
Build secure WS-Resources with WSRF::Lite and
WS-Security
Skill Level: Intermediate

Mark McKeown (mark.mckeown@manchester.ac.uk)
Grid Architect
University of Manchester

Stephan Zasada (stefan@zasada.co.uk)
Grid Computing Researcher
University College London

04 Apr 2006

WSRF::Lite is an implementation of the Web Services Resource Framework (WSRF)
in Perl. Learn how to secure Web services and WS-Resources built with WSRF::Lite,
using two approaches: Transport Layer Security (TLS) and digitally signing Simple
Object Access Protocol (SOAP) messages.

Section 1. Before you start

About this tutorial

This tutorial shows Web services and grid developers how to build secure
WS-Resources using WSRF::Lite, a Perl implementation of the WSRF. It introduces
WS-Security and TLS and discusses the advantages and disadvantages of each. In
the tutorial, you'll use both approaches to build secure WSRF::Lite WS-Resources.

Objectives

In this tutorial, you will learn the options for securing WSRF::Lite WS-Resources
using WS-Security and TLS. Explore the types of security threats you face when
building Web services and how to counter them using the features of WS-Security
and TLS. On completing the tutorial, you'll know how to build a secure WSRF::Lite
WS-Resource using digitally signed SOAP messages, TLS, or a combination of the
two.

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 14

mailto:mark.mckeown@manchester.ac.uk
mailto:stefan@zasada.co.uk
http://www.ibm.com/legal/copytrade.shtml

Prerequisites

Basic knowledge of Perl will help you complete the tasks. And you should also have
a basic understanding of Web services technology and Public Key Infrastructure
(PKI). This tutorial is a follow-up to the IBM developerWorks tutorial "Build
WS-Resources with WSRF::Lite." If you aren't familiar with WSRF, WS-Addressing,
or WSRF::Lite, you'll find it useful to complete that tutorial first.

System requirements

To run the examples, install the following Perl modules on a Linux® system:

• SOAP::Lite version 0.65 or higher

• XML::DOM

• DateTime

• DateTime::Format::Epoch

• DateTime::Format::W3CDTF

• Crypt::OpenSSL::RSA

• MIME::Base64

• Digest::SHA1

• Crypt::OpenSSL::X509

• XML::CanonicalizeXML

You also need an X.509 digital certificate. If you don't have one, create your own
using tools such as SimpleCA (see Resources for details).

Section 2. Background

What is WSRF?

The WSRF was introduced in January 2004 to provide a standard way to manage
state through a Web services interface. WSRF is actually a group of associated
specifications:

• WS-Resource

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 2 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/edu/gr-dw-gr-wsrflite-i.html
http://www.ibm.com/developerworks/edu/gr-dw-gr-wsrflite-i.html
http://www.ibm.com/legal/copytrade.shtml

• WS-ResourceProperties

• WS-ResourceLifetimes

• WS-ServiceGroups

• WS-BaseFaults

The key concept in WSRF is the WS-Resource, an entity that maintains state
between calls made to it and that can be accessed through a Web services
interface. A client can query and modify the state of a WS-Resource through a set of
operations defined in the WS-ResourceProperties specification. The lifetime of the
WS-Resource can be controlled by a set of operations defined in the
WS-ResourceLifetimes specification. WS-ServiceGroups defines a mechanism for
building registries of WS-Resources that clients can search for particular
WS-Resources. WS-BaseFaults provides a standard way of reporting faults from
WS-Resources to clients. For more information, see Resources.

What is WS-Security?

WS-Security is a set of Organization for the Advancement of Structured Information
Standards (OASIS) standards for enhancing SOAP messages to ensure message
integrity and confidentiality. It provides mechanisms for attaching security tokens to
SOAP messages (for example, X.509 certificates) and for signing or encrypting parts
of a SOAP message. By signing part of a SOAP message and attaching a security
token to validate the signature, the message receiver can verify that a message sent
by a client hasn't been tampered with in transit and that the message is from whom it
claims to be from.

WS-Security provides message-level security, in contrast to TLS. With TLS, a
secure connection is created between the two parties before any application data is
sent between them. TLS has the advantage of being simple to use. For example, a
Web services provider can switch from using HTTP to HTTPS to create a secure
environment for exchanging SOAP messages. The disadvantage of TLS is that it
doesn't allow SOAP messages to pass through intermediaries; it only provides
point-to-point security. If you're designing a system in which SOAP messages will
pass through a number of intermediary sites for processing, you'll need WS-Security.

WS-Security allows sensitive parts of a SOAP message to be digitally signed or
encrypted while leaving the rest of the message as machine- and human-readable
XML. WS-Security also lets you attach a security token -- such as an X.509
certificate -- to a SOAP message. The token can be used for sender validation. If
you need to send a SOAP message through a number of intermediaries but want to
make sure that none of the intermediaries tamper with the message, you should
digitally sign the SOAP message -- by using an X.509 certificate, for example.
Whomever ultimately receives the message can use the signature to verify that the
message hasn't been tampered with and can check that it came from the person
with the X.509 certificate. The receiver can also store the digitally signed message
as proof that the person with the X.509 certificate sent it. This isn't possible with

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 14

http://www.ibm.com/legal/copytrade.shtml

TLS.

The WS-Security specification defines the procedures for signing or encrypting part
of a SOAP message. However, it gives limited guidance on what parts of the
message should be signed or encrypted, which is left to the Web services
developers, who should understand the security requirements of their application.

What is WSRF::Lite?

WSRF::Lite is an implementation of WSRF in Perl. It's built on SOAP::Lite, the
popular Web services tool kit for Perl. WSRF::Lite provides support for the following
specifications:

• WS-Addressing

• WS-ResourceProperties

• WS-ResourceLifetime

• WS-ServiceGroups

• WS-BaseFaults

• WS-Security

WSRF::Lite provides support for building secure WS-Resources using HTTPS or
with digitally signed SOAP messages. For more information about WSRF::Lite, see
Resources.

Section 3. Securing Web services

Understanding your application's security requirements

To use WS-Security effectively, you must understand the security requirements of
your Web services application. Here are questions you need to address:

• Does the transport protocol provide any security?

• Will SOAP intermediaries be processing the message?

• Does the message or part of the message need to be encrypted?

• Does the message need to be recorded for repudiation purposes?

• What happens if someone steals a message and resends it?

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 4 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• What happens if someone steals a message destined for one service and
sends it to another?

In the simplest case of a client-server application that uses HTTP as a transport
protocol, switching to HTTPS can be the best option. Doing so provides encryption
so no one can read the message and also protects against replay attacks (in which
an attacker steals a message and resends it). HTTPS also supports mutual
authentication in that the client and server mutually authenticate with each other
using their X.509 certificates before exchanging application data.

In a case where a SOAP message must pass through an intermediary, but you don't
want it to read part of the message or modify the message, you might encrypt the
sensitive part of it and sign all of the message. It's possible to combine TLS and
message-level security -- to send signed messages over a TLS connection, for
example. For detailed discussions of the threats faced by Web services and the
countermeasures available, check out Resources.

Signing a SOAP message

WS-Security is built on a number of XML specifications: Canonical XML Version 1.0,
Exclusive Canonicalization Version 1.0, XML-Signature Syntax and Processing, and
XML-Encryption Syntax and Processing. The first two deal with converting XML into
a standard canonical form. By canonicalizing two pieces of XML, you can compare
them byte by byte for sameness. This is important for creating and validating digital
signatures. The second two detail the procedures for digitally signing and encrypting
XML. WS-Security builds on these specifications by defining how to integrate them
with SOAP.

The first step in signing a SOAP message is to canonicalize the elements of the
message to be signed. Because the form and structure of a SOAP message can
legitimately change as it passes from the sender to the receiver, it's important that
the XML can be converted to a standard form that can be compared for sameness.

Once the elements have been canonicalized, a digital hash is taken of the
canonicalized elements. If any change is made to the elements, the hash of the
elements will be different, and the receiver will be able to detect that they have been
tampered with. After the hash has been taken of all the canonicalized elements, a
new SignedInfo element is created that includes all the hashes from the
canonicalized elements. This is the piece of XML that will be digitally signed. The
SignedInfo is canonicalized, a hash is taken of its canonical form, and the hash is
signed (using an X.509 certificate, for example). To allow the receiver to validate the
signature, the sender includes the public part of the X.509 certificate in the message.
WS-Security defines how you include the public part of an X.509 certificate in a
SOAP message.

On receiving a signed SOAP message, the receiver checks to be sure the X.509
certificate included in the SOAP message is valid and acceptable. Next, the receiver
uses the certificate to check the signature in the message. If the signature is correct,

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 14

http://www.ibm.com/legal/copytrade.shtml

the receiver canonicalizes all the elements in the message the client has included in
the signature, takes a hash of the canonical forms, and compares them to the
hashes included in the SignedInfo element. If any of the hashes don't match, the
receiver should reject the message.

For a detailed discussion of the process of signing a SOAP message, see
Resources.

Section 4. Using TLS with WSRF::Lite

Installing WSRF::Lite

This is a brief introduction to installing WSRF::Lite and running a WSRF::Lite
container. It's sufficient for the purposes of this tutorial, but for a more in-depth
introduction, complete the "Build WS-Resources with WSRF::Lite" tutorial.

The first step to deploying WSRF::Lite is to install the necessary Perl modules listed
in System requirements. You can do so using Comprehensive Perl Archive Network
(CPAN) or by downloading the packages and installing manually using the following
commands:
> perl Makefile.PL
> make
> make test
> make install

Next, download the latest version of WSRF::Lite. After the bundle has been
untarred, you should see the following files and directories in the root directory of the
WSRF::Lite distribution:

• client-scripts

• CPAN_help

• LICENSE

• MANIFEST

• README

• t

• TODO

• Container.pl

• lib

• Makefile.PL

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 6 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/edu/gr-dw-gr-wsrflite-i.html
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://www.ibm.com/legal/copytrade.shtml

• modules

• SContainer.pl

• test

• WSRF

You can install WSRF::Lite into the system Perl libraries by running Perl
Makefile.PL, make, make test, make install or you can run the
WSRF::Lite Container and examples from the WSRF::Lite distribution directory.

To run a WSRF::Lite Container -- the item that manages the WS-Resources --
create the directories /tmp/wsrf and /tmp/wsrf/data. You must also set the
environmental variable WSRF_MODULES to point to the modules directory in your
WSRF::Lite distribution, where the code for the sample WS-Resources resides. The
sample WS-Resources are based on a counter. You can create, update, and query
the counter WS-Resources using the sample scripts provided in the client-scripts
directory. Once you've created the directories and set the environmental variable,
start a WSRF::Lite Container by running the Container.pl script. The SContainer is
the secure version of the container and uses HTTPS; the next section discusses
how to configure it. The test directory contains a number of testing scripts you can
use to check that the container is running correctly. The README file in the
WSRF::Lite distribution provides detailed instructions for installing, testing, and using
the WSRF::Lite distribution.

Using the WSRF::Lite SContainer

The WSRF::Lite SContainer uses HTTPS to provide TLS for the WS-Resources it
hosts. To use the SContainer, you need an X.509 host certificate with an
unencrypted private key. Whenever a client connects to the SContainer, it will be
presented with this certificate. All communication between the client and the
SContainer will be encrypted. To use the WSRF::Lite SContainer, you must modify
the SContainer.pl script to point to the host X.509 certificate, and you must set the
security policy. The relevant code is shown in Listing 1.

Listing 1. The SContainer.pl script
....
Create a Secure Socket using the host certificate
my $d = HTTP::Daemon::SSL->new(
LocalPort => $port, #port to listen on

Listen => SOMAXCON, #Queue size for listen

Reuse => 1,

SSL_cert_file => '/home/zzcgumk/hostcert.pem',
public part of host X.509

SSL_key_file => '/home/zzcgumk/hostkey.pem',
private part of host X.509

SSL_ca_path => '/etc/grid-security/certificates/',
CA directory

SSL_ca_file => '/etc/grid-security/certificates/01621954.0',

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 14

http://www.ibm.com/legal/copytrade.shtml

#CA file for X.509

SSL_verify_mode => 0x01 | 0x02 | 0x04
Authentication policy

) || do { print "Socket Error: Cannot create Socket\n"; exit; };
....

SSL_cert_file points to the file containing the public part of the host's X.509
certificate, and SSL_key_file points to the certificate's private key (which should
be unencrypted). SSL_ca_path points to the directory where you keep the
Certificate Authority (CA) certificates of all the CAs you accept; SSL_ca_file
points to the CA certificate of the CA that issued the host certificate.

SSL_verify_mode sets the policy of the SContainer. The default (0x00) performs
no authentication of the client. You can combine 0x01 (verify client), 0x02 (fail
verification if no client certificate is presented), and 0x04 (verify client once) to
change the default. The SContainer in Listing 1 is configured for mutual
authentication. If the client doesn't present a valid X.509 certificate, the SContainer
will refuse access.

Once an SContainer has validated a client certificate, it sets the environmental
variable SSL_CLIENT_DN to the Distinguished Name (DN) of the client certificate
and the environmental variable SSL_ISSUER_DN to the DN of the CA that issued the
client certificate. This is the same approach the Apache Web server uses to pass
client certificate information to a CGI script. The WS-Resource code can retrieve the
client certificate information through the $ENV{SSL_CLIENT_DN} and
$ENV{SSL_ISSUER_DN} variables.

Connecting to the SContainer

The sample client scripts provided with WSRF::Lite, in the client-scripts directory,
need to be modified to point to the client's X.509 certificate. At the start of each script
are the following lines:
#need to point to users certificates - these are only used
#if https protocol is being used.

Directory where CA certificates are kept
$ENV{HTTPS_CA_DIR} = "/etc/grid-security/certificates/";

Public part of the client X.509 certificate
$ENV{HTTPS_CERT_FILE} = $ENV{HOME}."/.globus/usercert.pem";

Private part of the client X.509 certificate
$ENV{HTTPS_KEY_FILE} = $ENV{HOME}."/.globus/userkey.pem";

$ENV{HTTPS_CA_DIR} points to the directory where the client keeps the CA
certificates of trusted CAs. If the service presents a certificate that isn't signed by
one of these CAs, the client aborts the communication. $ENV{HTTPS_CERT_FILE}
points to the public part of the client's X.509 certificate, and
$ENV{HTTPS_KEY_FILE} points to the certificate's private key. If the private key is
encrypted, the client prompts you for the password to unlock the private key when it
attempts to make the connection.

Given an HTTPS URI as the target service, the script automatically tries to use the

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 8 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

identified certificate to mutually authenticate with the service. If the lines are
commented out and the script is given an HTTPS URI, it doesn't attempt mutual
authentication with the service. Only the server identifies itself to the client. If the
service requires mutual authentication, it denies access to the client.

If the SContainer and client script have been configured properly, the DN of the
client certificate appears in the SContainer output when you access a WS-Resource.

Section 5. Signing a SOAP message with WSRF::Lite

Elements that WSRF::Lite signs

This section explains how to sign a SOAP message using WSRF::Lite. By default,
WSRF::Lite signs the following elements of a SOAP message (wsa elements are
WS-Addressing SOAP headers, soap elements are SOAP elements and wsse
elements are WS-Security SOAP headers):

wsa:To
Destination of the SOAP message. Signing this prevents attackers from
stealing the message and sending it to a different service.

wsa:From
Where the message came from.

wsa:MessageID
Unique identifier for the message. A service should reject any message that
reuses a MessageID to prevent replay attacks.

wsa:Action
Intended semantics of the message.

wsa:ReplyTo
IWhere to send the response. Signing this prevents an attacker from changing
where the response is sent.

wsa:RelatesTo
wsa:MessageID of the original message, if this message is a response to a
previous message.

wsse:Timestamp
Length of time the message is valid.

wsse:BinarySecurityToken
Security token used to sign the message; included in the signature. This
prevents attackers from replacing the security token.

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 14

http://www.ibm.com/legal/copytrade.shtml

soap:Body
Body of the message, which holds the application payload.

wsa:MessageID is signed to prevent replay attacks, in which an attacker steals a
message and resends it to the service. This would require a service to record the
wsa:MessageID of every message it ever processed. To address this issue,
WS-Security introduces the wsse:Timestamp element. wsse:Timestamp
declares the time the message is created and when it expires. If a service receives a
message after its expiration time, it should not process it. A service only needs to
store the wsa:MessageID of messages it has received that have not expired; it can
discard the wsa:MessageIDs of messages that have expired. (Note that a clock
skew between a client and server can cause a server to drop all messages received
from that client, and this bug can be difficult to detect.)

It's important to note that to create secure SOAP messages using digital signatures,
you must use WS-Addressing and sign the WS-Addressing elements.

Counter WS-Resource example

This section explains how to modify one of the sample WS-Resources provided with
WSRF::Lite so it signs the SOAP responses it sends back to the client. For example,
uncomment the following lines in the sample file modules/WSRF/Counter.pm:
If these $ENV are set the SOAP message will be signed
Points to the public key of the X509 certificate
$ENV{HTTPS_CERT_FILE} = "/home/zzcgumk/hostcert.pem";

Points to the private key of the cert - must be unencrypted
$ENV{HTTPS_KEY_FILE} = "/home/zzcgumk/hostkey.pem";

Tells WSRF::Lite to sign the message with the X.509 certificate
$ENV{WSS_SIGN} = 'true';

$ENV{HTTPS_CERT_FILE} points to the public part of the X.509 certificate you
want to use to sign the message, and $ENV{HTTPS_KEY_FILE} points to the
certificate's private key (which should be unencrypted). To start, host the
WS-Resource in the standard container.

Create a new Counter WS-Resource using the wsrf_createCounterResource.pl
script from the client-scripts directory. Then, to check that the SOAP the
WS-Resource returns is signed, invoke an operation on the WS-Resource using one
of the client scripts from the client-scripts directory. The script will indicate whether
the SOAP response was signed and which parts of the response were included in
the signature.

Next, add the code from Listing 2 below to the sample Counter WS-Resource so it
checks incoming messages and verifies whether they have been signed. Listing 2 is
a modified version of the add operation from modules/WSRF/Counter.pm.

Listing 2. The add operation from the Counter WS-Resource
add a value to the count
sub add {
my $envelope = pop @_; #get the SOAP envelope

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 10 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

this is added to check if the SOAP message has been signed -
if the verify dies because the message is not signed we catch it
with the eval
eval{
the WSRF::WSS::verify checks for a signature,
if the message is not signed or
not signed correctly verify will die.
verify returns a hash containing the
the X509 used to sign the message, the timestamp
and the names of the elements signed in the message
my %results = WSRF::WSS::verify($envelope);

The X509 certificate that signed the message
print "X509 certificate=\n$results{X509}\n" if $results{X509};

#print the name of each element that is signed
foreach my $key (keys %{$results{PartsSigned}})
{

print "\"$key\" of message is signed.\n";
}

#print the creation and expiration time of the message
print "Message Created at \"$results{Created}\".\n"

if $results{Created};
print "Message Expires at \"$results{Expires}\".\n"

if $results{Expires};

};
if ($@) { print "SOAP Message not signed: $@\n"; }
#catch if verify dies

my ($class, $val) = @_; #get the params to the operation

increment the counter
$WSRF::WSRP::ResourceProperties{count} =

$WSRF::WSRP::ResourceProperties{count} + $val;

return the new value of the counter
return WSRF::Header::header($envelope),

$WSRF::WSRP::ResourceProperties{count};

}

The WSS::WSS::verify function checks the SOAP message for a digital
signature. The function stops if the SOAP message hasn't been signed or is signed
incorrectly. In this example, if the message isn't signed correctly, the exception is
caught and a note is made in the WS-Resource log. Output from print statements
in a WS-Resource module go to a log file in the WSRF::Lite logs directory,
modules/logs. If the message has been signed, WSS::WSS::verify includes
details of the signature in the %results hash. In this example, the details of the
signature are sent to the log file.

WSS::WSS::verify only checks whether the message has been signed correctly.
It doesn't check whether the X.509 is acceptable, whether the message has expired,
or whether the correct parts of the message have been signed. It's left to you to
validate these items according to the service's security policy.

Client code

The example client scripts in the client-scripts directory check whether a SOAP
response from a WS-Resource has been signed. If it has been signed, the script
prints details of the signature, such as the message's expiration time, which parts

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 14

http://www.ibm.com/legal/copytrade.shtml

were signed, and the X.509 certificate used to sign the message.

To make the client scripts sign SOAP messages, uncomment the following line in
the scripts:
#$ENV{WSS_SIGN} = 'true';

The client scripts uses the same X.509 certificate shown earlier to sign the message.
The private key of the certificate must be unencrypted for signing messages.

Once you have exchanged signed SOAP messages between the client scripts and
the WS-Resource using the standard container, try doing so with the SContainer.
Using the SContainer means the signed messages are encrypted by the underlying
transport protocol when sent between the client and server. There are many
possible ways to use WS-Security and TLS together. For example, you can turn off
mutual authentication in the SContainer and rely on the signed messages for
authenticating the client to the server.

Section 6. Summary

In this tutorial, you learned about TLS and WS-Security. You should now understand
the types of security threats a Web service faces and how to use TLS and
WS-Security to combat them.

You also learned the process of signing a SOAP message and the reasons why
different elements of a SOAP message need to be signed to create a secure
message. You now know how to use TLS and WS-Security with WSRF::Lite to build
secure WS-Resources.

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 12 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Get the WSRF specifications from OASIS TC for the standardization of WSRF.

• The W3C provides information about XML canonicalization, signing, and
encrypting, including the relevant specifications.

• Read another developerWorks article about PKI: "Understanding the Public Key
Infrastructure."

• Sam Thompson discusses "Implementing WS-Security."

• For background on WS-Addressing, see Doug Davis' article "The hidden impact
of WS-Addressing on SOAP."

• To learn about TLS and SSL, check out "SSL: it's not just for commerce
anymore."

• Get the WS-Security specifications from the OASIS TC for the standardization
of WS-Security.

• The Web Service Interoperability organization's Security Challenges, Threats
and Countermeasures provides an excellent discussion of threats and
countermeasures for Web services.

• Read "Build WS-Resources with WSRF::Lite" to learn more about WSRF::Lite
and the sample Counter WS-Resources discussed in this tutorial.

• The developerWorks Grid computing zone provides tutorials and information
about grid technology.

Get products and technologies

• Download the SimpleCA tools to help create and manage X.509 certificates.

• Download the latest version of WSRF::Lite. The site also provides more
information about WSRF::Lite.

Discuss

• Join the WSRF::Lite mailing list to discuss WSRF::Lite with other developers.

About the authors

Mark McKeown
Since 2002, Mark McKeown has worked on grid computing at the University of
Manchester. During this time, he developed WSRF::Lite and OGSI::Lite, the
precursor to WSRF::Lite. His academic background is in physics, in which he has a
bachelor's degree and a doctorate from Queens University Belfast.

ibm.com/developerWorks developerWorks®

Build secure WS-Resources with WSRF::Lite and WS-Security
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 14

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.w3c.org/
http://www.ibm.com/developerworks/ibm/library/it-sinn1/
http://www.ibm.com/developerworks/ibm/library/it-sinn1/
http://www.ibm.com/developerworks/webservices/library/ws-security.html
http://www.ibm.com/developerworks/webservices/library/ws-address.html
http://www.ibm.com/developerworks/webservices/library/ws-address.html
http://www.ibm.com/developerworks/lotus/library/ls-SSL_basics/
http://www.ibm.com/developerworks/lotus/library/ls-SSL_basics/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://www.ibm.com/developerworks/edu/gr-dw-gr-wsrflite-i.html
http://www.ibm.com/developerworks/grid
http://www.vpnc.org/SimpleCA/
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://lists.man.ac.uk/mailman/listinfo/wsrf-lite
http://www.ibm.com/legal/copytrade.shtml

Stephan Zasada
Stefan Zasada worked on implementing WS-Security in Perl for use by WSRF::Lite
as part of his master's project at the University of Manchester. He is currently a
doctorate student in the Centre for Computational Science and Computer Science
department at University College London, working on lightweight grid middleware.

developerWorks® ibm.com/developerWorks

Build secure WS-Resources with WSRF::Lite and WS-Security
Page 14 of 14 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Background
	What is WSRF?
	What is WS-Security?
	What is WSRF::Lite?

	Securing Web services
	Understanding your application's security requirements
	Signing a SOAP message

	Using TLS with WSRF::Lite
	Installing WSRF::Lite
	Using the WSRF::Lite SContainer
	Connecting to the SContainer

	Signing a SOAP message with WSRF::Lite
	Elements that WSRF::Lite signs
	Counter WS-Resource example
	Client code

	Summary
	Resources
	About the authors

