
Java™ Servlet Specification, v2.2
Final Release

December 17th, 1999
James Duncan Davidson
Danny Coward

Please send all comments to servletapi-feedback@eng.sun.com.

Java™Servlet Specification ("Specification")
Version: 2.2
Status: Final Release
Release: 12/17/99

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved.

NOTICE.
This Specification is protected by copyright and the information described herein may be protected by one or more U.S. patents,
foreign patents, or pending applications. Except as provided under the following license, no part of this Specification may be
reproduced in any form by any means without the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any.
Any use of this Specification and the information described herein will be governed by these terms and conditions and the Export
Control and General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this
Specification, you agree that you have read, understood, and will comply with all the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Sun's intellectual property rights that are essential to practice this Specification, to internally practice this Specification solely for the
purpose of creating a clean room implementation of this Specification that: (i) includes a complete implementation of the current
version of this Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of this
Specification, as defined by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional
components (as defined by Sun in this Specification) which you choose to implement, without subsetting or supersetting; (iv)
implements all of the interfaces and functionality of such optional components, without subsetting or supersetting; (v) does not add
any additional packages, classes or interfaces to the "java.*" or "javax.*" packages or subpackages (or other packages defined by
Sun); (vi) satisfies all testing requirements available from Sun relating to the most recently published version of this Specification six
(6) months prior to any release of the clean room implementation or upgrade thereto; (vii) does not derive from any Sun source code
or binary code materials; and (viii) does not include any Sun source code or binary code materials without an appropriate and
separate license from Sun. This Specification contains the proprietary information of Sun and may only be used in accordance with
the license terms set forth herein. This license will terminate immediately without notice from Sun if you fail to comply with any
provision of this license. Sun may, at its sole option, terminate this license without cause upon ten (10) days notice to you. Upon
termination of this license, you must cease use of or destroy this Specification.

TRADEMARKS.
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun,
Sun Microsystems, the Sun logo, Java, Jini, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK, JDBC, JavaBeans,
JavaMail, Write Once, Run Anywhere, and Java Naming and Directory Interface are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES.
THIS SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of
this Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed
by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this
license.RESTRICTED RIGHTS LEGEND.

Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in this license and as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19 (June
1987), or FAR 52.227-14(ALT III) (June 1987), as applicable.

REPORT.
You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with
the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose related to the Specification and future versions, implementations, and test suites thereof.

Table Of Contents

Who Should Read This Specification 8

API Reference 8

Other Java™ Platform Specifications 8

Other Important References 8

Providing Feedback 9

Acknowledgements 9

Overview 11

What is a Servlet? 11

What is a Servlet Container? 11

An Example 11

Comparing Servlets with Other Technologies 12

Relationship to Java 2 Platform Enterprise Edition 12

Distributable Servlet Containers 12

Changes Since Version 2.1 12

Terms Used 15

Basic Terms 15

Roles 16

Security Terms 17

The Servlet Interface 19

Request Handling Methods 19

Number of Instances 20

Servlet Life Cycle 20

Servlet Context 23

Scope of a ServletContext 23

Initialization Parameters 23

Context Attributes 23

Resources 24

Multiple Hosts and Servlet Contexts 24

Reloading Considerations 24

Temporary Working Directories 25

The Request 27

Parameters 27

Attributes 27

Headers 28

Request Path Elements 28

Path Translation Methods 29

Cookies 29

SSL Attributes 30

Internationalization 30

The Response 31

Buffering 31

Headers 31

Convenience Methods 32

Internationalization 32

Closure of Response Object 33

Sessions 35

Session Tracking Mechanisms 35

Creating a Session 35

Session Scope 36

Binding Attributes into a Session 36

Session Timeouts 36

Last Accessed Times 36

Important Session Semantics 37

Dispatching Requests 39

Obtaining a RequestDispatcher 39

Using a Request Dispatcher 40

Include 40

Forward 40

Error Handling 41

Web Applications 43

Relationship to ServletContext 43

Elements of a Web Application 43

Distinction Between Representations 43

Directory Structure 43

Web Application Archive File 44

Web Application Configuration Descriptor 44

Replacing a Web Application 45

Error Handling 45

Web Application Environment 45

Mapping Requests to Servlets 47

Use of URL Paths 47

Specification of Mappings 47

Security 49

Introduction 49

Declarative Security 49

Programmatic Security 49

Roles 50

Authentication 50

Server Tracking of Authentication Information 52

Specifying Security Constraints 52

Application Programming Interface 53

Package javax.servlet 53

Package javax.servlet.http 57

Deployment Descriptor 63

Deployment Descriptor Elements 63

DTD 63

Examples 73

Futures 77

s
let API
ng

y, the
 the

form

is

let

ch.

,
es are
tures.
Preface

This document, the Java™ Servlet Specification, v2.2 the Java Servlet API. In addition to thi
specification, the Java Servlet API has Javadoc documentation (referred to as the Java Serv
Reference, v2.2) and a reference implementation available for public download at the followi
location:

http://java.sun.com/products/servlet/index.html

The reference implementation provides a behavioral benchmark. In the case of a discrepanc
order of resolution is this specification, then the Java Servlet API Reference, v2.2, and finally
reference implementation.

0.1 Who Should Read This Specification
This document is intended for consumption by:

• Web Server and Application Server vendors that want to provide Servlet Engines that con
with this specification.

• Web Authoring Tool developers that want to generate Web Applications that conform to th
specification

• Sophisticated Servlet authors who want to understand the underlying mechanisms of Serv
technology.

Please note that this specification is not a User’s Guide and is not intended to be used as su

0.2 API Reference
The Java Servlet API Reference, v2.2 provides the complete description of all the interfaces
classes, exceptions, and methods that compose the Servlet API. Simplified method signatur
provided throughout the spec. Please refer to the API Reference for complete method signa

0.3 Other Java™ Platform Specifications
The following Java API Specifications are heavily referenced throughout this specification:

• Java2 Platform Enterprise Edition, v1.2 (J2EE)
• JavaServer Pages™, v1.1 (JSP)
• Java Naming and Directory Interface (JNDI)

These specifications may be found at the Java2 Enterprise Edition website:

http://java.sun.com/j2ee/

0.4 Other Important References
The following Internet Specifications provide relevant information to the development and
implementation of the Servlet API and engines which support the Servlet API:

• RFC 1630 Uniform Resource Identifiers (URI)
• RFC 1738 Uniform Resource Locators (URL)
• RFC 1808 Relative Uniform Resource Locators
Java™ Servlet Specification Version 2.2 8

 in

y. We

 a
by the

,
ey,

vens,

ff
 and

oups
ne the

C

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)
• RFC 2045 MIME Part One: Format of Internet Message Bodies
• RFC 2046 MIME Part Two: Media Types
• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
• RFC 2048 MIME Part Four: Registration Procedures
• RFC 2049 MIME Part Five: Conformance Criteria and Examples
• RFC 2109 HTTP State Management Mechanism
• RFC 2145 Use and Interpretation of HTTP Version Numbers

• RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)
• RFC 2617 HTTP Authentication: Basic and Digest Authentication

You can locate the online versions of any of these RFCs at:

http://www.rfc-editor.org/

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of HTTP
related information that affects this specification and its implementations.

The Extensible Markup Language (XML) is utilized by the Deployment Descriptors described
this specification. More information about XML can be found at the following websites:

http://java.sun.com/
http://www.xml.org/

0.5 Providing Feedback
The success of the Java Community Process depends on your participation in the communit
welcome any and all feedback about this specification. Please e-mail your comments to:

servletapi-feedback@eng.sun.com

Please note that due to the volume of feedback that we receive, you will not normally receive
reply from an engineer. However, each and every comment is read, evaluated, and archived
specification team.

0.6 Acknowledgements
Anselm Baird-Smith, Elias Bayeh, Vince Bonfanti, Larry Cable, Robert Clark, Daniel Coward
Satish Dharmaraj, Jim Driscoll, Shel Finkelstein, Mark Hapner, Jason Hunter, Rod McChesn
Stefano Mazzocchi, Craig McClanahan, Adam Messinger, Ron Monzillo, Vivek Nagar, Kevin
Osborn, Bob Pasker, Eduardo Pelegri-Lopart, Harish Prabandham, Bill Shannon, Jon S. Ste
James Todd, Spike Washburn, and Alan Williamson have all (in no particular order other than
alphabetic) provided invaluable input into the evolution of this specification. Connie Weiss, Je
Jackson, and Mala Chandra have provided incredible management assistance in supporting
furthering the Servlet effort at Sun.

This specification is an ongoing and broad effort that includes contributions from numerous gr
at Sun and at partner companies. Most notably the following companies and groups have go
extra mile to help the Servlet Specification process: The Apache Developer Community, Art
Technology Group, BEA Weblogic, Clear Ink, IBM, Gefion Software, Live Software, Netscape
Communications, New Atlanta Communications, and Oracle.

1. This reference is mostly tongue-in-cheek although most of the concepts described in the HTCPCP RF
are relevant to all well designed web servers.
Java™ Servlet Specification Version 2.2 9

any
 us to
And of course, the ongoing specification review process has been extremely valuable. The m
comments that we have received from both our partners and the general public have helped
define and evolve the specification. Many thanks to all who have contributed feedback.
Java™ Servlet Specification Version 2.2 10

Overview

lets are
an be
est
sed on

twork
rmats
ir

ent to
 or

 also
e
/1.0.

in. In
E)
Java 2
ion of
d.

st. This
t
ith
cess as
eb

eters
rform
ends

roperly
1 Overview

1.1 What is a Servlet?
A servlet is a web component, managed by a container, that generates dynamic content. Serv
small, platform independent Java classes compiled to an architecture neutral bytecode that c
loaded dynamically into and run by a web server. Servlets interact with web clients via a requ
response paradigm implemented by the servlet container. This request-response model is ba
the behavior of the Hypertext Transfer Protocol (HTTP).

1.2 What is a Servlet Container?
The servlet container, in conjunction with a web server or application server, provides the ne
services over which requests and responses are set, decodes MIME based requests, and fo
MIME based responses. A servlet container also contains and manages servlets through the
lifecycle.

A servlet container can either be built into a host web server or installed as an add-on compon
a Web Server via that server’s native extension API. Servlet Containers can also be built into
possibly installed into web-enabled Application Servers.

All servlet containers must support HTTP as a protocol for requests and responses, but may
support additional request / response based protocols such as HTTPS (HTTP over SSL). Th
minimum required version of the HTTP specification that a container must implement is HTTP
It is strongly suggested that containers implement the HTTP/1.1 specification as well.

A Servlet Container may place security restrictions on the environment that a servlet executes
a Java 2 Platform Standard Edition 1.2 (J2SE) or Java 2 Platform Enterprise Edition 1.2 (J2E
environment, these restrictions should be placed using the permission architecture defined by
Platform. For example, high end application servers may limit certain action, such as the creat
aThread object, to insure that other components of the container are not negatively impacte

1.3 An Example
A client program, such as a web browser, accesses a web server and makes an HTTP reque
request is processed by the web server and is handed off to the servlet container. The servle
container determines which servlet to invoke based on its internal configuration and calls it w
objects representing the request and response. The servlet container can run in the same pro
the host web server, in a different process on the same host, or on a different host from the w
server for which it processes requests.

The servlet uses the request object to find out who the remote user is, what HTML form param
may have been sent as part of this request, and other relevant data. The servlet can then pe
whatever logic it was programmed with and can generate data to send back to the client. It s
this data back to the client via the response object.

Once the servlet is done with the request, the servlet container ensures that the response is p
flushed and returns control back to the host web server.
Java™ Servlet Specification Version 2.2 11

Overview

 and
.

d.

pment

ployed

ross

ble

s for
n as
vers
hen it
1.4 Comparing Servlets with Other Technologies
In functionality, servlets lie somewhere between Common Gateway Interface (CGI) programs
proprietary server extensions such as the Netscape Server API (NSAPI) or Apache Modules

Servlets have the following advantages over other server extension mechanisms:

• They are generally much faster than CGI scripts because a different process model is use
• They use a standard API that is supported by many web servers.
• They have all the advantages of the Java programming language, including ease of develo

and platform independence.
• They can access the large set of APIs available for the Java platform.

1.5 Relationship to Java 2 Platform Enterprise Edition

The Servlet API is a required API of the Java 2 Platform Enterprise Edition, v1.21. The J2EE
specification describes additional requirements for servlet containers, and servlets that are de
into them, that are executing in a J2EE environment.

1.6 Distributable Servlet Containers
New in this version of the specification is the ability to mark a web application asdistributable.
This indication allows servlet container vendors to deploy the servlets in a web application ac
multiple Java Virtual Machines running on the same host or on different hosts. An application
marked as distributable must obey a few restrictions so that containers that support distributa
applications can implement features such as clustering and failover.

All web applications that may need to run in a high performance environment, one that allow
scalability, clustering, and failover (such as a compliant J2EE implementation), should be writte
distributable web applications. This will allow applications to take maximum advantage of ser
that provide these features. If a non distributable application is deployed into such a server, t
cannot take full advantage of the features that are given by such servers.

1.7 Changes Since Version 2.1
The following major changes have been made to the specification since version 2.1:

• The introduction of the web application concept
• The introduction of the web application archive files
• The introduction of response buffering
• The introduction of distributable servlets
• The ability to get aRequestDispatcher by name
• The ability to get aRequestDispather using a relative path
• Internationalization improvements
• Many clarifications of distributed servlet engine semantics

The following changes have been made to the API:

• Added thegetServletName method to theServletConfig interface to allow a servlet to
obtain the name by which it is known to the system, if any.

1. Please see the Java 2 Platform Enterprise Edition specification available at
http://java.sun.com/j2ee/
Java™ Servlet Specification Version 2.2 12

Overview

vel

placed

tion.
• Added thegetInitParameter andgetInitParameterNames method to the
ServletContext interface so that initialization parameters can be set at the application le
to be shared by all servlets that are part of that application.

• Added thegetLocale method to theServletRequest interface to aid in determining what
locale the client is in.

• Added theisSecure method to theServletRequest interface to indicate whether or not
the request was transmitted via a secure transport such as HTTPS.

• Replaced the construction methods ofUnavailableException as existing constructor
signatures caused some amount of developer confusion. These constructors have been re
by simpler signatures.

• Added thegetHeaders method to theHttpServletRequest interface to allow all the
headers associated with a particular name to be retrieved from the request.

• Added thegetContextPath method to theHttpServletRequest interface so that the
part of the request path associated with a web application can be obtained.

• Added theisUserInRole andgetUserPrinciple methods to the
HttpServletRequest method to allow servlets to use an abstract role based authentica

• Added theaddHeader , addIntHeader , and addDateHeader methods to the
HttpServletResponse interface to allow multiple headers to be created with the same
header name.

• Added thegetAttribute , getAttributeNames , setAttribute , and
removeAttribute methods to theHttpSession interface to improve the naming
conventions of the API. ThegetValue , getValueNames , setValue , andremoveValue
methods are deprecated as part of this change.

In addition, a large number of clarifications have been made to spec.
Java™ Servlet Specification Version 2.2 13

Overview
Java™ Servlet Specification Version 2.2 14

Terms Used

le via
may be

h are

ture
he

 path.

 a

path
et

cation

f its
om a
2 Terms Used

These terms are widely used throughout the rest of this specification.

2.1 Basic Terms

2.1.1 Uniform Resource Locators

A Uniform Resource Locators (URL) is a compact string representation of resources availab
the network. Once the resource represented by a URL has been accessed, various operations

performed on that resource.1 URLs are a form of a Uniform Resource Identifier (URI). URLs are
typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTTP based URLs whic
of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/servlet/index.html
https://javashop.sun.com/purchase

In HTTP based URLs, the‘/’ character is reserved for use to separate a hierarchical path struc
in the url-path portion of the URL. The server is responsible for determining the meaning of t
hierarchical structure. There is no correspondence between a url-path and a given file system

2.1.2 Servlet Definition

A servlet definition is a unique name associated with a fully qualified class name of a class
implementing theServlet interface. A set of initialization parameters can be associated with
servlet definition.

2.1.3 Servlet Mapping

A servlet mapping is a servlet definition that is associated by a servlet container with a URL
pattern. All requests to that path pattern are handled by the servlet associated with the Servl
Definition.

2.1.4 Web Application

A web application is a collection of servlets, JavaServer Pages2, HTML documents, and other web
resources which might include image files, compressed archives, and other data. A web appli
may be packaged into an archive or exist in an open directory structure.

All compatible servlet containers must accept a web application and perform a deployment o
contents into their runtime. This may mean that a container can run the application directly fr

1. See RFC 1738
2. See the JavaServer Pages specification athttp://java.sun.com/products/jsp
Java™ Servlet Specification Version 2.2 15

Terms Used

nto

the

d
an be
s of a

on. In
ed by

et of
,
 an
nd its
b

yable
 and
bler

ided
ent.
yer
e

s
oups
d.

et
of the
web application archive file or it may mean that it will move the contents of a web application i
the appropriate locations for that particular container.

2.1.5 Web Application Archive

A web application archive is a single file which contains all of the components of a web
application. This archive file is created by using standard JAR tools which allow any or all of
web components to be signed.

Web application archive files are identified by the.war extension. A new extension is used instea
of .jar because that extension is reserved for files which contain a set of class files and that c
placed in the classpath or double clicked using a GUI to launch an application. As the content
web application archive are not suitable for such use, a new extension was in order.

2.2 Roles
The following roles are defined to aid in identifying the actions and responsibilities taken by
various parties during the development, deployment, and running of a Servlet based applicati
some scenarios, a single party may perform several roles; in others, each role may be perform
a different party.

2.2.1 Application Developer

The Application Developer is the producer of a web based application. His or her output is a s
servlet classes, JSP pages, HTML pages, and supporting libraries and files (such as images
compressed archive files, etc.) for the web application. The Application Developer is typically
application domain expert. The developer is required to be aware of the servlet environment a
consequences when programming, including concurrency considerations, and create the we
application accordingly.

2.2.2 Application Assembler

The Application Assembler takes the work done by the developer and ensures that it is a deplo
unit. The input of the Application Assembler is the servlet classes, JSP pages, HTML pages,
other supporting libraries and files for the web application. The output of the application assem
is a Web Application Archive or a Web Application in an open directory structure.

2.2.3 Deployer

The Deployer takes one or more web application archive files or other directory structures prov
by an Application Developer and deploys the application into a specific operational environm
The operational environment includes a specific servlet container and web server. The Deplo
must resolve all the external dependencies declared by the developer. To perform his role, th
deployer uses tools provided by the Servlet Container.

The Deployer is an expert in a specific operational environment. For example, the Deployer i
responsible for mapping the security roles defined by the Application Developer to the user gr
and accounts that exist in the operational environment where the web application is deploye

2.2.4 System Administrator

The System Administrator is responsible for the configuration and administration of the servl
container and web server. The administrator is also responsible for overseeing the well-being
deployed web applications at run time.
Java™ Servlet Specification Version 2.2 16

Terms Used

 The
ainer

 the
 tools

n
e
iner

ol.

 a
rred

s
in a
This specification does not define the contracts for system management and administration.
administrator typically uses runtime monitoring and management tools provided by the Cont
Provider and server vendors to accomplish these tasks.

2.2.5 Servlet Container Provider

The Servlet Container Provider is responsible for providing the runtime environment, namely
servlet container and possibly the web server, in which a web application runs as well as the
necessary to deploy web applications.

The expertise of the Container Provider is in HTTP level programming. Since this specificatio
does not specify the interface between the web server and the servlet container, it is left to th
Container Provider to split the implementation of the required functionality between the conta
and the server.

2.3 Security Terms

2.3.1 Principal

A principal is an entity that can be authenticated by an authentication protocol. A principal is
identified by aprincipal name and authenticated by usingauthentication data. The content and
format of the principal name and the authentication data depend on the authentication protoc

2.3.2 Security Policy Domain

A security policy domain is a scope over which security policies are defined and enforced by
security administrator of the security service. A security policy domain is also sometimes refe
to as arealm.

2.3.3 Security Technology Domain

A security technology domain is the scope over which the same security mechanism, such a
Kerberos, is used to enforce a security policy. Multiple security policy domains can exist with
single technology domain.

2.3.4 Role

A role is an abstract notion used by a developer in an application that can be mapped by the
deployer to a user, or group of users, in a security policy domain.
Java™ Servlet Specification Version 2.2 17

Terms Used
Java™ Servlet Specification Version 2.2 18

is
. The

.

d by

lf
ced

ch

nt if it
3 The Servlet Interface

TheServlet interface is the central abstraction of the Servlet API. All servlets implement th
interface either directly, or more commonly, by extending a class that implements the interface
two classes in the API that implement theServlet interface areGenericServlet and
HttpServlet . For most purposes, developers will typically extendHttpServlet to
implement their servlets.

3.1 Request Handling Methods
The basicServlet interface defines aservice method for handling client requests. This
method is called for each request that the servlet container routes to an instance of a servlet
Multiple request threads may be executing within the service method at any time.

3.1.1 HTTP Specific Request Handling Methods

TheHttpServlet abstract subclass adds additional methods which are automatically calle
theservice method in theHttpServlet class to aid in processing HTTP based requests.
These methods are:

• doGet for handling HTTP GET requests
• doPost for handling HTTP POST requests
• doPut for handling HTTP PUT requests
• doDelete for handling HTTP DELETE requests
• doHead for handling HTTP HEAD requests
• doOptions for handling HTTP OPTIONS requests
• doTrace for handling HTTP TRACE requests

Typically when developing HTTP based servlets, a Servlet Developer will only concern himse
with thedoGet anddoPost methods. The rest of these methods are considered to be advan
methods for use by programmers very familiar with HTTP programming.

ThedoPut anddoDelete methods allow Servlet Developers to support HTTP/1.1 clients whi
support these features. ThedoHead method inHttpServlet is a specialized method that will
execute thedoGet method, but only return the headers produced by thedoGet method to the
client. ThedoOptions method automatically determines which HTTP methods are directly
supported by the servlet and returns that information to the client. ThedoTrace method causes a
response with a message containing all of the headers sent in the TRACE request.

In containers that only support HTTP/1.0, only thedoGet , doHead anddoPost methods will be
used as HTTP/1.0 does not define the PUT, DELETE, OPTIONS, or TRACE methods.

3.1.2 Conditional GET Support

TheHttpServlet interface defines thegetLastModified method to support conditional get
operations. A conditional get operation is one in which the client requests a resource with the
HTTP GET method and adds a header that indicates that the content body should only be se
has been modified since a specified time.

Servlets that implement thedoGet method and that provide content that does not necessarily
change from request to request should implement this method to aid in efficient utilization of
network resources.
Java™ Servlet Specification Version 2.2 19

The Servlet Interface

iner.

hile

yment
n a

in

te
ly
 at a

and

nd
s that

vlet
mote

or

n that
en a

ore it
istent

any
3.2 Number of Instances
By default, there must be only one instance of a servlet class per servlet definition in a conta

In the case of a servlet that implements theSingleThreadModel interface, the servlet container
may instantiate multiple instances of that servlet so that it can handle a heavy request load w
still serializing requests to a single instance.

In the case where a servlet was deployed as part of an application that is marked in the deplo
descriptor asdistributable, there is one instance of a servlet class per servlet definition per VM i
container. If the servlet implements theSingleThreadModel interface as well as is part of a
distributable web application, the container may instantiate multiple instances of that servlet
each VM of the container.

3.2.1 Note about SingleThreadModel

The use of theSingleThreadModel interface guarantees that one thread at a time will execu
through a given servlet instance’sservice method. It is important to note that this guarantee on
applies to servlet instance. Objects that can be accessible to more than one servlet instance
time, such as instances ofHttpSession , may be available to multiple servlets, including those
that implementSingleThreadModel , at any particular time.

3.3 Servlet Life Cycle
A servlet is managed through a well defined life cycle that defines how it is loaded, instantiated
initialized, handles requests from clients, and how it is taken out of service. This life cycle is
expressed in the API by theinit , service , anddestroy methods of the
javax.servlet.Servlet interface that all servlets must, directly or indirectly through the
GenericServlet or HttpServlet abstract classes, implement.

3.3.1 Loading and Instantiation

The servlet container is responsible for loading and instantiating a servlet. The instantiation a
loading can occur when the engine is started or it can be delayed until the container determine
it needs the servlet to service a request.

First, a class of the servlet’s type must be located by the servlet container. If needed, the ser
container loads a servlet using normal Java class loading facilities from a local file system, a re
file system, or other network services.

After the container has loaded theServlet class, it instantiates an object instance of that class f
use.

It is important to note that there can be more than one instance of a givenServlet class in the
servlet container. For example, this can occur where there was more than one servlet definitio
utilized a specific servlet class with different initialization parameters. This can also occur wh
servlet implements theSingleThreadModel interface and the container creates a pool of
servlet instances to use.

3.3.2 Initialization

After the servlet object is loaded and instantiated, the container must initialize the servlet bef
can handle requests from clients. Initialization is provided so that a servlet can read any pers
configuration data, initialize costly resources (such as JDBC™ based connection), and perform
other one-time activities. The container initializes the servlet by calling theinit method of the
Servlet interface with a unique (per servlet definition) object implementing the
Java™ Servlet Specification Version 2.2 20

The Servlet Interface

e
tion

d

e by

lized

he
g a

ses of
this
ss the
not

ch

ions of

rvlet

uests
at
rrency.

nt the

y this
f the
tain a
ServletConfig interface. This configuration object allows the servlet to access name-valu
initialization parameters from the servlet container’s configuration information. The configura
object also gives the servlet access to an object implementing theServletContext interface
which describes the runtime environment that the servlet is running within. See section 4 title
“Servlet Context” on page 23 for more information about theServletContext interface.

3.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can signal that it is not to be placed into active servic
throwing anUnavailableException or ServletException . If a servlet instance throws
an exception of this type, it must not be placed into active service and the instance must be
immediately released by the servlet container. Thedestroy method is not called in this case as
initialization was not considered to be successful.

After the instance of the failed servlet is released, a new instance may be instantiated and initia
by the container at any time. The only exception to this rule is if theUnavailableException
thrown by the failed servlet which indicates the minimum time of unavailability. In this case, t
container must wait for the minimum time of unavailability to pass before creating and initializin
new servlet instance.

3.3.2.2 Tool Considerations

When a tool loads and introspects a web application, it may load and introspect member clas
the web application. This will trigger static initialization methods to be executed. Because of
behavior, a Developer should not assume that a servlet is in an active container runtime unle
init method of theServlet interface is called. For example, this means that a servlet should
try to establish connections to databases or Enterprise JavaBeans™ compenent architecture
containers when its static (class) initialization methods are invoked.

3.3.3 Request Handling

After the servlet is properly initialized, the servlet container may use it to handle requests. Ea
request is represented by a request object of typeServletRequest and the servlet can create a
response to the request by using the provided object of typeServletResponse . These objects
are passed as parameters to theservice method of theServlet interface. In the case of an
HTTP request, the container must provide the request and response objects as implementat
HttpServletRequest andHttpServletResponse .

It is important to note that a servlet instance may be created and placed into service by a se
container but may handle no requests during its lifetime.

3.3.3.1 Multithreading Issues

During the course of servicing requests from clients, a servlet container may send multiple req
from multiple clients through theservice method of the servlet at any one time. This means th
the Developer must take care to make sure that the servlet is properly programmed for concu

If a Developer wants to prevent this default behavior, he can program the servlet to impleme
SingleThreadModel interface. Implementing this interface will guarantee that only one
request thread at a time will be allowed in the service method. A servlet container may satisf
guarantee by serializing requests on a servlet or by maintaining a pool of servlet instances. I
servlet is part of an application that has been marked as distributable, the container may main
pool of servlet instances in each VM that the application is distributed across.

If a Developer defines aservice method (or methods such asdoGet or doPost which are
dispatched to from theservice method of theHttpServlet abstract class) with the
Java™ Servlet Specification Version 2.2 21

The Servlet Interface

e,
oes for

up the
er

orary
 a

een

request
cts

t
ime
f time

mple,
must
 the

ore
gain, it

 so
synchronized keyword, the servlet container will, by necessity of the underlying Java runtim
serialize requests through it. However, the container must not create an instance pool as it d
servlets that implement theSingleThreadModel . It is strongly recommended that developers
not synchronize the service method or any of theHttpServlet service methods such asdoGet ,
doPost , etc.

3.3.3.2 Exceptions During Request Handling

A servlet may throw either aServletException or anUnavailableException during
the service of a request. AServletException signals that some error occurred during the
processing of the request and that the container should take appropriate measures to clean
request. AnUnavailableException signals that the servlet is unable to handle requests eith
temporarily or permanently.

If a permanent unavailability is indicated by theUnavailableException , the servlet
container must remove the servlet from service, call itsdestroy method, and release the servlet
instance.

If temporary unavailability is indicated by theUnavailableException , then the container
may choose to not route any requests through the servlet during the time period of the temp
unavailability. Any requests refused by the container during this period must be returned with
SERVICE_UNAVAILABLE (503) response status along with aRetry-After header indicating
when the unavailability will terminate. The container may choose to ignore the distinction betw
a permanent and temporary unavailability and treat allUnavailableExceptions as
permanent, thereby removing a servlet that throws anyUnavailableException from service.

3.3.3.3 Thread Safety

A Developer should note that implementations of the request and response objects are not
guaranteed to be thread safe. This means that they should only be used in the scope of the
handling thread. References to the request and response objects should not be given to obje
executing in other threads as the behavior may be nondeterministic.

3.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any period of time. A servle
instance may be kept active in a servlet container for a period of only milliseconds, for the lifet
of the servlet container (which could be measured in days, months, or years), or any amount o
in between.

When the servlet container determines that a servlet should be removed from service (for exa
when a container wants to conserve memory resources, or when it itself is being shut down), it
allow the servlet to release any resources it is using and save any persistent state. To do this
servlet container calls thedestroy method of theServlet interface.

Before the servlet container can call thedestroy method, it must allow any threads that are
currently running in theservice method of the servlet to either complete, or exceed a server
defined time limit, before the container can proceed with calling thedestroy method.

Once thedestroy method is called on a servlet instance, the container may not route any m
requests to that particular instance of the servlet. If the container needs to enable the servlet a
must do so with a new instance of the servlet’s class.

After thedestroy method completes, the servlet container must release the servlet instance
that it is eligible for garbage collection
Java™ Servlet Specification Version 2.2 22

Servlet Context

is
g
ore
r

uld

.
tance

ines,

licitly

ade

such

xt is
 of
4 Servlet Context

TheServletContext defines a servlet’s view of the web application within which the servlet
running. TheServletContext also allows a servlet to access resources available to it. Usin
such an object, a servlet can log events, obtain URL references to resources, and set and st
attributes that other servlets in the context can use. The Container Provider is responsible fo
providing an implementation of theServletContext interface in the servlet container.

A ServletContext is rooted at a specific path within a web server. For example a context co
be located athttp://www.mycorp.com/catalog . All requests that start with the/
catalog request path, which is known as thecontext path, will be routed to this servlet context.

Only one instance of aServletContext may be available to the servlets in a web application
In cases where the web application indicates that it is distributable, there must only be one ins
of theServletContext object in use per application per Java Virtual Machine.

4.1 Scope of a ServletContext
There is one instance of theServletContext interface associated with each web application
deployed into a container. In cases where the container is distributed over many virtual mach
there is one instance per web application per VM.

Servlets that exist in a container that were not deployed as part of a web application are imp
part of a “default” web application and are contained by a defaultServletContext . In a
distributed container, the defaultServletContext is non-distributable and must only exist on
one VM.

4.2 Initialization Parameters
A set of context initialization parameters can be associated with a web application and are m
available by the following methods of theServletContext interface:

• getInitParameter
• getInitParameterNames

Initialization parameters can be used by an application developer to convey setup information,
as a webmaster’s e-mail address or the name of a system that holds critical data.

4.3 Context Attributes
A servlet can bind an object attribute into the context by name. Any object bound into a conte
available to any other servlet that is part of the same web application. The following methods
ServletContext interface allow access to this functionality:

• setAttribute
• getAttribute
• getAttributeNames
• removeAttribute
Java™ Servlet Specification Version 2.2 23

Servlet Context

s the
s to
laced
e

ent

sitory
chive
ic

on

on a
web
ervlet

vlet
w class
e
ing
hich

n the
he
4.3.1 Context Attributes in a Distributed Container

Context attributes exist locally to the VM in which they were created and placed. This prevent
ServletContext from being used as a distributed shared memory store. If information need
be shared between servlets running in a distributed environment, that information should be p
into a session (See section 7 titled “Sessions” on page 35), a database or set in an Enterpris
JavaBean.

4.4 Resources
TheServletContext interface allows direct access to the static document hierarchy of cont
documents, such as HTML, GIF, and JPEG files, that are part of the web application via the
following methods of theServletContext interface:

• getResource
• getResourceAsStream

Both thegetResource andgetResourceAsStream methods take aString argument
giving the path of the resource relative to the root of the context.

It is important to note that these methods give access to static resources from whatever repo
the server uses. This hierarchy of documents may exist in a file system, in a web application ar
file, on a remote server, or some other location. These methods are not used to obtain dynam

content. For example, in a container supporting the JavaServer Pages specification1, a method call
of the formgetResource("/index.jsp") would return the JSP source code and not the
processed output. See section 8 titled “Dispatching Requests” on page 39 for more informati
about accessing dynamic content.

4.5 Multiple Hosts and Servlet Contexts
Many web servers support the ability for multiple logical hosts to share the same IP address
server. This capability is sometimes referred to as "virtual hosting". If a servlet container’s host
server has this capability, each unique logical host must have its own servlet context or set of s
contexts. A servlet context can not be shared across virtual hosts.

4.6 Reloading Considerations
Many servlet containers support servlet reloading for ease of development. Reloading of ser
classes has been accomplished by previous generations of servlet containers by creating a ne
loader to load the servlet which is distinct from class loaders used to load other servlets or th
classes that they use in the servlet context. This can have the undesirable side effect of caus
object references within a servlet context to point at a different class or object than expected w
can cause unexpected behavior.

Therefore, when a Container Provider implements a class reloading scheme for ease of
development, they must ensure that all servlets, and classes that they may use, are loaded i
scope of a single class loader guaranteeing that the application will behave as expected by t
Developer.

1. The JavaServer Pages specification can be found athttp://java.sun.com/products/jsp
Java™ Servlet Specification Version 2.2 24

Servlet Context

t and
4.7 Temporary Working Directories
It is often useful for Application Developers to have a temporary working area on the local
filesystem. All servlet containers must provide a private temporary directory per servlet contex
make it available via the context attribute ofjavax.servlet.context.tempdir . The
object associated with the attribute must be of typejava.io.File .
Java™ Servlet Specification Version 2.2 25

Servlet Context
Java™ Servlet Specification Version 2.2 26

The Request

l, this
body

 When
g
f name-

 post

eam.

press
5 The Request

The request object encapsulates all information from the client request. In the HTTP protoco
information is transmitted from the client to the server by the HTTP headers and the message
of the request.

5.1 Parameters
Request parameters are strings sent by the client to a servlet container as part of a request.
the request is aHttpServletRequest , the attributes are populated from the URI query strin
and possibly posted form data. The parameters are stored by the servlet container as a set o
value pairs. Multiple parameter values can exist for any given parameter name. The following
methods of theServletRequest interface are available to access parameters:

• getParameter
• getParameterNames
• getParameterValues

ThegetParameterValues method returns an array ofString objects containing all the
parameter values associated with a parameter name. The value returned from thegetParameter
method must always equal the first value in the array ofString objects returned by
getParameterValues .

All form data from both the query string and the post body are aggregated into the request
parameter set. The order of this aggregation is that query string data takes precedence over
body parameter data. For example, if a request is made with a query string ofa=hello and a post
body ofa=goodbye&a=world , the resulting parameter set would be ordereda=(hello,
goodbye, world) .

Posted form data is only read from the input stream of the request and used to populate the
parameter set when all of the following conditions are met:

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST

3. The content type isapplication/x-www-form-urlencoded

4. The servlet calls any of thegetParameter family of methods on the request object.

If any of thegetParameter family of methods is not called, or not all of the above conditions
are met, the post data must remain available for the servlet to read via the request’s input str

5.2 Attributes
Attributes are objects associated with a request. Attributes may be set by the container to ex
information that otherwise could not be expressed via the API, or may be set by a servlet to
communicate information to another servlet (viaRequestDispatcher). Attributes are accessed
with the following methods of theServletRequest interface:

• getAttribute
• getAttributeNames
• setAttribute
Java™ Servlet Specification Version 2.2 27

The Request

e

r.

a

ctions.
bject:

ace,

is

th.

:

d the
Only one attribute value may be associated with an attribute name.

Attribute names beginning with the prefixes of “java.” and “javax. ” are reserved for
definition by this specification. Similarly attribute names beginning with the prefixes of “sun.” ,
and “com.sun. ” are reserved for definition by Sun Microsystems. It is suggested that all
attributes placed into the attribute set be named in accordance with the reverse package nam

convention suggested by the Java Programming Language Specification1 for package naming.

5.3 Headers
A servlet can access the headers of an HTTP request through the following methods of the
HttpServletRequest interface:

• getHeader
• getHeaders
• getHeaderNames

ThegetHeader method allows access to the value of a header given the name of the heade
Multiple headers, such as theCache-Control header, can be present in an HTTP request. If
there are multiple headers with the same name in a request, thegetHeader method returns the
first header contained in the request. ThegetHeaders method allow access to all the header
values associated with a particular header name returning anEnumeration of String objects.

Headers may contain data that is better expressed as anint or aDate object. The following
convenience methods of theHttpServletRequest interface provide access to header data in
one of these formats:

• getIntHeader
• getDateHeader

If the getIntHeader method cannot translate the header value to anint , a
NumberFormatException is thrown. If thegetDateHeader method cannot translate the
header to aDate object, anIllegalArgumentException is thrown.

5.4 Request Path Elements
The request path that leads to a servlet servicing a request is composed of many important se
The following elements are obtained from the request URI path and exposed via the request o

• Context Path: The path prefix associated with theServletContext that this servlet is a part
of. If this context is the “default” context rooted at the base of the web server’s URL namesp
this path will be an empty string. Otherwise, this path starts with a’/’ character but does not
end with a’/’ character.

• Servlet Path: The path section that directly corresponds to the mapping which activated th
request. This path starts with a’/’ character.

• PathInfo: The part of the request path that is not part of the Context Path or the Servlet Pa

The following methods exist in theHttpServletRequest interface to access this information

• getContextPath
• getServletPath
• getPathInfo

It is important to note that, except for URL encoding differences between the request URI an
path parts, the following equation is always true:

1. The Java Programming Language Specification is available at http://java.sun.com/docs/books/jls
Java™ Servlet Specification Version 2.2 28

The Request

, such
ible

rver on
s part
requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following:

The following behavior is observed:

5.5 Path Translation Methods
There are two convenience methods in theHttpServletRequest interface which allow the
Developer to obtain the file system path equivalent to a particular path. These methods are:

• getRealPath
• getPathTranslated

ThegetRealPath method takes aString argument and returns aString representation of a
file on the local file system to which that path corresponds. ThegetPathTranslated method
computes the real path of thepathInfo of this request.

In situations where the servlet container cannot determine a valid file path for these methods
as when the web application is executed from an archive, on a remote file system not access
locally, or in a database, these methods must return null.

5.6 Cookies
TheHttpServletRequest interface provides thegetCookies method to obtain an array of
cookies that are present in the request. These cookies are data sent from the client to the se
every request that the client makes. Typically, the only information that the client sends back a

Table 1: Example Context Set Up

ContextPath /catalog

Servlet Mapping Pattern: /lawn
Servlet: LawnServlet

Servlet Mapping Pattern: /garden
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null
Java™ Servlet Specification Version 2.2 29

The Request

when

ust be

e

ors

e be

e

ee

nt.
of a cookie is the cookie name and the cookie value. Other cookie attributes that can be set
the cookie is sent to the browser, such as comments, are not typically returned.

5.7 SSL Attributes
If a request has been transmitted over a secure protocol, such as HTTPS, this information m
exposed via theisSecure method of theServletRequest interface.

In servlet containers that are running in a Java 2 Standard Edition, v 1.2 or Java 2 Enterprise
Edition, v 1.2 environment, if there is an SSL certificate associated with the request, it must b
exposed to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via aServletRequest
attribute ofjavax.servlet.request.X509Certificate .

For a servlet container that is not running in a Java2 Standard Edition 1.2 environment, vend
may provide vendor specific request attributes to access SSL certificate information.

5.8 Internationalization
Clients may optionally indicate to a web server what language they would prefer the respons
given in. This information can be communicated from the client using theAccept-Language
header along with other mechanisms described in the HTTP/1.1 specification. The following
methods are provided in theServletRequest interface to determine the preferred locale of th
sender:

• getLocale
• getLocales

ThegetLocale method will return the preferred locale that the client will accept content in. S
section 14.4 of RFC 2616 (HTTP/1.1) for more information about how theAccept-Language
header must interpreted to determine the preferred language of the client.

ThegetLocales method will return anEnumeration of Locale objects indicating, in
decreasing order starting with the preferred locale, the locales that are acceptable to the clie

If no preferred locale is specified by the client, the locale returned by thegetLocale method
must be the default locale for the servlet container and thegetLocales method must contain an
enumeration of a single Locale element of the default locale.
Java™ Servlet Specification Version 2.2 30

The Response

In the
ers

ng

uested
iner to
ethod

 the

e reset

er to
6 The Response

The response object encapsulates all information to be returned from the server to the client.
HTTP protocol, this information is transmitted from the server to the client either by HTTP head
or the message body of the request.

6.1 Buffering
In order to improve efficiency, a servlet container is allowed, but not required to by default, to
buffer output going to the client. The following methods are provided via the
ServletResponse interface to allow a servlet access to, and the setting of, buffering
information:

• getBufferSize
• setBufferSize
• isCommitted
• reset
• flushBuffer

These methods are provided on theServletResponse interface to allow buffering operations to
be performed whether the servlet is using aServletOutputStream or aWriter .

ThegetBufferSize method returns the size of the underlying buffer being used. If no bufferi
is being used for this response, this method must return theint value of0 (zero) .

The servlet can request a preferred buffer size for the response by using thesetBufferSize
method. The actual buffer assigned to this request is not required to be the same size as req
by the servlet, but must be at least as large as the buffer size requested. This allows the conta
reuse a set of fixed size buffers, providing a larger buffer than requested if appropriate. This m
must be called before any content is written using aServletOutputStream or Writer . If any
content has been written, this method must throw anIllegalStateException .

The isCommitted method returns a boolean value indicating whether or not any bytes from
response have yet been returned to the client. TheflushBuffer method forces any content in
the buffer to be written to the client.

Thereset method clears any data that exists in the buffer as long as the response is not
considered to be committed. All headers and the status code set by the servlet previous to th
called must be cleared as well.

If the response is committed and thereset method is called, anIllegalStateException
must be thrown. In this case, the response and its associated buffer will be unchanged.

When buffering is in use is filled, the container must immediatly flush the contents of the buff
the client. If this is the first time for this request that data is sent to the client, the response is
considered to be committed at this point.

6.2 Headers
A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

• setHeader
Java™ Servlet Specification Version 2.2 31

The Response

ts, it
me, all

re are

onse is

e

ack
lid

lient.

n
fter
data is

is not
y these

due to
client.

t with
• addHeader

ThesetHeader method sets a header with a given name and value. If a previous header exis
is replaced by the new header. In the case where a set of header values exist for the given na
values are cleared and replaced with the new value.

TheaddHeader method adds a header value to the set of headers with a given name. If the
no headers already associated with the given name, this method will create a new set.

Headers may contain data that is better expressed as anint or aDate object. The following
convenience methods of theHttpServletResponse interface allow a servlet to set a header
using the correct formatting for the appropriate data type:

• setIntHeader
• setDateHeader
• addIntHeader
• addDateHeader

In order to be successfully transmitted back to the client, headers must be set before the resp
committed. Any headers set after the response is committed will be ignored by the servlet
container.

6.3 Convenience Methods
The following convenience methods exist in theHttpServletResponse interface:

• sendRedirect
• sendError

ThesendRedirect method will set the appropriate headers and content body to redirect th
client to a different URL. It is legal to call this method with a relative URL path, however the
underlying container must translate the relative path to a fully qualified URL for transmission b
to the client. If a partial URL is given and, for whatever reason, cannot be converted into a va
URL, then this method must throw anIllegalArgumentException .

ThesendError method will set the appropriate headers and content body to return to the c
An optionalString argument can be provided to thesendError method which can be used in
the content body of the error.

These methods will have the side effect of committing the response, if it had not already bee
committed, and terminating it. No further output to the client should be made by the servlet a
these methods are called. If data is written to the response after these methods are called, the
ignored.

If data has been written to the response buffer, but not returned to the client (i.e. the response
committed), the data in the response buffer must be cleared and replaced with the data set b
methods. If the response is committed, these methods must throw an
IllegalStateException .

6.4 Internationalization
In response to a request by a client to obtain a document of a particular language, or perhaps
preference setting by a client, a servlet can set the language attributes of a response back to a
This information is communicated via theContent-Language header along with other
mechanisms described in the HTTP/1.1 specification. The language of a response can be se
thesetLocale method of theServletResponse interface. This method must correctly set
the appropriate HTTP headers to accurately communicate the Locale to the client.
Java™ Servlet Specification Version 2.2 32

The Response

quest

diately
For maximum benefit, thesetLocale method should be called by the Developer before the
getWriter method of theServletResponse interface is called. This will ensure that the
returnedPrintWriter is configured appropriately for the targetLocale .

If the setContentType method is called after thesetLocale method and there is a
charset component to the given content type, thecharset specified in the content type
overrides the value set via the call tosetLocale .

6.5 Closure of Response Object
A number of events can indicate that the servlet has provided all of the content to satisfy the re
and that the response object can be considered to be closed. The events are:

• The termination of the service method of the servlet.
• When the amount of content specified in thesetContentLength method of the response has

been written to the response.
• ThesendError method is called.
• ThesendRedirect method is called.

When a response is closed, all content in the response buffer, if any remains, must be imme
flushed to the client.
Java™ Servlet Specification Version 2.2 33

The Response
Java™ Servlet Specification Version 2.2 34

Sessions

eb

 all are

e
nces

t will
URL
next

of the

. The

a
d as
e

a client
rned
annot
7 Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build effective w
applications, it is imperative that a series of different requests from a particular client can be
associated with each other. Many strategies for session tracking have evolved over time, but
difficult or troublesome for the programmer to use directly.

This specification defines a simpleHttpSession interface that allows a servlet container to us
any number of approaches to track a user’s session without involving the Developer in the nua
of any one approach.

7.1 Session Tracking Mechanisms

7.1.1 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. In cases where a clien
not accept a cookie, URL rewriting may be used by the server to establish session tracking.
rewriting involves adding data to the URL path that can be interpreted by the container on the
request to associate the request with a session.

The session id must be encoded as a path parameter in the resulting URL string. The name
parameter must bejsessionid . Here is an example of a URL containing encoded path
information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

7.1.2 Cookies

Session tracking through HTTP cookies is the most used session tracking mechanism and is
required to be supported by all servlet containers. The container sends a cookie to the client
client will then return the cookie on each subsequent request to the server unambiguously
associating the request with a session. The name of the session tracking cookie must be
JSESSIONID.

7.1.3 SSL Sessions

Secure Sockets Layer, the encryption technology which is used in the HTTPS protocol, has
mechanism built into it allowing multiple requests from a client to be unambiguously identifie
being part of an accepted session. A servlet container can easily use this data to serve as th
mechanism for defining a session.

7.2 Creating a Session
Because HTTP is a request-response based protocol, a session is considered to be new until
“joins” it. A client joins a session when session tracking information has been successfully retu
to the server indicating that a session has been established. Until the client joins a session, it c
be assumed that the next request from the client will be recognized as part of the session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session
Java™ Servlet Specification Version 2.2 35

Sessions

anism

t, can

ing
xts, but
tween

. This

at

his
 is a

ed via

eriod

et
• The client chooses not to join a session. This implies that the servlet container has no mech
by which to associate a request with a previous request.

A Servlet Developer must design their application to handle a situation where a client has no
not, or will not join a session.

7.3 Session Scope
HttpSession objects must be scoped at the application / servlet context level. The underly
mechanism, such as the cookie used to establish the session, can be shared between conte
the object exposed, and more importantly the attributes in that object, must not be shared be
contexts.

7.4 Binding Attributes into a Session
A servlet can bind an object attribute into anHttpSession implementation by name. Any object
bound into a session is available to any other servlet that belongs to the sameServletContext
and that handles a request identified as being a part of the same session.

Some objects may require notification when they are placed into, or removed from, a session
information can be obtained by having the object implement the
HttpSessionBindingListener interface. This interface defines the following methods th
will signal an object being bound into, or being unbound from, a session.

• valueBound
• valueUnbound

ThevalueBound method must be called before the object is made available via the
getAttribute method of theHttpSession interface. ThevalueUnbound method must be
called after the object is no longer available via thegetAttribute method of the
HttpSession interface.

7.5 Session Timeouts
In the HTTP protocol, there is no explicit termination signal when a client is no longer active. T
means that the only mechanism that can be used to indicate when a client is no longer active
timeout period.

The default timeout period for sessions is defined by the servlet container and can be obtain
thegetMaxInactiveInterval method of theHttpSession interface. This timeout can be
changed by the Developer using thesetMaxInactiveInterval of theHttpSession
interface. The timeout periods used by these methods is defined in seconds. If the timeout p
for a session is set to-1 , the session will never expire.

7.6 Last Accessed Times
ThegetLastAccessedTime method of theHttpSession interface allows a servlet to
determine the last time the session was accessed before the current request. The session is
considered to be accessed when a request that is part of the session is handled by the servl
context.
Java™ Servlet Specification Version 2.2 36

Sessions

t at the
in the

only
e

cy
ovider
ny

cess
of a

bility,
e

7.7 Important Session Semantics

7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to a single session objec
same time. The Developer has the responsibility to synchronize access to resources stored
session as appropriate.

7.7.2 Distributed Environments

Within an application that is marked as distributable, all requests that are part of a session can
be handled on a single VM at any one time. In addition all objects placed into instances of th
HttpSession class using thesetAttribute or putValue methods must implement the
Serializable interface. The servlet container may throw an
IllegalArgumentException if a non serializable object is placed into the session.

These restrictions mean that the Developer is ensured that there are no additional concurren
issues beyond those encountered in a non-distributed container. In addition, the Container Pr
can ensure scalability by having the ability to move a session object, and its contents, from a
active node of the distributed system to a different node of the system.

7.7.3 Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the web browser pro
and are not associated with any particular window of a the browser, requests from all windows
client application to a servlet container might be part of the same session. For maximum porta
the Developer should always assume that all windows of a client are participating in the sam
session.
Java™ Servlet Specification Version 2.2 37

Sessions
Java™ Servlet Specification Version 2.2 38

Dispatching Requests

her

ath,

t

d

not

ent to
 given

 access
create
8 Dispatching Requests

When building a web application, it is often useful to forward processing of a request to anot
servlet, or to include the output of another servlet in the response. TheRequestDispatcher
interface provides a mechanism to accomplish this.

8.1 Obtaining a RequestDispatcher
An object implementing theRequestDispather interface may be obtained from the
ServletContext via the following methods:

• getRequestDispatcher
• getNamedDispatcher

ThegetRequestDispatcher method takes aString argument describing a path within the
scope of theServletContext . This path must be relative to the root of the
ServletContext . This path is used to look up a servlet, wrap it with a
RequestDispatcher object, and return it. If no servlet can be resolved based on the given p
aRequestDispatcher is provided that simply returns the content for that path.

ThegetNamedDispatcher method takes aString argument indicating the name of a servle
known to theServletContext . If a servlet is known to theServletContext by the given
name, it is wrapped with aRequestDispatcher object and returned. If no servlet is associate
with the given name, the method must returnnull .

To allowRequestDispatcher objects to be obtained using relative paths, paths which are
relative to the root of theServletContext but instead are relative to the path of the current
request, the following method is provided in theServletRequest interface:

• getRequestDispatcher

The behavior of this method is similar to the method of the same name in theServletContext ,
however it does not require a complete path within the context to be given as part of the argum
operate. The servlet container can use the information in the request object to transform the
relative path to a complete path. For example, in a context rooted at’/’ , a request to
/garden/tools.html , a request dispatcher obtained via
ServletRequest.getRequestDispatcher("header.html") will behave exactly like
a call to ServletContext.getRequestDispatcher("/garden/header.html") .

8.1.1 Query Strings in Request Dispatcher Paths

In theServletContext andServletRequest methods which allow the creation of a
RequestDispatcher using path information, optional query string information may be
attached to the path. For example, a Developer may obtain aRequestDispatcher by using the
following code:

String path = “/raisons.jsp?orderno=5”;
RequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(request, response);

The contents of the query string are added to the parameter set that the included servlet has
to. The parameters are ordered so that any parameters specified in the query string used to
Java™ Servlet Specification Version 2.2 39

Dispatching Requests

read of

o the
a

or
ored.

o
est

t has

sed to

t

theRequestDispatcher take precedence. The parameters associated with a
RequestDispatcher are only scoped for the duration of theinclude or forward call.

8.2 Using a Request Dispatcher
To use a request dispatcher, a developer needs to call either theinclude or forward method of
theRequestDispatcher interface using therequest andresponse arguments that were
passed in via theservice method of theServlet interface.

The Container Provider must ensure that the dispatch to a target servlet occurs in the same th
the same VM as the original request.

8.3 Include
The include method of theRequestDispatcher interface may be called at any time. The
target servlet has access to all aspects of the request object, but can only write information t
ServletOutputStream or Writer of the response object as well as the ability to commit
response by either writing content past the end of the response buffer or explicitly calling the
flush method of theServletResponse interface. The included servlet cannot set headers
call any method that affects the headers of the response. Any attempt to do so should be ign

8.3.1 Included Request Parameters

When a servlet is being used from within aninclude , it is sometimes necessary for that servlet t
know the path by which it was invoked and not the original request paths. The following requ
attributes are set:

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet via thegetAttribute method on the
request object.

If the included servlet was obtained by using aNamedDispatcher , these attributes are not set.

8.4 Forward
Theforward method of theRequestDispatcher interface may only be called by the calling
servlet if no output has been committed to the client. If output exists in the response buffer tha
not been committed, it must be reset (clearing the buffer) before the target servlet’sservice
method is called. If the response has been committed, anIllegalStateException must be
thrown.

The path elements of the request object exposed to the target servlet must reflect the path u
obtain theRequestDispatcher . The only exception to this is if theRequestDispatcher
was obtained via thegetNamedDispatcher method. In this case, the path elements of the
request object reflect those of the original request.

Before theforward method of theRequestDispatcher interface returns, the response mus
be committed and closed by the servlet container.
Java™ Servlet Specification Version 2.2 40

Dispatching Requests

t

8.5 Error Handling
Only runtime exceptions and checked exceptions of typeServletException or
IOException should be propagated to the calling servlet if thrown by the target of a reques
dispatcher. All other exceptions should be wrapped as aServletException and the root cause
of the exception set to the original exception.
Java™ Servlet Specification Version 2.2 41

Dispatching Requests
Java™ Servlet Specification Version 2.2 42

Web Applications

n be
 a

r

is
nt

 called

 and a

chive
rvlet

es as
tion
9 Web Applications

A web application is a collection of servlets, html pages, classes, and other resources that ca
bundled and run on multiple containers from multiple vendors. A web application is rooted at
specific path within a web server. For example, a catalog application could be located athttp://
www.mycorp.com/catalog . All requests that start with this prefix will be routed to the
ServletContext which represents the catalog application.

A servlet container can also establish rules for automatic generation of web applications. Fo
example a~user/ mapping could be used to map to a web application based at /home/user/
public_html/ .

By default an instance of a web application must only be run on one VM at any one time. Th
behavior can be overridden if the application is marked as “distributable” via its the deployme
descriptor. When an application is marked as distributable, the Developer must obey a more
restrictive set of rules than is expected of a normal web application. These specific rules are
out throughout this specification.

9.1 Relationship to ServletContext
The servlet container must enforce a one to one correspondence between a web application
ServletContext . A ServletContext object can be viewed as a Servlet’s view onto its
application.

9.2 Elements of a Web Application
A web application may consist of the following items:

• Servlets

• JavaServer Pages1

• Utility Classes
• Static documents (html, images, sounds, etc.)
• Client side applets, beans, and classes
• Descriptive meta information which ties all of the above elements together.

9.3 Distinction Between Representations
This specification defines a hierarchical structure which can exist in an open file system, an ar
file, or some other form for deployment purposes. It is recommended, but not required, that se
containers support this structure as a runtime representation.

9.4 Directory Structure
A web application exists as a structured hierarchy of directories. The root of this hierarchy serv
a document root for serving files that are part of this context. For example, for a web applica
located at/catalog in a web server, theindex.html file located at the base of the web
application hierarchy can be served to satisfy a request to/catalog/index.html .

1. See the JavaServer Pages specification available from http://java.sun.com/products/jsp.
Java™ Servlet Specification Version 2.2 43

Web Applications

It is
n.

ry

her

 Web
an

ust

itled
A special directory exists within the application hierarchy named “WEB-INF”. This directory
contains all things related to the application that aren’t in the document root of the application.
important to note that theWEB-INF node is not part of the public document tree of the applicatio
No file contained in theWEB-INF directory may be served directly to a client.

The contents of theWEB-INF directory are:

• /WEB-INF/web.xml deployment descriptor
• /WEB-INF/classes/* directory for servlet and utility classes. The classes in this directo

are used by the application class loader to load classes from.
• /WEB-INF/lib/*.jar area for Java ARchive files which contain servlets, beans, and ot

utility classes useful to the web application. All such archive files are used by the web
application class loader to load classes from.

9.4.1 Sample Web Application Directory Structure

Illustrated here is a listing of all the files in a sample web application:

/index.html
/howto.jsp
/feedback.jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xml
/WEB-INF/lib/jspbean.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class

9.5 Web Application Archive File
Web applications can be packaged and signed, using the standard Java Archive tools, into a
ARchive format (war) file. For example, an application for issue tracking could be distributed in
archive with the filenameissuetrack.war .

When packaged into such a form, a META-INF directory will be present which contains
information useful to the Java Archive tools. If this directory is present, the servlet container m
not allow it be served as content to a web client’s request.

9.6 Web Application Configuration Descriptor
The following types of configuration and deployment information exist in the web application
deployment descriptor:

• ServletContext Init Parameters
• Session Configuration
• Servlet / JSP Definitions
• Servlet / JSP Mappings
• Mime Type Mappings
• Welcome File list
• Error Pages
• Security

All of these types of information are conveyed in the deployment descriptor (See section 13 t
“Deployment Descriptor” on page 63).
Java™ Servlet Specification Version 2.2 44

Web Applications

be
r.
ession

 used.
nt

de,

ns to
ernal

cation

e to
e of

aces

cribed

nt the
9.7 Replacing a Web Application
Applications evolve and must occasionally be replaced. In a long running server it is ideal to
able to load a new web application and shut down the old one without restarting the containe
When an application is replaced, a container should provide a robust approach to preserving s
data within that application.

9.8 Error Handling
A web application may specify that when errors occur, other resources in the application are
These resources are specified in the deployment descriptor (See section 13 titled “Deployme
Descriptor” on page 63). If the location of the error handler is a servlet or a JSP, the following
request attributes can be set:

• javax.servlet.error.status_code
• javax.servlet.error.exception_type
• javax.servlet.error.message

These attributes allow the servlet to generate specialized content depending on the status co
exception type and message of the error.

9.9 Web Application Environment
Java 2 Platform Enterprise Edition, v 1.2 defines a naming environment that allows applicatio
easily access resources and external information without the explicit knowledge of how the ext
information is named or organized.

As servlets are an integral component type of J2EE, provision has been made in the web appli
deployment descriptor for specifying information allowing a servlet to obtain references to
resources and enterprise beans. The deployment elements that contain this information are:

• env-entry
• ejb-ref
• resource-ref

Theenv-entry element contains information to set up basic environment entry names relativ
the java:comp/env context, the expected Java type of the environment entry value (the typ
object returned from the JNDI lookup method), and an optional environment entry value. The
ejb-ref element contains the information needed to allow a servlet to locate the home interf
of a enterprise bean. Theresource-ref element contains the information needed to set up a
resource factory.

The requirements of the J2EE environment with regards to setting up the environment are des

in Chapter 5 of the Java 2 Platform Enterprise Edition v 1.2 specification1. Servlet containers that
are not part of a J2EE compliant implementation are encouraged, but not required, to impleme
application environment functionality described in the J2EE specification.

1. The J2EE specification is available athttp://java.sun.com/j2ee
Java™ Servlet Specification Version 2.2 45

Web Applications
Java™ Servlet Specification Version 2.2 46

Mapping Requests to Servlets

ty in
s
h are
 that
ighly
just as

RL
ted):

ess

s the

erve
lica-

s:

ake
10 Mapping Requests to Servlets

Previous versions of this specification have allowed servlet containers a great deal of flexibili
mapping client requests to servlets only defining a set a suggested mapping techniques. Thi
specification now requires a set of mapping techniques to be used for web applications whic
deployed via the Web Application Deployment mechanism. Just as it is highly recommended
servlet containers use the deployment representations as their runtime representation, it is h
recommended that they use these path mapping rules in their servers for all purposes and not
part of deploying a web application.

10.1 Use of URL Paths
Servlet containers must use URL paths to map requests to servlets. The container uses the
RequestURI from the request, minus the Context Path, as the path to map to a servlet. The U
path mapping rules are as follows (where the first match wins and no further rules are attemp

1. The servlet container will try to match the exact path of the request to a servlet.

2. The container will then try to recursively match the longest path prefix mapping. This proc
occurs by stepping down the path tree a directory at a time, using the’/’ character as a path
separator, and determining if there is a match with a servlet.

3. If the last node of the url-path contains an extension (.jsp for example), the servlet container
will try to match a servlet that handles requests for the extension. An extension is defined a
part of the path after the last’.’ character.

4. If neither of the previous two rules result in a servlet match, the container will attempt to s
content appropriate for the resource requested. If a "default" servlet is defined for the app
tion, it will be used in this case.

10.2 Specification of Mappings
In the web application deployment descriptor, the following syntax is used to define mapping

• A string beginning with a‘/’ character and ending with a‘/*’ postfix is used as a path
mapping.

• A string beginning with a‘*.’ prefix is used as an extension mapping.
• All other strings are used as exact matches only
• A string containing only the’/’ character indicates that servlet specified by the mapping

becomes the "default" servlet of the application.

10.2.1 Implicit Mappings

If the container has an internal JSP container, the*.jsp extension is implicitly mapped to it so
that JSP pages may be executed on demand. If the web application defines a*.jsp mapping, its
mapping takes precedence over this implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings t
precedence. For example, an implicit mapping of*.shtml could be mapped by a container to a
server side include functionality.
Java™ Servlet Specification Version 2.2 47

Mapping Requests to Servlets

’*’
10.2.2 Example Mapping Set

Consider the following set of mappings:

The following behavior would result:

Note that in the case of/catalog/index.html and/catalog/racecar.bop , the servlet
mapped to “/catalog ” is not used as it is not an exact match and the rule doesn’t include the
character.

Table 3: Example Set of Maps

path pattern servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

Table 4: Incoming Paths applied to Example Maps

incoming path servlet handling request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop servlet4

/index.bop servlet4
Java™ Servlet Specification Version 2.2 48

Security

e

ver, it
tation.

eet
ll of

t

d

by

y

ding
he

s the
er to

is not
 the
11 Security

Web applications are created by a Developer, who then gives, sells, or otherwise transfers th
application to the Deployer for installation into a runtime environment. It is useful for the
Developer to communicate attributes about how the security should be set up for a deployed
application.

As with the web application directory layout and deployment descriptor, the elements of this
section are only required as a deployment representation, not a runtime representation. Howe
is recommended that containers implement these elements as part of their runtime represen

11.1 Introduction
A web application contains many resources that can be accessed by many users. Sensitive
information often traverses unprotected open networks, such as the Internet. In such an
environment, there is a substantial number web applications that have some level of security
requirements. Most servlet containers have the specific mechanisms and infrastructure to m
these requirements. Although the quality assurances and implementation details may vary, a
these mechanisms share some of the following characteristics:

• Authentication: The mechanism by which communicating entities prove to one another tha
they are acting on behalf of specific identities.

• Access control for resources:The mechanism by which interactions with resources are limite
to collections of users or programs for the purpose of enforcing availability, integrity, or
confidentiality.

• Data Integrity: The mechanism used to prove that information could not have been modified
a third party while in transit.

• Confidentiality or Data Privacy: The mechanism used to ensure that the information is onl
made available to users who are authorized to access it and is not compromised during
transmission.

11.2 Declarative Security
Declarative security refers to the means of expressing an application’s security structure, inclu
roles, access control, and authentication requirements in a form external to the application. T
deployment descriptor is the primary vehicle for declarative security in web applications.

The Deployer maps the application’s logical security requirements to a representation of the
security policy that is specific to the runtime environment. At runtime, the servlet container use
security policy that was derived from the deployment descriptor and configured by the deploy
enforce authentication.

11.3 Programmatic Security
Programmatic security is used by security aware applications when declarative security alone
sufficient to express the security model of the application. Programmatic security consists of
following methods of theHttpServletRequest interface:

• getRemoteUser
• isUserInRole
Java™ Servlet Specification Version 2.2 49

Security

emote

rity

 with

t. The
the
urity

n, the
l is

 the

:

tion.
 to

f the
in
nd the
ates the

tted
al

cerns.
• getUserPrincipal

ThegetRemoteUser method returns the user name that the client authenticated with. The
isUserInRole queries the underlying security mechanism of the container to determine if a
particular user is in a given security role. ThegetUserPrinciple method returns a
java.security.Pricipal object.

These APIs allow servlets to make business logic decisions based on the logical role of the r
user. They also allow the servlet to determine the principal name of the current user.

If getRemoteUser returnsnull (which means that no user has been authenticated), the
isUserInRole method will always returnfalse and thegetUserPrincipal will always
returnnull .

11.4 Roles
A role is an abstract logical grouping of users that is defined by the Application Developer or
Assembler. When the application is deployed, these roles are mapped by a Deployer to secu
identities, such as principals or groups, in the runtime environment.

A servlet container enforces declarative or programmatic security for the principal associated
an incoming request based on the security attributes of that calling principal. For example,

1. When a deployer has mapped a security role to a user group in the operational environmen
user group to which the calling principal belongs is retrieved from its security attributes. If
principal’s user group matches the user group in the operational environment that the sec
role has been mapped to, the principal is in the security role.

2. When a deployer has mapped a security role to a principal name in a security policy domai
principal name of the calling principal is retrieved from its security attributes. If the principa
the same as the principal to which the security role was mapped, the calling principal is in
security role.

11.5 Authentication
A web client can authenticate a user to a web server using one of the following mechanisms

• HTTP Basic Authentication
• HTTP Digest Authentication
• HTTPS Client Authentication
• Form Based Authentication

11.5.1 HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism defined in the HTTP/1.1 specifica
This mechanism is based on a username and password. A web server requests a web client
authenticate the user. As part of the request, the web server passes the string called therealmof the
request in which the user is to be authenticated. It is important to note that the realm string o
Basic Authentication mechanism does not have to reflect any particular security policy doma
(which confusingly, can also be referred to as a realm). The web client obtains the username a
password from the user an transmits them to the web server. The web server then authentic
user in the specified realm.

Basic Authentication is not a secure authentication protocol as the user password is transmi
with a simple base64 encoding and the target server is not authenticated. However, addition
protection, such as applying a secure transport mechanism (HTTPS) or using security at the
network level (such as the IPSEC protocol or VPN strategies) can alleviate some of these con
Java™ Servlet Specification Version 2.2 50

Security

 a
ord in
sic
 as
vlet

o be
and

has been
ted web
ccur:

ath

age is

origi-

 the

s
ction,
vel

ongly
okies

s be

e

11.5.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user based on
username and a password. However the authentication is performed by transmitting the passw
an encrypted form which is much more secure than the simple base64 encoding used by Ba
Authentication. This authentication method is not as secure as any private key scheme such
HTTPS Client Authentication. As Digest Authentication is not currently in widespread use, ser
containers are not required, but are encouraged, to support it.

11.5.3 Form Based Authentication

The look and feel of the “login screen” cannot be controlled with an HTTP browser’s built in
authentication mechanisms. Therefore this specification defines a form based authentication
mechanism which allows a Developer to control the look and feel of the login screens.

The web application deployment descriptor contains entries for a login form and error page t
used with this mechanism. The login form must contain fields for the user to specify username
password. These fields must be named’j_username’ and’j_password’ , respectively.

When a user attempts to access a protected web resource, the container checks if the user
authenticated. If so, and dependent on the user’s authority to access the resource, the reques
resource is activated and returned. If the user is not authenticated, all of the following steps o

1. The login form associated with the security constraint is returned to the client. The URL p
which triggered the authentication is stored by the container.

2. The client fills out the form, including the username and password fields.

3. The form is posted back to the server.

4. The container processes the form to authenticate the user. If authentication fails, the error p
returned.

5. The authenticated principal is checked to see if it is in an authorized role for accessing the
nal web request.

6. The client is redirected to the original resource using the original stored URL path.

If the user is not successfully authenticated, the error page is returned to the client. It is
recommended that the error page contains information that allows the user to determine that
authorization failed.

Like Basic Authentication, this is not a secure authentication protocol as the user password i
transmitted as plain text and the target server is not authenticated. However, additional prote
such as applying a secure transport mechanism (HTTPS) or using security at the network le
(IPSEC or VPN) can alleviate some of these concerns.

11.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement. It is str
recommended that form based login only be used when the session is being maintained by co
or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login form must alway
“ j_security_check ”. This restriction is made so that the login form will always work no
matter what the resource is that requests it and avoids requiring that the server to process th
outbound form to correct the action field.

Here is an HTML sample showing how the form should be coded into the HTML page:
Java™ Servlet Specification Version 2.2 51

Security

. This
useful
se.
ol.

n a
to:

ons

level

 same

nt. A

ttern

ces
enied

rocess
it) or

for
<form method=”POST” action=”j_security_check”>
<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>
</form>

11.5.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication mechanism
mechanism requires the user to possess a Public Key Certificate (PKC). Currently, PKCs are
in e-commerce applications and also for single-signon from within the browser in an enterpri
Servlet containers that are not J2EE compliant are not required to support the HTTPS protoc

11.6 Server Tracking of Authentication Information
As the underlying security identities (such as users and groups) to which roles are mapped i
runtime environment are environment specific rather than application specific, it is desirable

1. Make login mechanisms and policies a property of the environment the web application is
deployed in.

2. Be able to use the same authentication information to represent a principal to all applicati
that are deployed in the same container.

3. Require the user to re-authenticate only when crossing a security policy domain.

Therefore, a servlet container is required to track authentication information at the container
and not at the web application level allowing a user who is authenticated against one web
application to access any other resource managed by the container which is restricted to the
security identity.

11.7 Specifying Security Constraints
Security constraints are a declarative way of annotating the intended protection of web conte
constraint consists of the following elements:

• web resource collection
• authorization constraint
• user data constraint

A web resource collection is a set of URL patterns and HTTP methods that describe a set of
resources to be protected. All requests that contain a request path that matches the URL pa
described in the web resource collection is subject to the constraint.

An authorization constraint is a set of roles that users must be a part of to access the resour
described by the web resource collection. If the user is not part of a allowed role, the user is d
access to that resource.

A user data constraint indicates that the transport layer of the client server communication p
satisfy the requirement of either guaranteeing content integrity (preventing tampering in trans
guaranteeing confidentiality (preventing reading while in transit).

11.7.1 Default Policies

By default, authentication is not needed to access resources. Authentication is only needed
requests in a specific web resource collection when specified by the deployment descriptor.
Java™ Servlet Specification Version 2.2 52

Application Programming Interface

tailed
e, v2.2.
12 Application Programming Interface

This is a listing of the interfaces, classes, and exceptions that compose the Servlet API. For de
descriptions of these members and their methods, please see the Java Servlet API Referenc

Items in bold face are new in this version of the specification.

12.1 Package javax.servlet

12.1.1 RequestDispatcher
public interface RequestDispatcher

public void forward(ServletRequest req, ServletResponse res);
public void include(ServletRequest req, ServletResponse res);

12.1.2 Servlet
public interface Servlet

public void init(ServletConfig config) throws ServletException;
public ServletConfig getServletConfig();
public void service(ServletRequest req, ServletResponse res)
 throws IOException, ServletException;
public String getServletInfo();

Table 5: Servlet API Package Summary

Package javax.servlet Package javax.serlvet.http

RequestDispatcher HttpServletRequest

Servlet HttpServletResponse

ServletConfig HttpSession

ServletContext HttpSessionBindingListener

ServletRequest HttpSessionContext

ServletResponse Cookie

SingleThreadModel HttpServlet

GenericServlet HttpSessionBindingEvent

ServletInputStream HttpUtils

ServletOutputStream

ServletException

UnavailableException
Java™ Servlet Specification Version 2.2 53

Application Programming Interface
public void destroy();

12.1.3 ServletConfig
public interface ServletConfig

public ServletContext getServletContext();
public String getInitParameter(String name);
public Enumeration getInitParameterNames();
public String getServletName();

12.1.4 ServletContext
public interface ServletContext

public String getMimeType(String filename);
public URL getResource(String path) throws MalformedURLException;
public InputStream getResourceAsStream(String path);
public RequestDispatcher getRequestDispatcher(String path);
public RequestDispatcher getNamedDispatcher(String name);
public String getRealPath(String path);
public ServletContext getContext(String uripath);
public String getServerInfo();
public String getInitParameter(String name);
public Enumeration getInitParameterNames();
public Object getAttribute(String name);
public Enumeration getAttributeNames();
public void setAttribute(String name, Object attribute);
public void removeAttribute(String name);
public int getMajorVersion();
public int getMinorVersion();
public void log(String message);
public void log(String message, Throwable cause);

// deprecated methods
public Servlet getServlet(String name) throws ServletException;
public Enumeration getServlets();
public Enumeration getServletNames();
public void log(Exception exception, String message);

12.1.5 ServletRequest
public interface ServletRequest

public Object getAttribute(String name);
public Object setAttribute(String name, Object attribute);
public Enumeration getAttributeNames();
public void removeAttribute(String name);
public Locale getLocale();
public Enumeration getLocales();
public String getCharacterEncoding();
public int getContentLength();
public String getContentType();
public ServletInputStream getInputStream() throws IOException;
Java™ Servlet Specification Version 2.2 54

Application Programming Interface
public String getParameter(String name);
public String getParameterNames();
public String getParameterValues();
public String getProtocol();
public String getScheme();
public String getServerName();
public int getServerPort();
public BufferedReader getReader() throws IOException;
public String getRemoteAddr();
public String getRemoteHost();
public boolean isSecure();
public RequestDispatcher getRequestDispatcher(String path);

// deprecated methods
public String getRealPath();

12.1.6 ServletResponse
public interface ServletResponse

public String getCharacterEncoding();
public ServletOutputStream getOutputStream() throws IOException
public PrintWriter getWriter throws IOException
public void setContentLength(int length);
public void setContentType(String type);
public void setBufferSize(int size);
public int getBufferSize();
public void reset();
public boolean isCommitted();
public void flushBuffer() throws IOException;
public void setLocale(Locale locale);
public Locale getLocale();

12.1.7 SingleThreadModel
public interface SingleThreadModel

// no methods

12.1.8 GenericServlet
public abstract class GenericServlet implements Servlet

public GenericServlet();

public String getInitParameter();
public Enumeration getInitParameterNames();
public ServletConfig getServletConfig();
public ServletContext getServletContext();
public String getServletInfo();
public void init();
public void init(ServletConfig config) throws ServletException;
public void log(String message);
public void log(String message, Throwable cause);
Java™ Servlet Specification Version 2.2 55

Application Programming Interface
public abstract void service(ServletRequest req,
 ServletResponse res) throws ServletException, IOException.;
public void destroy();

12.1.9 ServletInputStream
public abstract class ServletInputStream extends InputStream

public ServletInputStream();

public int readLine(byte[] buffer, int offset, int length)
 throws IOException;

12.1.10 ServletOutputStream
public abstract class ServletOutputStream extends OutputStream

public ServletOutputStream();

public void print(String s) throws IOException;
public void print(boolean b) throws IOException;
public void print(char c) throws IOException;
public void print(int i) throws IOException;
public void print(long l) throws IOException;
public void print(float f) throws IOException;
public void print(double d) throws IOException;
public void println() throws IOException;
public void println(String s) throws IOException;
public void println(boolean b) throwsIOException;
public void println(char c) throws IOException;
public void println(int i) throws IOException;
public void println(long l) throws IOException;
public void println(float f) throws IOException;
public void println(double d) throws IOException;

12.1.11 ServletException
public class ServletException extends Exception;

public ServletException();
public ServletException(String message);
public ServletException(String message, Throwable cause);
public ServletException(Throwable cause);

public Throwable getRootCause();

12.1.12 UnavailableException
public class UnavailableException extends ServletException

public UnavailableException(String message);
public UnavailableException(String message, int sec);

public int getUnavailableException();
public boolean isPermanent();
Java™ Servlet Specification Version 2.2 56

Application Programming Interface
// newly deprecated methods
public UnavailableException(Servlet servlet, String message);
public UnavailableException(int sec, Servlet servlet, String msg);

public Servlet getServlet();

12.2 Package javax.servlet.http
interface HttpServletRequest
interface HttpServletResponse
interface HttpSession
interface HttpSessionBindingListener
interface HttpSessionContext

class Cookie
class HttpServlet
class HttpSessionBindingEvent
class HttpUtils

12.2.1 HttpServletRequest
public interface HttpServletRequest extends ServletRequest;

public String getAuthType();
public Cookie[] getCookies();
public long getDateHeader(String name);
public String getHeader(String name);
public Enumeration getHeaders(String name);
public Enumeration getHeaderNames();
public int getIntHeader(String name);
public String getMethod();
public String getContextPath();
public String getPathInfo();
public String getPathTranslated();
public String getQueryString();
public String getRemoteUser();
public boolean isUserInRole(String role);
public java.security.Principal getUserPrincipal();
public String getRequestedSessionId();
public boolean isRequestedSessionIdValid();
public boolean isRequestedSessionIdFromCookie();
public boolean isRequestedSessionIdFromURL();
public String getRequestURI();
public String getServletPath();
public HttpSession getSession();
public HttpSession getSession(boolean create);

// deprecated methods

public boolean isRequestSessionIdFromUrl();
Java™ Servlet Specification Version 2.2 57

Application Programming Interface
12.2.2 HttpServletResponse
public interface HttpServletResponse extends ServletResponse
<<< STATUS CODES 416 AND 417 REPORTED MISSING>>>

public static final int SC_CONTINUE;
public static final int SC_SWITCHING_PROTOCOLS;
public static final int SC_OK;
public static final int SC_CREATED;
public static final int SC_ACCEPTED;
public static final int SC_NON_AUTHORITATIVE_INFORMATION;
public static final int SC_NO_CONTENT;
public static final int SC_RESET_CONTENT;
public static final int SC_PARTIAL_CONTENT;
public static final int SC_MULTIPLE_CHOICES;
public static final int SC_MOVED_PERMANENTLY;
public static final int SC_MOVED_TEMPORARILY;
public static final int SC_SEE_OTHER;
public static final int SC_NOT_MODIFIED;
public static final int SC_USE_PROXY;
public static final int SC_BAD_REQUEST;
public static final int SC_UNAUTHORIZED;
public static final int SC_PAYMENT_REQUIRED;
public static final int SC_FORBIDDEN;
public static final int SC_NOT_FOUND;
public static final int SC_METH0D_NOT_ALLOWED;
public static final int SC_NOT_ACCEPTABLE;
public static final int SC_PROXY_AUTHENTICATION_REQUIRED;
public static final int SC_REQUEST_TIMEOUT;
public static final int SC_CONFLICT;
public static final int SC_GONE;
public static final int SC_LENGTH_REQUIRED;
public static final int SC_PRECONDITION_FAILED;
public static final int SC_REQUEST_ENTITY_TOO_LARGE;
public static final int SC_REQUEST_URI_TOO_LONG;
public static final int SC_UNSUPPORTED_MEDIA_TYPE;
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE;
public static final int SC_EXPECTATION_FAILED;
public static final int SC_INTERNAL_SERVER_ERROR;
public static final int SC_NOT_IMPLEMENTED;
public static final int SC_BAD_GATEWAY;
public static final int SC_SERVICE_UNAVAILABLE;
public static final int SC_GATEWAY_TIMEOUT;
public static final int SC_VERSION_NOT_SUPPORTED;

public void addCookie(Cookie cookie);
public boolean containsHeader(String name);
public String encodeURL(String url);
public String encodeRedirectURL(String url);
public void sendError(int status) throws IOException;
public void sendError(int status, String message)
 throws IOException;
public void sendRedirect(String location) throws IOException;
Java™ Servlet Specification Version 2.2 58

Application Programming Interface
public void setDateHeader(String headername, long date);
public void setHeader(String headername, String value);
public void addHeader(String headername, String value);
public void addDateHeader(String headername, long date);
public void addIntHeader(String headername, int value);
public void setIntHeader(String headername, int value);
public void setStatus(int statuscode);

// deprecated methods
public void setStatus(int statuscode, String message);
public String encodeUrl(String url);
public String encodeRedirectUrl(String url);

12.2.3 HttpSession
public interface HttpSession

public long getCreationTime();
public String getId();
public long getLastAccessedTime();
public boolean isNew();
public int getMaxInactiveInterval();
public void setMaxInactiveInterval(int interval);
public Object getAttribute(String name);
public Enumeration getAttributeNames();
public void setAttribute(String name, Object attribute);
public void removeAttribute(String name);
public void invalidate();

// deprecated methods
public Object getValue(String name);
public String[] getValueNames();
public void putValue(String name, Object value);
public void removeValue(String name);
public HttpSessionContext getSessionContext();

12.2.4 HttpSessionBindingListener
public interface HttpSessionBindingListener extends EventListener

public void valueBound(HttpSessionBindingEvent event);
public void valueUnbound(HttpSessionBindingEvent event);

12.2.5 HttpSessionContext
// deprecated
public abstract interface HttpSessionContext

// deprecated methods
public void Enumeration getIds();
public HttpSession getSession(String id);
Java™ Servlet Specification Version 2.2 59

Application Programming Interface
12.2.6 Cookie
public class Cookie implements Cloneable

public Cookie(String name, String value);
public void setComment(String comment);
public String getComment();
public void setDomain(String domain);
public String getDomain();
public void setMaxAge(int expiry);
public int getMaxAge();
public void setPath(String uriPath);
public String getPath();
public void setSecure();
public boolean getSecure();
public String getName();
public void setValue(String value);
public String getValue();
public int getVersion();
public void setVersion(int version);
public Object clone();

12.2.7 HttpServlet
public abstract class HttpServlet extends GenericServlet
 implements Serializable

public HttpServlet();

protected void doGet(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void doPost(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void doPut(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void doDelete(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void doOptions(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void doTrace(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
protected void service(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException;
public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException;
protected long getLastModifed(HttpServletRequest req);

12.2.8 HttpSessionBindingEvent
public class HttpSessionBindingEvent extends EventObject

public HttpSessionBindingEvent(HttpSession session, String name);

public String getName();
Java™ Servlet Specification Version 2.2 60

Application Programming Interface
public HttpSession getSession();

12.2.9 HttpUtils
public class HttpUtils

public HttpUtils();

public static Hashtable parseQueryString(String queryString);
public static Hashtable parsePostData(int length,
 ServletInputStream in);
public static StringBuffer getRequestURL(HttpServletRequest req);
Java™ Servlet Specification Version 2.2 61

Application Programming Interface
Java™ Servlet Specification Version 2.2 62

Deployment Descriptor

.

13 Deployment Descriptor

The Deployment Descriptor conveys the elements and configuration information of a web
application between Developers, Assemblers, and Deployers.

13.1 Deployment Descriptor Elements
The following types of configuration and deployment information exist in the web application
deployment descriptor:

• ServletContext Init Parameters
• Session Configuration
• Servlet / JSP Definitions
• Servlet / JSP Mappings
• Mime Type Mappings
• Welcome File list
• Error Pages
• Security

See the DTD comments for further description of these elements.

13.1.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following DOCTYPE
declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

13.2 DTD
The DTD that follows defines the XML grammar for a web application deployment descriptor

<!--
The web-app element is the root of the deployment descriptor for
a web application
-->

<!ELEMENT web-app (icon?, display-name?, description?, distributable?,
context-param*, servlet*, servlet-mapping*, session-config?,
mime-mapping*, welcome-file-list?, error-page*, taglib*,
resource-ref*, security-constraint*, login-config?, security-role*,
env-entry*, ejb-ref*)>

<!--
The icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small and
large image used to represent the web application in a GUI tool. At a
minimum, tools must accept GIF and JPEG format images.
-->

<!ELEMENT icon (small-icon?, large-icon?)>
Java™ Servlet Specification Version 2.2 63

Deployment Descriptor
<!--
The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-->

<!ELEMENT small-icon (#PCDATA)>

<!--
The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-->

<!ELEMENT large-icon (#PCDATA)>

<!--
The display-name element contains a short name that is intended
to be displayed by GUI tools
-->

<!ELEMENT display-name (#PCDATA)>

<!--
The description element is used to provide descriptive text about
the parent element.
-->

<!ELEMENT description (#PCDATA)>

<!--
The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container
-->

<!ELEMENT distributable EMPTY>

<!--
The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--
The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>
Java™ Servlet Specification Version 2.2 64

Deployment Descriptor
<!--
The servlet element contains the declarative data of a
servlet. If a jsp-file is specified and the load-on-startup element is
present, then the JSP should be precompiled and loaded.
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, security-role-
ref*)>

<!--
The servlet-name element contains the canonical name of the
servlet.
-->

<!ELEMENT servlet-name (#PCDATA)>

<!--
The servlet-class element contains the fully qualified class name
of the servlet.
-->

<!ELEMENT servlet-class (#PCDATA)>

<!--
The jsp-file element contains the full path to a JSP file within
the web application.
-->

<!ELEMENT jsp-file (#PCDATA)>

<!--
The init-param element contains a name/value pair as an
initialization param of the servlet
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--
The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application. The optional contents of
these element must be a positive integer indicating the order in which
the servlet should be loaded. Lower integers are loaded before higher
integers. If no value is specified, or if the value specified is not a
positive integer, the container is free to load it at any time in the
startup sequence.
-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--
The servlet-mapping element defines a mapping between a servlet
and a url pattern
-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>
Java™ Servlet Specification Version 2.2 65

Deployment Descriptor
<!--
The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 10 of the Servlet
API Specification.
-->

<!ELEMENT url-pattern (#PCDATA)>

<!--
The session-config element defines the session parameters for
this web application.
-->

<!ELEMENT session-config (session-timeout?)>

<!--
The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
-->

<!ELEMENT session-timeout (#PCDATA)>

<!--
The mime-mapping element defines a mapping between an extension
and a mime type.
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--
The extension element contains a string describing an
extension. example: "txt"
-->

<!ELEMENT extension (#PCDATA)>

<!--
The mime-type element contains a defined mime type. example:
"text/plain"
-->

<!ELEMENT mime-type (#PCDATA)>

<!--
The welcome-file-list contains an ordered list of welcome files
elements.
-->

<!ELEMENT welcome-file-list (welcome-file+)>

<!--
The welcome-file element contains file name to use as a default
welcome file, such as index.html
-->

<!ELEMENT welcome-file (#PCDATA)>
Java™ Servlet Specification Version 2.2 66

Deployment Descriptor
<!--
The taglib element is used to describe a JSP tag library.
-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--
The taglib-uri element describes a URI, relative to the location
of the web.xml document, identifying a Tag Library used in the Web
Application.
-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
-->

<!ELEMENT taglib-location (#PCDATA)>

<!--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application
-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--
The error-code contains an HTTP error code, ex: 404
-->

<!ELEMENT error-code (#PCDATA)>

<!--
The exception type contains a fully qualified class name of a
Java exception type.
-->

<!ELEMENT exception-type (#PCDATA)>

<!--
The location element contains the location of the resource in the
web application
-->

<!ELEMENT location (#PCDATA)>

<!--
The resource-ref element contains a declaration of a Web
Applic ation’s reference to an external resource.
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth)>
Java™ Servlet Specification Version 2.2 67

Deployment Descriptor
<!--
The res-ref-name element specifies the name of the resource
factory reference name.
-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--
The res-type element specifies the (Java class) type of the data
source.
-->

<!ELEMENT res-type (#PCDATA)>

<!--
The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer. Must be CONTAINER or SERVLET
-->

<!ELEMENT res-auth (#PCDATA)>

<!--
The security-constraint element is used to associate security
constraints with one or more web resource collections
-->

<!ELEMENT security-constraint (web-resource-collection+,
auth-constraint?, user-data-constraint?)>

<!--
The web-resource-collection element is used to identify a subset
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP methods
are specified, then the security constraint applies to all HTTP
methods.
-->

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<!--
The web-resource-name contains the name of this web resource
collection
-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--
The http-method contains an HTTP method (GET | POST |...)
-->

<!ELEMENT http-method (#PCDATA)>

<!--
The user-data-constraint element is used to indicate how data
Java™ Servlet Specification Version 2.2 68

Deployment Descriptor
communicated between the client and container should be protected
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--
The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.
-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role used here
must appear in a security-role-ref element.
-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--
The role-name element contains the name of a security role.
-->

<!ELEMENT role-name (#PCDATA)>

<!--
The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form login
mechanism.
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-config?)>

<!--
The realm name element specifies the realm name to use in HTTP
Basic authorization
-->

<!ELEMENT realm-name (#PCDATA)>

<!--
The form-login-config element specifies the login and error pages
that should be used in form based login. If form based authentication
is not used, these elements are ignored.
-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>
Java™ Servlet Specification Version 2.2 69

Deployment Descriptor
<!--
The form-login-page element defines the location in the web app
where the page that can be used for login can be found
-->

<!ELEMENT form-login-page (#PCDATA)>

<!--
The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found
-->

<!ELEMENT form-error-page (#PCDATA)>

<!--
The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining access
to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".
-->

<!ELEMENT auth-method (#PCDATA)>

<!--
The security-role element contains the declaration of a security
role which is used in the security-constraints placed on the web
application.
-->

<!ELEMENT security-role (description?, role-name)>

<!--
The role-name element contains the name of a role. This element
must contain a non-empty string.
-->

<!ELEMENT security-role-ref (description?, role-name, role-link)>

<!--
The role-link element is used to link a security role reference
to a defined security role. The role-link element must contain the
name of one of the security roles defined in the security-role
elements.
-->

<!ELEMENT role-link (#PCDATA)>

<!--
The env-entry element contains the declaration of an
application’s environment entry. This element is required to be
honored on in J2EE compliant servlet containers.
-->
Java™ Servlet Specification Version 2.2 70

Deployment Descriptor
<!ELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>

<!--
The env-entry-name contains the name of an application’s
environment entry
-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-value element contains the value of an
application’s environment entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--
The env-entry-type element contains the fully qualified Java type
of the environment entry value that is expected by the application
code. The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.
-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--
The ejb-ref element is used to declare a reference to an
enterprise bean.
-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote,
ejb-link?)>

<!--
The ejb-ref-name element contains the name of an EJB
reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.
-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
The ejb-ref-type element contains the expected java class type of
the referenced EJB.
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The ejb-home element contains the fully qualified name of the
EJB’s home interface
-->

<!ELEMENT home (#PCDATA)>
Java™ Servlet Specification Version 2.2 71

Deployment Descriptor
<!--
The ejb-remote element contains the fully qualified name of the
EJB’s remote interface
-->

<!ELEMENT remote (#PCDATA)>

<!--
The ejb-link element is used in the ejb-ref element to specify
that an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package. The value of the
ejb-link element must be the ejb-name of and EJB in the J2EE
application package.
-->

<!ELEMENT ejb-link (#PCDATA)>

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e information
beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard web-app
deployment descriptor.
-->

<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
Java™ Servlet Specification Version 2.2 72

Deployment Descriptor
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>

13.3 Examples
The following examples illustrate the usage of the definitions listed above DTD.

13.3.1 A Basic Example
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>A Simple Application</display-name>
 <context-param>
 <param-name>Webmaster</param-name>
 <param-value>webmaster@mycorp.com</param-value>
 </context-param>
 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.mycorp.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
Java™ Servlet Specification Version 2.2 73

Deployment Descriptor
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>pdf</extension>
 <mime-type>application/pdf</mime-type>
 </mime-mapping>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file-list>
 <error-page>
 <error-code>404</error-code>
 <location>/404.html</location>
 </error-page>
</web-app>

13.3.2 An Example of Security
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <display-name>A Secure Application</display-name>
 <security-role>
 <role-name>manager</role-name>
 </security-role>
 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.mycorp.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>
 <security-role-ref>
 <role-name>MGR</role-name> <!-- role name used in code -->
 <role-link>manager</role-link>
 </security-role-ref>
 </servlet>
 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SalesInfo</web-resource-name>
 <url-pattern>/salesinfo/*</url-pattern>
Java™ Servlet Specification Version 2.2 74

Deployment Descriptor
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
 </web-resource-collection>
 </security-constraint>
</web-app>
Java™ Servlet Specification Version 2.2 75

Deployment Descriptor
Java™ Servlet Specification Version 2.2 76

Futures

from
unt of
ons
 as
of

e
uded
14 Futures

Many excellent suggestions for additions to this specification have been made by contributors
both our partners, and the general public. As time to market considerations constrain the amo
work that can be done for any particular revision of the specification, some of these suggesti
cannot be incorporated in this version of the specification. However, by including these items
future directions, we indicate that we will be considering them for inclusion into a future revision
the specification.

The following are items under consideration:

• Filtering of response content
• Allowing easy access to internationalized content via the getResource method of the

ServletContext interface.
• Internationalization of web application content
• WebDAV Integration
• Application event handlers
• HTTP Extensions Framework integration

Please note that inclusion of an item on this list is not a commitment for inclusion into a futur
revision of this specification, only that the item is under serious consideration and may be incl
into a future revision.
Java™ Servlet Specification Version 2.2 77

Futures
Java™ Servlet Specification Version 2.2 78

Please
Recycle

	Table Of Contents
	Preface
	0.1 Who Should Read This Specification
	0.2 API Reference
	0.3 Other Java™ Platform Specifications
	0.4 Other Important References
	0.5 Providing Feedback
	0.6 Acknowledgements

	1 Overview
	1.1 What is a Servlet?
	1.2 What is a Servlet Container?
	1.3 An Example
	1.4 Comparing Servlets with Other Technologies
	1.5 Relationship to Java 2 Platform Enterprise Edition
	1.6 Distributable Servlet Containers
	1.7 Changes Since Version 2.1

	2 Terms Used
	2.1 Basic Terms
	2.2 Roles
	2.3 Security Terms

	3 The Servlet Interface
	3.1 Request Handling Methods
	3.2 Number of Instances
	3.3 Servlet Life Cycle

	4 Servlet Context
	4.1 Scope of a ServletContext
	4.2 Initialization Parameters
	4.3 Context Attributes
	4.4 Resources
	4.5 Multiple Hosts and Servlet Contexts
	4.6 Reloading Considerations
	4.7 Temporary Working Directories

	5 The Request
	5.1 Parameters
	5.2 Attributes
	5.3 Headers
	5.4 Request Path Elements
	5.5 Path Translation Methods
	5.6 Cookies
	5.7 SSL Attributes
	5.8 Internationalization

	6 The Response
	6.1 Buffering
	6.2 Headers
	6.3 Convenience Methods
	6.4 Internationalization
	6.5 Closure of Response Object

	7 Sessions
	7.1 Session Tracking Mechanisms
	7.2 Creating a Session
	7.3 Session Scope
	7.4 Binding Attributes into a Session
	7.5 Session Timeouts
	7.6 Last Accessed Times
	7.7 Important Session Semantics

	8 Dispatching Requests
	8.1 Obtaining a RequestDispatcher
	8.2 Using a Request Dispatcher
	8.3 Include
	8.4 Forward
	8.5 Error Handling

	9 Web Applications
	9.1 Relationship to ServletContext
	9.2 Elements of a Web Application
	9.3 Distinction Between Representations
	9.4 Directory Structure
	9.5 Web Application Archive File
	9.6 Web Application Configuration Descriptor
	9.7 Replacing a Web Application
	9.8 Error Handling
	9.9 Web Application Environment

	10 Mapping Requests to Servlets
	10.1 Use of URL Paths
	10.2 Specification of Mappings

	11 Security
	11.1 Introduction
	11.2 Declarative Security
	11.3 Programmatic Security
	11.4 Roles
	11.5 Authentication
	11.6 Server Tracking of Authentication Information
	11.7 Specifying Security Constraints

	12 Application Programming Interface
	12.1 Package javax.servlet
	12.2 Package javax.servlet.http

	13 Deployment Descriptor
	13.1 Deployment Descriptor Elements
	13.2 DTD
	13.3 Examples

	14 Futures

