are three
different kinds of attributes:

• attributes expecting a number for value (e. g., the number of pixels),

• attributes expecting a textual value (e. g., the title of the chart),

8



• attributes expecting a Boolean value.

Before Version 2.5 of the module, the Boolean value ‘true’ was represented
by the string ’true’, and the Boolean value ‘false’ was represented by the
string ’false’. For all other values, the Boolean value was not well-defined.
From version 2.5 onwards, the Boolean value ‘true’ may be represented by
any of 1, ’t’ and ’true’, where case does not matter. From version 2.5
onwards, the Boolean value ‘false’ may be represented by any of 0, ’f’,
’false’, and undef, where case does not matter. For all other values, the
Boolean value is again not well-defined. Note that this behaviour is closer
to the standard Perl way but is not identical, due to the need for backward
compatibility in this module.
transparent

Makes the background of the image transparent if set to ‘true’.
Useful for making web page images. However, it does not seem to
work for all browsers. Defaults to ‘false’.

png border
Sets the number of pixels used as a border between the graph and
the edges of the image. Defaults to 10.

graph border
Sets the number of pixels used as a border between the title/labels
and the actual graph within the image. Defaults to 10.

text space
Sets the amount of space left on the sides of text, to make it more
readable. Defaults to 3.

title
Tells Chart what to use for the title of the graph. If empty, no title
is drawn. ‘\\’ is treated as a newline. If you want to use normal
quotation marks instead of single quotation marks, remember to
quote (‘\\\\’) to get a linebreak. Default is empty.

sub title
Writes a subtitle under the title in smaller letters.

x label
Tells Chart what text to use as a label for the x axis. If empty, no
label is drawn. Default is undef.

y label
y label2

Tells Chart what kind of label should be used for the description of
the y axis on the left or the right side accordingly. If empty, no label
is drawn. Default is undef.

9



legend
Specifies the placement of the legend. Valid values are ‘left’,
‘right’, ‘top’, ‘bottom’, and ‘none’. Choosing ‘none’ tells Chart
not to draw a legend. Default is ‘right’.

legend labels
Sets the values for the labels for the different datasets. Should be
assigned a reference to an array of labels. E. g.,
@labels = (’foo’, ’bar’);
$obj->set (’legend labels’ ⇒\@labels);
Default is empty, in which case ‘Dataset 1’, ‘Dataset 2’, etc. are
used as labels.

tick len
Sets the length of the x and y ticks in pixels. Default is 4.

x ticks
Specifies how to draw the x tick labels. Valid values are ‘normal’,
‘staggered’ (labels are drawn alternatingly close to the axis and
further away from it), and ‘vertical’ (label texts are rotated 90
degrees counter-clockwise). Default is ‘normal’.

y ticks
The number of ticks to plot on the y scale, including the end points.
E. g., for a y axis ranging from 0 to 50, with ticks every 10 units,
y ticks should have a value of 6.

min y ticks
Sets the minimum number of y ticks to draw when generating the y
axis. Default is 6, minimum is 2.

max y ticks
Sets the maximum number of y ticks to draw when generating the
y axis. Default is 100. This limit is used to avoid plotting an un-
reasonably large number of ticks if non-round values are used for
min val and max val. The value for max y ticks should be at
least 5 times as large as min y ticks.

min x ticks
max x ticks

These work similar to max y ticks and min y ticks, respectively.
Of course, this applies only to x–y plots.

integer ticks only
Specifies how to draw the x and y ticks: as floating point (‘false’,
‘0’) or as integer numbers (‘true’, ‘1’). If you want integer ticks,
it may be better to set the attribute precision to zero. Default:
‘false’

10



skip int ticks
If integer ticks only was set to ‘true’ the labels and ticks for the y
axis will be drawn every nth tick. (Note that in Chart::HorizontalBars
the y axis runs horizontally.) Defaults to 1, i. e., no skipping.

precision
Sets the number of digits after the decimal point. Affects in most
cases the y axis only. In x–y plots also affects the x axis, and in pie
charts the labels. Defaults to 3.

max val
Sets the maximum y value on the graph, overriding normal autoscal-
ing. Does not work for Chart::Split charts. Default is undef.

min val
Sets the minimum y value on the graph, overriding normal autoscal-
ing. Does not work for Split charts. Default is undef. Caution should
be used when setting max val and min val to floating point or non-
round numbers: The range must start and end on a tick, ticks must
have round-number intervals and must include round numbers.
Example: Suppose your dataset has a range of 35. . . 114 units. If
you specify these values as min val and max val, respectively, the
y axis will be plotted with 80 ticks, so one at every unit. Without
specification of min val and max val, the system would autoscale
the range to 30. . . 120 with 10 ticks every 10 units. If min val and
max val are specified to excessive precision, they may be overridden
by the system, plotting a maximum max y ticks ticks.

include zero
If ‘true’, forces the y axis to include zero even if it is not in the
dataset range. Default is ‘false’. – Note: It is better to use this
option than to set min val if this is all you want to achieve.

skip x ticks
Sets the number of x ticks and x tick labels to skip. (I. e., if
skip x ticks were set to 4, Chart would draw every 4th x tick and x
tick label). Default is undef.

custom x ticks
This option allows you to specify exactly which x ticks and x tick
labels should be drawn. It should be assigned a reference to an array
of desired ticks. Just remember that we are counting from the 0th

element of the array. (E. g., if custom x ticks is assigned [0,3,4],
then the 0th, 3rd, and 4th x ticks will be displayed) This does not
apply to Chart::Split, Chart::HorizontalBars and Chart::Pie.

f x tick

11



Needs a reference to a function which accepts the x tick labels gen-
erated by $data→[0] as its argument. This function should return a
reformatted version of the label as a string. E. g.
$obj→set (’f x tick’ ⇒\&formatter;)
An example for the formatter function: Assume that x labels are sec-
onds since some event. The referenced function could be designed to
transform this number of seconds to hours, minutes and seconds.

f y tick
Similar to f x tick, but for y labels.

colors
This option lets you control the colors the chart will use. It takes
a reference to a hash. The hash should contain keys mapped to
references to arrays of rgb values. E.g.,
$obj->set(’colors’ ⇒’background’ ⇒[255,255,255]);

sets the background color to white (which is the default). Valid keys
for this hash are

• ‘background’ (background color for the chart)

• ‘title’ (color of the title)

• ‘text’ (all the text in the chart)

• ‘x label’ (color of the x axis label)

• ‘y label’ (color of the primary y axis label)

• ‘y label2’ (color of the secondary y axis label)

• ‘grid lines’ (color of the grid lines)

• ‘x grid lines’ (color of the x grid lines – on x axis ticks)

• ‘y grid lines’ (color of the y grid lines – on primary y axis
ticks)

• ‘y2 grid lines’ (color of the y2 grid lines – on secondary y axis
ticks)

• ‘dataset0’ . . . ‘dataset63’ (the different datasets)

• ‘misc’ (everything else, e. g., ticks, box around the legend)

NB. For composite charts, there is a limit of eight datasets per com-
ponent. The colors for ‘dataset8’ through ‘dataset15’ will be the
same as those for ‘dataset0’ through ‘dataset7’ for the second com-
ponent chart.

title font

12



This option changes the font of the title line. The value must be a
GD font, e. g., GD::Font→Large.

label font
This option changes the font of the labels. The value must be a GD
font.

legend font
This option changes the font for the legend text. The value must be
a GD font.

tick label font
This option changes the font of the ticks. The value must be a GD
font.

grey background
Puts a nice soft grey background on the actual data plot when set
to ‘true’. Default is ‘true’.

x grid lines
Draws grid lines matching up to x ticks if set to ‘true’. Default is
‘false’.

y grid lines
Draws grid lines matching up to y ticks if set to ‘true’. Default is
‘false’.

grid lines
Draws grid lines matching up to x and y ticks if set to ‘true’. Default
is ‘false’.

imagemap
Lets Chart know that you are going to ask for information about
the placement of the data for use in creating an image map from the
chart. This information can be retrieved using the imagemap dump()

method. NB. The imagemap dump() method cannot be called un-
til after the chart has been generated (e. g., using the png() or
cgi png() methods).

ylabel2
The label for the secondary (right-hand side) y axis. (In a composite
chart, this is the axis for the second component). Default is undef.

no cache
Adds ‘Pragma: no-cache’ to the http header. Be careful with
this one, since some older browsers (like Netscape 4.5) are unhappy
about post using this method.

legend example size
Sets the length of the example line in the legend. Defaults to 20.

13



3 Chart::Bars

Name: Chart::Bars

File: Bars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Bars creates a chart made up of vertical bars.
Chart::Bars is a subclass of Chart::Base.

Example:

Figure 3: Bar chart

use Chart::Bars;

$g = Chart::Bars->new(600,500);

$g->add_dataset(’Berlin’, ’Paris’, ’Rome’, ’London’, ’Munich’);

$g->add_dataset(14, 5, 4, 5, 11);

$g->add_dataset(12, 4, 6, 7, 12);

$g->add_dataset(18, 2, 3, 3, 9);

$g->add_dataset(17, 5, 7, 6, 6);

$g->add_dataset(15, 3, 4, 5, 11);

$g->add_dataset(11, 6, 5, 6, 12);

14



$g->add_dataset(12, 1, 4, 5, 15);

$g->add_dataset(10, 4, 6, 8, 10);

$g->add_dataset(14, 5, 4, 5, 11);

$g->add_dataset(12, 4, 6, 6, 12);

$g->add_dataset(18, 2, 3, 3, 9);

$g->add_dataset(17, 5, 7, 2, 6);

%hash = (’title’ => ’Sold Cars in 2001’,

’text_space’ => 5,

’grey_background’ => ’false’,

’integer_ticks_only’ => ’true’,

’x_label’ => ’City’,

’y_label’ => ’Number of Cars’,

’legend’ => ’bottom’,

’legend_labels’ => [’January’, ’February’,

’March’, ’April’,

’May’, ’June’,

’July’, ’August’,

’September’,’October’,

’November’, ’December’

],

’min_val’ => 0,

’max_val’ => 20,

’grid_lines’ =>’true’,

’colors’ => {’title’ => ’red’,

’x_label’ => ’blue’,

’y_label’ => ’blue’

}

);

$g->set(%hash);

$g->png("bars.png");

Constructor:
An object instance of Chart::Bars can be created with the constructor
new():

$obj = Chart::Bars→new();

$obj = Chart::Bars→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Bars object of the desired
size.

15



Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
spaced bars

Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.

y axes
Tells Chart::Bars where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

16



4 Chart::Composite

Name: Chart::Composite

File: Composite.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Composite creates a two component chart with two
types of charts which are layered one above each other. Just set
the option composite info. For example, you can create a two
component chart with bars and lines. A composite chart does not
make sense with all combinations of chart types, but it works pretty
good with Lines, Points, LinesPoints and Bars. Note that two similar
chart types may come into visual conflict. Chart::Composite can do
only composite charts made up of two components. Chart::Composite
is a subclass of Chart::Base.

Example:

Figure 4: Composite chart

use Chart::Composite;

$g = Chart::Composite->new();

17



$g->add_dataset(1, 2, 3, 4, 5, 6);

$g->add_dataset(0.1, 0.2, 0.3, 0.2, 0.4, 0.1);

$g->add_dataset(0.3, 0.5, 0.2, 0.6, 0.7, 0.4);

$g->add_dataset(10, 11, 6, 7, 7, 8);

$g->set(’composite_info’ => [ [’Bars’, [1, 2]],

[’LinesPoints’, [3] ]

],

’title’ => ’Composite Chart’,

’legend’ => ’top’,

’legend_example_height’ => ’true’,

’legend_example_height0..1’ => 10,

’legend_example_height2’ => 3,

);

$g->set(’include_zero’ => ’true’);

$g->png("composite.png");

Constructor:
An object instance of Chart::Composite can be created with the con-
structor new():

$obj = Chart::Composite→new();

$obj = Chart::Composite→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Composite object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush size1
brush size2

If using component charts having brush size as one of their at-
tributes, you can define the sizes of the brushes individually. Default
is 6 (pixel).

composite info

18



This option is only used for composite charts. It contains the infor-
mation which types to use for the two component charts, and which
datasets belong to which component chart. It should be a reference
to an array of array references, containing information like the fol-
lowing:
$obj→set (’composite info’ ⇒[ [’Bars’, [1,2]], [’Lines’, [3,4] ] ]);

This example would set the two component charts to be a bar chart
and a line chart. It would use the first two data sets for the bar
chart and the second two data sets for the line chart. The default
is undef. Note that the numbering starts at 1, not at 0 like most of
the other numbered things in Chart, because index 0 refers to the x
values which are shared by the two component charts. The ordering
of the components may be important, since the first component is
drawn first and then (partially) overdrawn with the second compo-
nent. E. g., when composing a line graph and a bar graph, it is safer
to have the bars in the first component since otherwise the line(s)
might be hidden behind them.

f y tick1
f y tick2

Needs a reference to a function which uses the y tick labels for the
primary and for the secondary y axis, respectively. These functions
should return a reformatted version of the label as a string. E. g.

$obj→set (’f y tick1’ ⇒\&formatter1);
$obj→set (’f y tick2’ ⇒\&formatter2);

max val1
max val2

Only for composite charts. These options specify the maximum y
value for the first and the second component, respectively. Both
default to undef.

min val1
min val2

Only for composite charts. These options specify the minimum y
value for the first and the second component, respectively. Both
default to undef.

legend example height
Only for composite charts. This option changes the thickness of the
lines in the legend. If ‘legend example height’ is set to ‘true’ the

19



thickness of each legend line can be changed individually. Default is
false. E. g.

$obj→set (’legend example height’ ⇒’true’);

$obj→set (’legend example height0’ ⇒’3’);

$obj→set (’legend example height1..4’ ⇒’10’);

This example would set the thickness of the first line in the legend
to 3, and the thicknesses of the following 4 lines to 10 (using the
same indexing scheme as in ‘composite info’). The default value
for each individual entry is 1, i. e. a ‘normal’ line is drawn. It is
not possible to change a ’legend example height#’(where # denotes
a dataset number) which was once defined. (The first setting will
remain unchanged.)

same y axes
Forces both component charts in a composite chart to use the same
maximum and minimum y values if set to ‘true’. This helps to keep
some composite charts from being too confusing. Default is undef.

y ticks1
y ticks2

The number of y ticks to use on the primary and on the secondary y
axis on a composite chart, respectively. Please note that if you just
set the ‘y ticks’ option, both axes will use that number of y ticks.
Both default to undef.

20



5 Chart::Direction

Name: Chart::Direction

File: Direction.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Direction creates a diagram based on polar coordi-
nates. This type of diagram is occasionally referred to as a radial or
as a radar chart. Chart::Direction plots data specified by angle (e. g.,
wind direction) and absolute value (e. g., wind strength). The first
dataset to add is always the set of angles in degrees. The second
set contains the absolute values. How additional datasets should
be entered depends on the option pairs (cf. below). By default,
Chart::Direction will draw a point chart. You can also get a lines
chart by setting the option point to ‘false’ and the option line to
‘true’. If you want a lines and point chart, then set both point and
line to ‘true’. In addition, Chart::Direction plots arrows from the
center to the point or to the end of the line if the option arrow is
set to ‘true’. Chart::Direction is a subclass of Chart::Base.

Example:

use Chart::Direction;

$g = Chart::Direction->new(500,500);

$g->add_dataset( 0, 100, 50, 200, 280, 310);

$g->add_dataset(30, 40, 20, 35, 45, 20);

$g->add_dataset(10, 110, 60, 210, 290, 320);

$g->add_dataset(20, 30, 40, 20, 35, 45);

$g->add_dataset(20, 120, 70, 220, 300, 330);

$g->add_dataset(45, 20, 30, 40, 20, 35,);

%hash = ( ’title’ => ’Direction Demo’,

’angle_interval’ => 45,

’precision’ => 0,

’arrow’ => ’true’,

’point’ => ’false’,

’include_zero’ => ’true’,

21



Figure 5: Direction chart

’pairs’ => ’true’,

’legend’ => ’none’,

’grey_background’ => ’false’

);

$g->set(%hash);

$g->png("direction.png");

Constructor:
An object instance of Chart::Direction can be created with the con-
structor new():

$obj = Chart::Direction→new();

$obj = Chart::Direction→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Direction object of the desired
size.

22



Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
angle interval

This option tells Chart::Direction how many angle lines should be
drawn. It is the difference between two angle lines. The default value
is 30, which means that one line will be drawn every 30 degrees. Not
all values are permissible; the valid ones are: 0, 5, 10, 15, 20, 30, 45,
and 90. If you choose 0, Chart::Direction will draw no lines.

arrow
Draws an arrow from the center of the chart to the point if set to
‘true’. By default ‘false’.

brush size
Sets the width of the lines in pixels. Default is 6.

line
Connects the points with lines if set to ‘true’. Defaults to ‘false’.

max circles
Sets the maximum number of circles to draw when generating the
set of circles. Default is 100. This limit is used to avoid plotting
an unreasonably large number of circles if non-round values are used
for min val and max val. The value for max circles should be at
least 5 times that of min circles.

min circles
Sets the minimum number of circles to draw when generating a scale.
Default is 4, minimum is 2.

pairs
This option tells Chart::Direction how to handle additional datasets.
If pairs is set to ‘true’, Chart::Direction uses the first dataset as a set
of degrees and the second dataset as a set of values. Then, the third
set is a set of degrees and the fourth a set of values, and so forth.
If pairs is set to ‘false’, Chart::Direction uses the first dataset as a
set of angles and all following datasets as sets of values. Defaults to
‘false’.

point
Indicates to draw points for representing the data values. Possible
values: ‘true’ and ‘false’, by default ‘true’.

pt size
Sets the radius of the points in pixels. Default is 18.

23



sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted and line is set to ‘true’. Defaults to
‘false’.

24



6 Chart::ErrorBars

Name: Chart::ErrorBars

File: ErrorBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::ErrorBars creates a point chart with error bars. This
class expects the error values within the data array. By use of the
add dataset() method the error values are the next two sets after
the y values. The first set after the y values has to be the set of values
for the upper error bounds. The next set is the array of the lower
error bounds. Note that the error values are not specified absolutely
but rather as offsets from the y value: the upper error values will be
added to the y values, the lower error values will be subtracted.

If you want to use the same value for the upper and lower error, you
can set the same error option to ‘true’. In this case only the set
after the y values is interpreted as a set of errors.

Of course, it is also possible to use the add pt() method in the
appropriate way to achieve the same results. Chart::ErrorBars is a
subclass of Chart::Base.

Example:

use Chart::ErrorBars;

$g = Chart::ErrorBars->new();

# the x values

$g->add_dataset(qw(1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5));

# the y values

$g->add_dataset(qw(1 1.1 1.2 1.1 1.14 1.15 1.26 1.2

1.1 1.19 1.2 1.4 1.6 2.0 2.5 3.1));

# the upper errors

$g->add_dataset(qw(0.4 0.1 0.2 0.1 0.14 0.15 0.26 0.27

0.1 0.19 0.2 0.1 0.1 0.2 0.1 0.3));

# the lower errors

$g->add_dataset(qw(0.2 0.11 0.12 0.11 0.2 0.3 0.12 0.27

0.11 0.3 0.2 0.2 0.2 0.1 0.1 0.2));

25



Figure 6: Error bars chart

$g->set( ’xy_plot’ => ’true’,

’precision’ => 1,

’pt_size’ => 10,

’brush_size’ => 2,

’legend’ => ’none’,

’title’ => ’Error Bars Demo’,

’grid_lines’ => ’true’

);

$g->png("errorbars.png");

Constructor:
An object instance of Chart::ErrorBars can be created with the con-
structor new():

$obj = Chart::ErrorBars→new();

$obj = Chart::ErrorBars→new(width, height);

If new() is called without arguments, the constructor will return
an image of size 300×400 pixels. If new() is called with two argu-

26



ments, width and height , it will return a Chart::ErrorBars object of
the desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush size

Sets the width of the lines in pixels. Default is 6.
pt size

Sets the radius of the points in pixels. Default is 18.
same error

Tells Chart::ErrorBars that you want to use the same values for upper
and lower error bounds if set to ‘true’. Then you have to add just
one set of error values. Defaults to ‘false’.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

xlabels
xrange

This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],

[10, 40, 70 ]);

$chart->set(xlabels => \bs @labels,

xrange => [0, 100]

);

xy plot
Forces Chart::ErrorBars to plot a x–y graph if set to ‘true’, i. e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.

y axes

27



Tells Chart::ErrorBars where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

28



7 Chart::HorizontalBars

Name: Chart::HorizontalBars

File: HorizontalBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::HorizontalBars creates a chart of horizontally ori-
ented bars. Chart::HorizontalBars is a subclass of Chart::Base.

Example:

Figure 7: Chart with horizontal bars

use Chart::HorizontalBars;

$g = Chart::HorizontalBars->new();

$g->add_dataset(’Foo’, ’bar’, ’junk’, ’ding’, ’bat’);

$g->add_dataset(4, 3, 4, 2, 8);

$g->add_dataset(2, 10, 3, 8, 3);

%hash = ( ’title’ => ’Horizontal Bars Demo’,

’grid_lines’ => ’true’,

29



’x_label’ => ’x axis’,

’y_label’ => ’y axis’,

’include_zero’ => ’true’,

’x_ticks’ => ’vertical’,

);

$g->set(%hash);

$g->png("hbars.png");

Constructor:
An object instance of Chart::HorizontalBars can be created with the
constructor new():

$obj = Chart::HorizontalBars→new();

$obj = Chart::HorizontalBars→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::HorizontalBars object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
skip y ticks

Does the same fo the y axis in a horizontal chart as skip x ticks
does for other charts. Defaults to 1.

spaced bars
Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.

y axes
Tells Chart::HorizontalBars where to place the y axis. ‘left’, ‘right’
and ‘both’. Defaults to ‘left’.

30



8 Chart::Lines

Name: Chart::Lines

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Lines creates a lines chart. (If you want the data
points marked with symbols, check Chart::LinesPoints on page 34.)
Chart::Lines is a subclass of Chart::Base.

Example:

Figure 8: Lines chart

use Chart::Lines;

$g = Chart::Lines->new();

$g->add_dataset(’foo’, ’bar’, ’junk’, ’ding’, ’bat’);

$g->add_dataset( -4, 3, -4, -5, -2);

$g->add_dataset( 2, 10, -3, 8, 3);

$g->add_dataset(-10, 2, 4, -3, -3);

$g->add_dataset( 7, -5, -3, 4, 7);

%hash = (’legend_labels’ => [’1st Quarter’, ’2nd Quarter’,

’3rd Quarter’, ’4th Quarter’],

’y_axes’ => ’both’,

’title’ => ’Lines Demo’,

’grid_lines’ => ’true’,

31



’legend’ => ’left’,

’legend_example_size’ => 20,

’colors’ => {’text’ => ’blue’,

’misc’ => ’blue’,

’background’ => ’grey’,

’grid_lines’ => ’light_blue’,

’dataset0’ => [220,0,0],

’dataset1’ => [200,0,100],

’dataset2’ => [150,50,175],

’dataset3’ => [170,0,255]

}

);

$g->set(%hash);

$g->png("lines.png");

Constructor:
An object instance of Chart::Lines can be created with the construc-
tor new():

$obj = Chart::Lines→new();

$obj = Chart::Lines→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Lines object of the desired
size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush size

Sets the width of the lines in pixels. Default is 6.
sort

Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

stepline
The points are connected by a stepping function,instead of by a
direct line if set to ‘true’. Defaults to ‘false’.

32



stepline mode
Determines whether to plot each stepping line at the level of the
start of the interval (if set to ‘begin’) or at its end if set to ‘end’.
Defaults to ‘begin’.

xlabels
xrange

This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],

[10, 40, 70 ]);

$chart->set(xlabels => \bs @labels,

xrange => [0, 100]

);

xy plot
Forces Chart::Lines to plot a x–y graph if set to ‘true’, i. e., to treat
the x axis as numeric. Very useful for plots of mathematical func-
tions. Defaults to ‘false’.

33



9 Chart::LinesPoints

Name: Chart::LinesPoints

File: LinesPoints.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::LinesPoints creates a lines chart where addition-
ally the individual data points are marked with a symbol. (If you
want just lines without additional symbols, check Chart::Lines on
page 31. If you want just symbols for the data points but no lines,
check Chart::Points on page 46.) Chart::LinesPoints is a subclass of
Chart::Base.

Example:

Figure 9: Linespoints chart

use Chart::LinesPoints;

use strict;

my (@data1, @data2, @data4, @data3, @labels, %hash, $g);

@labels = qw(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17);

@data1 = qw (-7 -5 -6 -8 -9 -7 -5 -4 -3 -2 -4 -6 -3 -5 -3 -4 -6);

34



@data2 = qw (-1 -1 -1 -1 -2 -2 -3 -3 -4 -4 -6 -3 -2 -2 -2 -1 -1);

@data3 = qw (-4 -4 -3 -2 -1 -1 -1 -2 -1 -1 -3 -2 -4 -3 -4 -2 -2);

@data4 = qw (-6 -3 -2 -3 -3 -3 -2 -1 -2 -3 -1 -1 -1 -1 -1 -3 -3);

$g = Chart::LinesPoints->new(600,300);

$g->add_dataset(@labels);

$g->add_dataset(@data1);

$g->add_dataset(@data2);

$g->add_dataset(@data3);

$g->add_dataset(@data4);

%hash = (’integer_ticks_only’ => ’true’,

’title’ => ’Soccer Season 2002\n ’,

’legend_labels’ => [’NY Soccer Club’, ’Denver Tigers’,

’Houston Spacecats’,

’Washington Presidents’],

’y_label’ => ’position in the table’,

’x_label’ => ’day of play’,

’grid_lines’ => ’true’,

’f_y_tick’ => \&formatter,

);

$g->set( %hash);

$g->png("d_linesp2.png");

# Just a trick to have the y scale start at the biggest point:

# Initialise with negative values, remove the minus sign!

sub formatter {

my $label = shift;

$label = substr($label, 1);

return $label;

}

Constructor:
An object instance of Chart::LinesPoints can be created with the con-
structor new():

$obj = Chart::LinesPoints→new();

$obj = Chart::LinesPoints→new(width, height);

35



If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::LinesPoints object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
brush size

Sets the width of the lines in pixels. Default is 6.
brushStyle

Define the share of the points. The share may be specified to each
dataset.
The possible shapes of the ’points’ are

• FilledCircle (default),

• circle,

• donut,

• OpenCircle,

• triangle,

• upsidedownTriangle,

• square,

• hollowSquare,

• OpenRectangle,

• fatPlus,

• Star,

• OpenStar,

• FilledDiamond,

• OpenDiamond

To apply a different brush style to different data sets the following
example of code can be used:

$g->set(brushStyles => { dataset0 => ’fatPlus’, dataset1 => ’hollowSquare’ });

pt size
Sets the radius of the points in pixels. Default is 18.

36



sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

stepline
The points are connected by a stepping function,instead of by a
direct line if set to ‘true’. Defaults to ‘false’.

stepline mode
Determines whether to plot each stepping line at the level of the
start of the interval (if set to ‘begin’) or at its end if set to ‘end’.
Defaults to ‘begin’.

xlabels
xrange

This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],

[10, 40, 70 ]);

$chart->set(xlabels => \bs @labels,

xrange => [0, 100]

);

xy plot
Forces Chart::LinesPoints to plot a x–y graph if set to ‘true’, i. e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.

y axes
Tells Chart::LinesPoints where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

37



10 Chart::Mountain

Name: Chart::Mountain

File: Mountain.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Mountain creates a mountain chart, i. e., the individ-
ual data sets are stacked and the areas under the curves are colour
filled. The first data set will be shown at the top of the stack, the
last at the bottom. Chart::Mountain is a subclass of Chart::Base.

Example:

Figure 10: Mountain chart

use Chart::Mountain;

$g = Chart::Mountain->new();

@data = [ [1910, 1930, 1950, 1970],

[1, 3, 4, 2],

[2, 4, 3, 3],

[0.5, 1, 2, 1]];

38



$g->set(’title’ => ’Mountain Chart’,

’grid_lines’ => ’false’,

’precision’ => 1);

$g->png("mountain.png", @data);

Constructor:
An object instance of Chart::Mountain can be created with the con-
structor new():

$obj = Chart::Mountain→new();

$obj = Chart::Mountain→new(width, height);

If new() is called without arguments, the constructor will return
an image of size 300×400 pixels. If new() is called with two argu-
ments, width and height , it will return a Chart::Mountain object of
the desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
y axes

Tells Chart::Mountain where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

39



11 Chart::Pareto

Name: Chart::Pareto

File: Pareto.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Pareto creates a Pareto chart, i. e., a set of absolute
values overlaid with a line chart of the accumulated values. (This
latter curve is also known as an empirical cumulative distribution
function or as a Lorenz curve.) This representation usually makes
sense only if the values are sorted (either in ascending or in de-
scending order). Chart::Pareto plots only one data set and its labels.
Chart::Pareto is a subclass of Chart::Base.

Example:

use Chart::Pareto;

$g = Chart::Pareto->new(500,400);

$g->add_dataset(’1st week’, ’2nd week’, ’3rd week’, ’4th week’,

’5th week’, ’6th week’, ’7th week’, ’8th week’,

’9th week’, ’10th week’);

$g->add_dataset(37, 15, 9, 4, 3.5, 2.1, 1.2, 1.5, 6.2, 16);

%hash = (’colors’ => { ’dataset0’ => ’mauve’,

’dataset1’ => ’light_blue’,

’title’ => ’orange’

},

’title’ => ’Visitors at the Picasso Exhibition’,

’integer_ticks_only’ => ’true’,

’skip_int_ticks’ => 5,

’grey_background’ => ’false’,

’max_val’ => 100,

’y_label’ => ’Visitors in Thousands’,

’x_ticks’ => ’vertical’,

’spaced_bars’ => ’true’,

’legend’ => ’none’

);

$g->set(%hash);

40



Figure 11: Pareto chart

$g->png("pareto.png");

Constructor:
An object instance of Chart::Pareto can be created with the construc-
tor new():

$obj = Chart::Pareto→new();

$obj = Chart::Pareto→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Pareto object of the desired
size.

41



Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
sort

Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

spaced bars
Leaves some space between each group of bars when set to ‘true’.
This usually make it easier to read a bar chart. Default is ‘true’.

y axes
Tells Chart::Pareto where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

42



12 Chart::Pie

Name: Chart::Pie

File: Pie.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Pie creates a pie chart. The first added set must
contain the labels, the second set the values. Chart::Pie is a subclass
of Chart::Base.

Example:

Figure 12: Pie chart

use Chart::Pie;

$g = Chart::Pie->new();

$g->add_dataset(’Har’, ’Sug’, ’Ert’, ’Her’, ’Tar’, ’Kure’);

$g->add_dataset(12000, 20000 , 13000, 15000, 9000, 11000 );

%opt = (’title’ => ’Another Pie Demo Chart’,

’label_values’ => ’both’,

’legend’ => ’none’,

43



’text_space’ => 10,

’png_border’ => 1,

’graph_border’ => 0,

’colors’ => { ’x_label’ => ’red’,

’misc’ => ’plum’,

’background’ => ’grey’,

’dataset0’ => [120, 0, 255],

’dataset1’ => [120, 100, 255],

’dataset2’ => [120, 200, 255],

’dataset3’ => [255, 100, 0],

’dataset4’ => [255, 50, 0],

’dataset5’ => [255, 0, 0],

},

’x_label’ => ’The Winner is Team Blue!’,

);

$g->set(%opt);

$g->png("pie.png");

Constructor:
An object instance of Chart::Pie can be created with the constructor
new():

$obj = Chart::Pie→new();

$obj = Chart::Pie→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Pie object of the desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
label values

Tells Chart::Pie what kind of value labels to show alongside the pie.
Valid values are ‘percent’, ‘value’, ‘both’ and ‘none’. Defaults to
‘percent’.

legend label values

44



Tells Chart::Pie what kind of labels to show in the legend. Valid
values are ‘percent’, ‘value’, ‘both’ and ‘none’. Defaults to ‘value’.

legend lines
The labels drawn alongside the pie are connected with a line to the
segment if this option is set to ‘true’.

ring
The pie can have a ring shape instead of the usual disc shape. This
option determines the thickness of the ring as a fraction of the radius.
Default is 1, i. e., a full pie.

45



13 Chart::Points

Name: Chart::Points

File: Points.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Points creates a point chart (also called scatter-
gram) where the individual data points are marked with a symbol.
(If you want lines in addition, check Chart::LinesPoints on page 34.)
Chart::Points is a subclass of Chart::Base.

Example:

Figure 13: Points chart

use Chart::Points;

$g = Chart::Points->new();

$g->add_dataset(1, 4, 3, 6, 2, 2.5); # x-coordinates

$g->add_dataset(1, 5, 3, 2, 3, 3.2); # y-coordinates dataset 1

$g->add_dataset(2, 6, 4.8, 1, 4, 4.2); # y-coordinates dataset 2

@hash = (’title’ => ’Points Chart’,

’xy_plot’ => ’true’,

’x_ticks’ => ’vertical’,

’legend’ => ’none’,

46



’sort’ => ’true’,

’precision’ => 3,

’include_zero’ => ’true’,

);

$g->set(@hash);

$g->png("Grafiken/points.png");

Constructor:
An object instance of Chart::Points can be created with the construc-
tor new():

$obj = Chart::Points→new();

$obj = Chart::Points→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Points object of the desired
size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
pt size

Sets the radius of the points in pixels. Default is 18.
The points are extended by different brush styles.

brushStyle
Define the share of the points. The share may be specified to each
dataset.
The possible shapes of the ’points’ are

• FilledCircle (default),

• circle,

• donut,

• OpenCircle,

• triangle,

• upsidedownTriangle,

47



• square,

• hollowSquare,

• OpenRectangle,

• fatPlus,

• Star,

• OpenStar,

• FilledDiamond,

• OpenDiamond

To apply a different brush style to different data sets the following
example of code can be used:

$g->set(brushStyles => { dataset0 => ’fatPlus’, dataset1 => ’hollowSquare’ });

Figure 14: Points chart as an example for brush styles

48



sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

xlabels
xrange

This pair of options allows arbitrary positioning of x axis labels.
The two options must either both be specified or both be omitted.
xlabels is a reference to 2-element array. The first of the elements
is a nested (reference to an) array of strings that are the labels. The
second element is a nested (reference to an) array of numbers that
are the x values at which the labels should be placed. xrange is a
2-element array specifying the minimum and maximum x values on
the axis. E. g.,

@labels = ([’Jan’, ’Feb’, ’Mar’],

[10, 40, 70 ]);

$chart->set(xlabels => \bs @labels,

xrange => [0, 100]

);

xy plot
Forces Chart::Points to plot a x–y graph if set to ‘true’, i. e., to
treat the x axis as numeric. Very useful for plots of mathematical
functions. Defaults to ‘false’.

y axes
Tells Chart::Points where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

49



14 Chart::Split

Name: Chart::Split

File: Split.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::Split creates a lines chart where both x and y axes
are assumed to be numeric. Split charts are mainly intended for cases
where many data points are spread over a wide x range while at the
same time the y range is limited. Typical examples are weather or
seismic data. The x axis will be split into several intervals of the
same length (specified with the mandatory option interval). The
intervals will be displayed in a stacked fashion. The start of the
top interval is set with the mandatory option start. Chart::Split will
draw only positive x coordinates. The y axis will not be labelled with
the y values. Rather, the axis will show only the sequence numbers
of the intervals. Chart::Split is a subclass of Chart::Base.

Example:

use Chart::Split;

$g = Chart::Split->new(650, 900);

# Get the data from a file and push them into arrays

open(FILE, "data.dat") or die "Can’t open the data file!\n";

while (<FILE>) {

($x, $y) = split;

push (@x, $x);

push (@y, $y);

}

close(FILE);

# Add the data

$g->add_dataset(@x);

$g->add_dataset(@y);

# Set the options

$g->set(’xy_plot’ => ’true’);

$g->set(’legend’ => ’none’);

50



$g->set(’title’ => ’Split Demo’);

$g->set(’interval’ => 1/288);

$g->set(’interval_ticks’ => 10);

$g->set(’start’ => 260.5);

$g->set(’brush_size’ => 1);

$g->set(’precision’ => 4);

$g->set(’y_label’ => ’5 minutes interval’);

# Give me a nice picture

$g->png("split.png");

Constructor:
An object instance of Chart::Split can be created with the constructor
new():

$obj = Chart::Split→new();

$obj = Chart::Split→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::Split object of the desired
size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
start

Sets the start value of the first interval. If the x coordinate of the
first data point is 0, start should also be set to 0. Required value
for a Chart::Split chart. Defaults to undef.

interval
Sets the interval of one segment to plot. Required value for a split
chart. Defaults to undef.

interval ticks
Sets the number of ticks for the x axis. Defaults to 5.

scale
Every y value of a Chart::Split chart will be multiplied by this value,
without however changing the sclaing of the y axis. (This might
result in some segments being overdrawn by others.) Only useful

51



if you want to give prominence to the maximal amplitudes of data.
Defaults to 1.

sort
Sorts the data in ascending order if set to ‘true’. Should be set if
the input data is not sorted. Defaults to ‘false’.

y axes
Tells Chart::Split where to place the y axis. Valid values are ‘left’,
‘right’ and ‘both’. Defaults to ‘left’.

52



Figure 15: Split chart

53



15 Chart::StackedBars

Name: Chart::StackedBars

File: StackedBars.pm

Requires: Chart::Base, GD, Carp, FileHandle

Description:
The class Chart::StackedBars creates a chart made up of stacked ver-
tical bars. The first data set will be shown at the bottom of the stack,
the last at the top. Chart::StackedBars is a subclass of Chart::Base.

Example:

Figure 16: Chart with stacked bars

use Chart::StackedBars;

$g = Chart::StackedBars->new();

$g->add_dataset(qw(foo bar junk taco karp));

$g->add_dataset(3, 4, 9, 10, 11);

$g->add_dataset(8, 6, 1, 12, 1);

$g->add_dataset(5, 7, 2, 13, 4);

$g->set(’title’ => ’Stacked Bar Chart’);

54



$g->set(’y_grid_lines’ => ’true’);

$g->set(’legend’ => ’bottom’);

$g->png("stackedbars.png");

Constructor:
An object instance of Chart::StackedBars can be created with the
constructor new():

$obj = Chart::StackedBars→new();

$obj = Chart::StackedBars→new(width, height);

If new() is called without arguments, the constructor will return an
image of size 300×400 pixels. If new() is called with two arguments,
width and height , it will return a Chart::StackedBars object of the
desired size.

Methods:
All universally valid methods, see page 5 of class Chart::Base.
Attributes/Options:
All universally valid options, see page 8 of class Chart::Base. In addition,
the following options are defined for this class:
spaced bars

Leaves some space between the individual bars when set to ‘true’.
This usually make it easier to read a bar chart, with stacked bars,
however, it is not as important as with groups of bars. Default is
‘true’.

y axes
Tells Chart::StackedBars where to place the y axis. Valid values are
‘left’, ‘right’ and ‘both’. Defaults to ‘left’.

55



Index

Attributes
angle interval, 23
arrow, 23
brush size, 23, 27, 32, 36
brush size1, 18
brush size2, 18
colors, 12
composite info, 18
custom x ticks, 11
f x tick, 11
f y tick, 12
f y tick1, 19
f y tick2, 19
graph border, 9
grey background, 13
grid lines, 13
imagemap, 13
include zero, 11
integer ticks only, 10
interval, 50
interval ticks, 50
label font, 13
label values, 44
legend, 10
legend example height, 19
legend example size, 13
legend font, 13
legend label values, 44
legend labels, 10
legend lines, 45
line, 23
max circles, 23
max val, 11
max val1, 19
max val2, 19
max x ticks, 10
max y ticks, 10

min circles, 23
min val, 11
min val1, 19
min val2, 19
min x ticks, 10
min y ticks, 10
no cache, 13
pairs, 23
png border, 9
point, 23
precision, 11
pt size, 23, 27, 36, 47
ring, 45
same error, 27
same y axes, 20
scale, 50
skip int ticks, 11
skip x ticks, 11
skip y ticks, 30
sort, 24, 27, 32, 36, 42, 47, 51
spaced bars, 16, 30, 42, 54
start, 50
stepline, 32, 36
stepline mode, 33, 36
sub title, 9
text space, 9
tick label font, 13
tick len, 10
title, 9
title font, 12
transparent, 9
x grid lines, 13
x label, 9
x ticks, 10
xlabels, 27, 33, 36, 47
xrange, 27, 33, 36, 47
xy plot, 27, 33, 36, 48

56



y axes, 16, 27, 30, 37, 39, 42, 48,
51, 54

y grid lines, 13
y label, 9
y label2, 9
y ticks, 10
y ticks1, 20
y ticks2, 20
ylabel2, 13

Chart::Bars, 14
Chart::Base, 5
Chart::Composite, 17
Chart::Direction, 21
Chart::ErrorBars, 25
Chart::HorizontalBars, 29
Chart::Lines, 31
Chart::LinesPoints, 34
Chart::Mountain, 38
Chart::Pareto, 40
Chart::Pie, 43
Chart::Points, 46
Chart::Split, 49
Chart::StackedBars, 53
Class

Chart, 2, 3, 5–11, 13, 19
Chart::Bars, 5, 8, 14–16
Chart::Base, 2, 5, 14, 16–18, 21,

23, 25, 27, 29–32, 34, 36, 39,
40, 42–44, 46, 47, 49, 50, 53,
54

Chart::Composite, 5, 17, 18
Chart::Direction, 5, 21–23
Chart::ErrorBars, 5, 25–28
Chart::HorizontalBars, 5, 8, 11,

29, 30
Chart::Lines, 5, 8, 31–34
Chart::LinesPoints, 5, 8, 31, 34–

37, 46
Chart::Mountain, 5, 38, 39

Chart::Pareto, 5, 8, 40–42
Chart::Pie, 2, 5, 11, 43–45
Chart::Points, 5, 8, 34, 46–48
Chart::Split, 5, 8, 11, 49–51
Chart::StackedBars, 5, 8, 53, 54

Constructor, 5, 15, 18, 22, 26, 30, 32,
35, 39, 41, 44, 47, 50, 54

GD (module by Lincoln Stein), 3

Methods
add datafile(), 6
add dataset(), 5
add pt(), 6
cgi jpeg(), 7
cgi png(), 7
clear data(), 7
get data(), 6
imagemap dump(), 8
jpeg(), 7
new(), 5, 15, 18, 22, 26, 30, 32,

35, 39, 41, 44, 47, 50, 54
png(), 7
set(), 7

Synopsis, 1

57


